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MACROSCOPIC EVOLUTION OF MECHANICAL AND
THERMAL ENERGY IN A HARMONIC CHAIN WITH
RANDOM FLIP OF VELOCITIES

TOMASZ KOMOROWSKI, STEFANO OLLA, AND MARIELLE SIMON

ABSTRACT. We consider an unpinned chain of harmonic oscillators with peri-
odic boundary conditions, whose dynamics is perturbed by a random flip of the
sign of the velocities. The dynamics conserves the total volume (or elongation)
and the total energy of the system. We prove that in a diffusive space-time
scaling limit the profiles corresponding to the two conserved quantities con-
verge to the solution of a diffusive system of differential equations. While the
elongation follows a simple autonomous linear diffusive equation, the evolution
of the energy depends on the gradient of the square of the elongation.

1. INTRODUCTION

Harmonic chains with energy conserving random perturbations of the dynamics
have recently received attention in the study of the macroscopic evolution of en-
ergy [1, 2, 5, 8, 10, 12]. They provide models that have a non-trivial macroscopic
behavior which can be explicitly computed. We consider here the dynamics of
an unpinned chain where the velocities of particles can randomly change sign.
This random mechanism is equivalent to the deterministic collisions with inde-
pendent environment particles of infinite mass. Since the chain is unpinned, the
relevant conserved quantities of the dynamics are the energy and the volume (or
elongation).

Under a diffusive space-time scaling, we prove that the profile of elongation
evolves independently of the energy and follows the linear diffusive equation

1
Oir(t,u) = %(fwr(t, u). (1.1)

Here u is the Lagrangian space coordinate of the system and ~ > 0 is the intensity
of the random mechanism of collisions. The energy profile can be decomposed
into the sum of mechanical and thermal energy

e(t,u) = emeen(t, u) + €tnm (t, w)

where the mechanical energy is given by €mecn(t, u) = 27 (f,u)?, while the thermal
part egm(t, u), that coincides with the temperature profile, evolves following the

Key words and phrases. Hydrodynamic limit, heat diffusion, Wigner distribution,
thermalization.



non-linear equation:

1 1
Oreenm (T, u) = E&zuethm(t, u) + > (Our(t,u))”. (1.2)
This is equivalent to the following conservation law for the total energy:
1 r(t,u)?
ore(t,u) = —aoa, | e(t — . 1.3
te( ,U) 47 uu (6( ,U) + 9 > ( )

The derivation of the macroscopic equations (1.1) and (1.2) from the microscopic
dynamical system of particles, after a diffusive rescaling of space and time, is
the goal of this paper. Concerning the distribution of the energy in the fre-
quency modes: the mechanical energy epec(t,u) is concentrated on the modes
corresponding to the largest wavelength, while the thermal energy ey, (¢, u) is
distributed uniformly over all frequencies. Note that % (0ur(t, 1))’ is the rate of
dissipation of the mechanical energy into thermal energy.

The presence of the non-linearity in the evolution of the energy makes the
macroscopic limit non-trivial. Relative entropy methods (as introduced in [13])
identify correctly the limit equation (see [12]), but in order to make them rigorous
one needs sharp bounds on higher moments than cannot be controlled by the
relative entropy'. In this sense the proof in [12] is not complete.

We follow here a different approach based on Wigner distributions. The Wigner
distributions permit to control the energy distribution over various frequency
modes and provide a natural separation between mechanical and thermal ener-
gies. The initial positions and velocities of particles can be random, and the only
condition we ask, besides to have definite mean asymptotic profiles of elongation
and energy, is that the thermal energy spectrum has a square integrable density.
In the macroscopic limit we prove that locally the thermal energy spectrum has
a constant density equal to the local thermal energy (or temperature), i.e. that
the system is, at macroscopic positive times, in local equilibrium, even though
it is not at initial time. Also follows from our result that the mechanical energy
is concentrated on the lowest modes. This is a stronger local equilibrium result
than the one usually obtained with relative entropy techniques. The Wigner dis-
tribution approach had been successfully applied in different contexts for systems
perturbed by noise with more conservation laws in [5, 8]. Here we need a partic-
ular asymmetric version of the Wigner distribution, in order to deal with a finite
size discrete microscopic system.

When the system is pinned, only energy is conserved and its macroscopic evo-
lution is linear, and much easier to be obtained. In this case the thermalization
and the correlation structure have been studied in [9, 10].

IFor more details related to these moments bounds, that are still conjectured but not proved
(on the contrary to what is claimed in [12]), we refer the reader to an erratum which is available
online at http://chercheurs.lille.inria.fr/masimon/erratum-v2.pdf.


http://chercheurs.lille.inria.fr/masimon/erratum-v2.pdf

When the chain of oscillators is anharmonic, still with velocity flip dynamics,
the hydrodynamic limit is a difficult non-gradient problem, for the moment still
open. In that case the macroscopic equations would be:

or(t,u) = %%u [T(r, e)],

(1.4)

dre(t,u) = 0,[D(r,€)0,87 (r,e)] + %@3“ (7(r,e)?).
where 7(r, ) is the thermodynamic equilibrium tension as function of the volume
r and of the energy e, and $71(r,e) is the corresponding temperature, while
D(r,e) is the thermal diffusivity defined by the usual Green-Kubo formula, as
space-time variance of the energy current in the equilibrium infinite dynamics
at average elongation r and energy e (see Section 4 for the definition of these
quantities). The linear response and the existence of D(r, e) have been proven in

[3].
2. MICROSCOPIC DYNAMICS

2.1. Periodic chain of oscillators. In the following we denote by T,, := Z/nZ =
{0,...,n — 1} the discrete circle with n points, and, for any L > 0, by T(L) the-
continuous circle of length L, and we set T := T(1).

We consider a one-dimensional harmonic chain of n oscillators, all of mass 1,
with periodic boundary conditions. The clearest way to describe this system is
as a massive one dimensional discrete surface {¢, € R,z € T,,}. The element (or
particle) z of the surface is at height ¢, and has mass equal to 1. We call its
velocity (that coincides with its momentum) p, € R. Each particle z is connected
to the particles x — 1 and x + 1 by harmonic springs, so that n — 1 and 0 are
connected in the same way. The total energy of the system is given by the
Hamiltonian:

H._Zg 5._1’_926 (P = o) (2.1)
0= o 2= 5 : :

z€T)
In addition to the Hamiltonian dynamics associated to the harmonic potentials,
particles are subject to a random interaction with the environment: at indepen-
dently distributed random Poissonian times, the momentum p, is flipped into
—pe. The resulting equations of the motion are

{ g, (1) = n’p,(t) dt,
dpm (t) = 77,2 (QOerl(t) + %«71@) - 2()0:1:@)) dt — 2pm <t7> de (7n2t>7

for any = € T,,. Here {N,(¢) ; t =0, x € T, } are n independent Poisson processes
of intensity 1, and the constant v is positive. We have already accelerated the
time scale by n?, according to the diffusive scaling. Notice that the energy H,,
is conserved by this dynamics. There is another important conservation law that
is given by the sum of the elongations of the springs, that we define as follows.

(2.2)



We call r, = ¢, — p,_1 the elongation of the spring between x and = — 1, and
since x € T, we have ry = ¢g — ¢,_1. The equation of the dynamics in these
coordinates are given by:

{ ro(t) = n? (pa(t) — poa(t))
dpa:(t) = TL2 (T$+1(t) - Tx(t)) dt — 2px(t_) dNa&(’yth)v T e Tn

This implies that the dynamics is completely defined giving the initial conditions
{r+(0),p,(0),x e T,}.

The periodicity in the @, variables would impose that >"_ ) r,(0) = 0. On the
other hand the dynamics defined by (2.3) is well defined also if 3"~} r,(0) # 0
and has the conservation law Z;:é r.(t) = Z;:é r:(0) := R,. Note that R,, can
also assume negative values. In this case we can picture the particles as n points
Qo -+ - qn—1 € T(|Ry]), the circle of length |R,|. These points can be defined as
Qe = [ZZ:O ry]mod\RnP forz =0,...,n—1. It follows that ¢, = qop. We will not

(2.3)

use neither the g, coordinates nor the ¢, coordinates, but we consider only the
evolution defined by (2.3) with initial configurations 3"~} r,(0) = R, € R.

2.2. Generator and invariant measures. The generator of the stochastic dy-
namics (r(t) := {ry(t)}zer,, P(t) := {ps(t)}zeT, ), is given by
L, :=n*A, +n*yS,,

where the Liouville operator A, is formally given by

0 0
An = Z {(pm _p:vfl)a—rx + (’rerl - 'rm)&—px}a

z€Ty

while, for f:Q, — R,
8nf<r7p> = Z {f(rvpx> - f(rvp)}

z€Ty
where p” is the configuration that is obtained from p by reversing the sign of the
velocity at site x, namely: (p*), = p, if y # x and (p*), = —Da-

The two conserved quantities H, = erm &, and R, = erm ry, are de-
termined by the initial data (eventually random), and typically they should be
proportional to n: H, = ne, R, = nr, with e € R, the average energy per par-
ticle, and r € R the average spring elongation. Consequently the system has
a two parameters family of stationary measures given by the canonical Gibbs
distributions

,ufﬂ(dr, dp) = H exp ( — B(&Er —Try) — QTﬂ) dr,dp,, 8>0,7eR,
z€T
where

G,p = log [W fR e~ 3(r%=2m) dr] = log [27?671 exp (7_2—6)]
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As usual, the parameters 37! > 0 and 7 € R are called respectively temperature
and tension. Observe that the function

r(r,8)=B"10.Gs=1 (2.4)

gives the average equilibrium length in function of the tension 7, and
2
-
8(7—7 B) =T T(Tv 6) - aﬁgr,ﬁ = B_l + ? (25)

is the corresponding thermodynamic internal energy function. Note that the
energy £(7, 3) is composed by a thermal energy 3! and a mechanical energy 72—2

2.3. Hydrodynamic limits. Let yu,(dr,dp) be an initial Borel probability dis-
tribution on €2,. We denote by P, the law of the process {(r(t),p(t)) ; t = 0}
starting from the measure p,, and generating by £,,, and by E, its corresponding
expectation. We are given initial continuous profiles of tension {ry(u) ; u € T}
and of temperature {£;(u) > 0 ; u € T}. The thermodynamic relations (2.4)
and (2.5) give the corresponding initial profiles of elongation and energy as

1 75(w)
eo(u) := + ,
ﬁo (U) 2
The initial distributions pu,, are assumed to satisfy the following mean convergence
statements:

ro(u) := 10(u) and weT. (2.6)

53 GBI 0] | G ) du 27)
% 67 )Ele0)] Gl eofu) du (2.8)

for any test function G that belongs to the set C*(T) of smooth functions on the
torus. We expect the same convergence to happen at the macroscopic time ¢:

% 3 G<%)En[rm(t)] e ) Gt du

n—+0o0
z€T)

% 3 G(%)En[é’x(t)] —— | G(u) e(t,u) du,

n— -+ T

(2.9)

where the macroscopic evolution for the volume and energy profiles follows the
system of equations:

1
opr(t,u) = 2—85ur(t, u),
7 , (2.10)

1
Drelt, u) = @agu (e + %)(t,u), (t,u) e Ry x T,

with the initial condition

r(0,u) = ro(u), e(0,u) = ep(u).



The solutions e(t,-), r(t,-) of (2.10) are smooth when ¢ > 0 (the system of par-
tial differential equations is parabolic). Note that the evolution of r(¢,u) is au-
tonomous of e(¢, u). The precise assumptions that are needed for the convergence
(2.9) are stated in Theorems 3.7 and 3.8 below.

3. MAIN RESULTS

3.1. Notations.

3.1.1. Discrete Fourier transform. Let us denote by fthe Fourier transform of a
finite sequence {f,}.er, of numbers in C, defined as follows:

fk)y= > foe @™k keT,:={0,1, . =1} (3.1)

z€Ty

Reciprocally, for any f : ﬁ‘n — C, we denote by {‘]\{B}me’ﬂ‘ its inverse Fourier
transform given by

7 1 2irak

= k£ (L, T,. 3.2

J n}g}@)e fk), e (3:2)
€ln

The Parseval identity reads

2 = = S IFR = 3 1L (33

ke']ATn €T,

If {f.}zer, and {g.}.er, are two sequences indexed by the discrete torus, their
convolution is given by

(f *g>m = Z fy Jr—y; zeT,.

yeTy,

3.1.2. Continuous Fourier transform. Let C(T) be the the space of continuous,
complex valued functions on T. For any function G € C(T), let FG : Z — C
denote its Fourier transform given as follows:

FGy) = LG(u) e gy pel, (3.4)

Similar identities to (3.2) and (3.3) can easily be written: for instance, we shall
repeatedly use the following

G(u) = Y. FG(n) ™, ueT. (3.5)
A
Note that when G is smooth the Fourier coefficients satisfy
sup {(1 + n2)p|]:G(n)|} < 4w, for any p e N. (3.6)
neZ

If J: TxT — Cis defined on a two-dimensional torus, we still denote by F.J(n, v),
(n,v) € Z x T, its Fourier transform with respect to the first variable. We equip



the set C*(T x T) of smooth (with respect to the first variable) functions with
the norm
[Tlo == sup |FJ(n,v)]. (3.7)
nez veT
Let Aj be the completion of C*(T x T) in this norm and (Aj, | - [|;) its dual space.

3.1.3. A fundamental example. In what follows, we often consider the discrete
Fourier transform associated to a function G € C(T), and to avoid any confusion
we introduce a new notation: let F,G : T,, — C be the discrete Fourier transform
of the finite sequence {G(Z)}.cr, defined similarly to (3.1) as

FuGk) = G(f>e—2m’f, keT,.

x€T, n

In particular, we have the Parseval identity

> 6(5) 52 =2 SEGE 0. 33

Furthermore, note that

1
—F.G (ﬁ) — FG(n), for any 7 € Z.
n

n n—0o0

3.2. Assumptions on initial data. Without losing too much of generality, one
can put natural assumptions on the initial probability measure y, (dr, dp).

The first assumption concerns the mean of the initial configurations, and is
sufficient in order to derive the first of the hydrodynamic equations (2.10) :

Assumption 3.1. o The initial total energy can be random but with uni-
formly bounded expectation:
1

supE,, | — E.(0)] < +o0. 3.9

e[} 3 &0 39)

o We assume that there exist continuous initial profiles ro : T — R and
ep: T — (0,400) such that

E.[p.(0)] =0, E,[r.(0)] = r0<%) for any x € T, (3.10)
and for any G € C*(T)

1 T

- ET G(E)En[sm(m] o | G eofw) du (3.11)
Identity (3.10), in particular, implies the mean convergence of the initial
elongation:

1 x

ﬁx;n(}(g)En[rx(O)] o | G () du (3.12)



for any G € C*(T).

Remark 3.2. By energy conservation (3.9) implies that
1
E,|— EL(t : It=0. 3.13
sup [nE ()]<+oo for a (3.13)

Remark 3.3. Conditions in (3.10) are assumed in order to simplify the proof,
but they can be easily relazed.

Next assumption is important to obtain the macroscopic equation for the en-
ergy in (2.10). It concerns the energy spectrum of fluctuations around the means
at initial time. Define the initial thermal energy spectrum u,(0,k), k € 'ﬁ'n, as
follows: let 7(0, k) and p(0, k) denote respectively the Fourier transforms of the
initial random configurations {r,(0)}.er, and {p.(0)}ser,, and let

(0, k) = %En[\ﬁ(o, OF +[FO.F) ~ELFORI]. keT. (14

Due to the Parseval identity (3.3) we have

L w00 = o 3 E[iE0)+ (200) B[00

keﬁ‘n zeT,

Assumption 3.4. (Square integrable initial thermal energy spectrum)

1 2
— 0,k)p < +o0. 3.15
igll){n § u,,( )} ( )

keﬁ‘n

Remark 3.5. Assumptions 3.1 and 3.4 are satisfied if the measures i, are given
by local Gibbs measures (non homogeneous product), corresponding to the given
initial profiles of tension and temperature {To(u), B3y (u) ; u € T}, defined as
follows:

duﬁo(_)ﬂo(_) = H exp { — ﬁ()(%) (51 — 70 <%>T$> — gq-o(%),go(%)} d?‘xdpm. (3.16)

xelp

with ro(u) = 7o(u) and ep(u) = B (u) + Tgéu), see [7, Sections 9.2.3-9.2.5]. Note
that our assumptions are much more general, as we do not assume any specific
condition on the correlation structure of ju,. In particular microcanonical versions
of (3.16), where total energy and total volumes are conditioned at fized values ne
and nr, are included by our assumptions.

Remark 3.6. Intuitively, our assumptions state that the initial energy has a
mechanical part, related to To(-) that concentrates on the longest wavelength (i.e.
around k = 0) while the thermal energy has a square integrable density w.r.t. k.



3.3. Formulation of mean convergence. In this section we state two theorems
dealing with the mean convergence of the two conserved quantities, namely the
elongation and energy. The first one (Theorem 3.7) is proved straightforwardly
in Section 3.4 below. The second one is more involved, and is the main subject
of the present paper.

Theorem 3.7 (Mean convergence of the elongation profile). Assume that {pi, }nen
is a sequence of probability measures on Q, such that (3.10) is satisfied, with
ro € C(T). Let r(t,u) be the solution defined on R, x T of the linear diffusive
equation:
1
or(t,u) = —0% r(t,u), t,bu)e Ry x T,
r(tu) = 5t (bu)eR, -
r(0,u) = ro(u).
Then, for any G € C*(T) and t € R,

ngrfw% > G5 )Ean()] = 0. (3.18)

nlirfw% > G(D)Er0)] = LG(u) r(t 1) du. (3.19)

Theorem 3.8 (Mean convergence of the empirical profile of energy). Let {1, }nen
be a sequence of probability measures on §2, such that Assumptions 3.1 and 3.4
are satisfied. Then, for any smooth function G : R, xT — R compactly supported
with respect to the time variable t € R, , we have

lim 3 f G(t,%)En[é’x(t)] dt = f G(t,u) e(t,u) dtdu,  (3.20)

n—+o N Ry xT

where e(t,u) = emecn(t, u) + €tnm(t, u), with

e the mechanical energy, given by emeen(t, u) := % (r(t, w))? and the function
r(t,u) being the solution of (3.17),
e the thermal energy e, (t,u), defined as the solution of

1 1
Oreinm (L, u) = H&iuethm(t, u) + %(aur(t, u))Q,

enm(0,1) = By (1) = eo(t) — emeen (0, u) > 0.
The proof of Theorem 3.8 is presented in Sections 5 — 7.

Remark 3.9. Note that (3.17) and (3.21) are equivalent to the system (2.10).
This new way of seeing the macroscopic equations is more convenient, as it nat-
urally arises from the proof. More precisely, using (3.17) we conclude that the
mechanical energy emeen(t, u) satisfies the equation

Otemech (t, 1) = %(é’iuemech(t,u) — (é’ur(t’u))Q)

(3.21)



and the macroscopic energy density function satisfies
1
ore(t,u) = 4—(33u (e(t,u) + emeen(t, 1)),
Y
e(0,u) = eg(u).

Remark 3.10. We actually prove a stronger result that includes a local equilib-
rium statement, see Theorem 7.5 below.

3.4. Proof of the hydrodynamic limit for the elongation. Here we give a
simple proof of Theorem 3.7. From the evolution equations (2.3) we have the
following identities:

% Z G(%)En[rm(t) — rx(())] = n? ft ! Z G(%)En[ () _pmfl<5>]d3

and
2vyn? Lt% Z G(%)En[pm(S)]ds = n? :% Z G(%)En[Terl(S) — 75(s)]ds
42 3 0(5)Ealpe() - pal0)].

Substituting from the second equation into the first one we conclude that

LS G(D)Ert) ~ ra(0)] :f%in 3 AG(E)E[r(9)]ds  (3:22)

s 2 G2l (0],

where

(2) -n(e(Y) ~o(2)
56(2) =n(r.0(2) o7 )

By energy conservation and Assumption 3.1 it is easy to see that

% Y VG (E)Ent)]] < %(%%} \an(%)f) (% 3 En[pi@)])

‘ 2

< CslG) (% 3 En[gj(o)]> — 0. (3.23)

zeTy,

Let us define
f(n)(t7 u) 1= En[rm(t)]v for any u e [E LH) , n=1l

n’ n

10



Thanks to the energy conservation we know that there exists R > 0 such that

sup sup |[F"(t, )2y = R < +o0. (3.24)
n=1 te[0,T]

The above means that for each ¢ € [0,T] the sequence {7 (¢,-)} _ is contained

in Bp — the closed ball of radius R > 0in L?(T), centered at 0. The ball is compact
in L2 (T) - the space of square integrable functions on the torus T equipped with
the weak L? topology. The topology restricted to By is metrizable, with the
respective metric given e.g. by

. - i f _ga¢n>L2(’E)| _
Whar= Z 20 1+ [Kf = g, bn)raml’ J.9¢€ B

where {¢,} is a countable and dense subset of L*(T) that can be chosen of elements
of C*(T). From (3.22) and (3.23) we conclude in particular that for each T' > 0
the sequence {f(”)(-)} is equicontinuous in C ([0, T),B R). Thus, according to the
Arzela Theorem, see e.g. [6, p. 234], it is sequentially pre-compact in the space
C([0,T],L2(T)) for any T > 0. Consequently, any limiting point of the sequence
satisfies the partial differential equation (3.17) in a weak sense in the class of
L?(T) functions. Uniqueness of the weak solution of the heat equation gives the
convergence claimed in (3.19) and the identification of the limit as the strong
solution of (3.17).
Concerning (3.18), from (2.3) we have

n=1

W7 N ) it ST CATR ()
N f: 2 (t=s) 3 v;(;<%)En[rx(s)]ds,

z€Ty

T

where VG (£) = n (G(£) — G(%1)). Using again energy conservation and the
Cauchy-Schwarz inequality, it is easy to see that the right hand side of the above
vanishes as n — o0.

Remark 3.11. Note that we have not used the fact that the initial average of the
velocities vanishes. Additionally, by standard methods it is possible to obtain the

convergence of elongation and momentum empirical distributions in probability
(see (3.18) and (3.19)), but we shall not pursuit this here.

4. CONJECTURE FOR ANHARMONIC INTERACTION AND THERMODYNAMIC
CONSIDERATIONS

Our results concern only harmonic interactions, but we can state the expected
macroscopic behavior for the anharmonic case. Consider a non-quadratic poten-
tial V(r), of class C' and growing fast enough to +o0 as |r| — o0. The dynamics

11



is now defined by

dre(t) = n?(pe(t) — pe(t)) dt (1)
dpa (t) = 12 (V' (rasa(£) = V/(ra(£))) dt = 2p,(¢7) AN, (1n2), 2 € T
The stationary measures are given by the canonical Gibbs distributions
dpll 5 = H e PEe=T12)=0r s Q. dp,, TeR,5 >0, (4.2)

z€T)

where we denote

the energy that we attribute to the particle x, and

G- = log [«/27?51 Jeﬁ(v(”)”) dr} : (4.3)
Thermodynamic entropy S(r, e) is defined as

S(r,e) = inf {ﬁe — Brr+ G(, ﬁ)} (4.4)

TER,3>0

Then we obtain the inverse temperature and tension as functions of the volume
r and internal energy u:

B ' (r,e) = 0.9(r,e), T(r,e) = =B (r,e)d.5(r,e) (4.5)

The macroscopic profiles of elongation r(t,u) and energy e(t,u) will satisfy the
equations

O = QLé’fm [T(r, e)],
7 | (4.6)
06 = é’u[D(T, e)@uﬁ_l] + B@Zu (T(r, 6)2) )

Here the diffusivity D(r, e) > 0 is defined by a Green-Kubo formula for the infinite
dynamics in equilibrium at the given values (r, e). The precise definition and the
proof of the convergence of Green-Kubo formula for this dynamics can be found
in [3].

A straightforward calculation gives the expected increase of thermodynamic
entropy:

%L S(r(t, u), e(t,u)) du = Lﬂ <% +D(r, e)((?uﬂl)z) du>0. (47)

12



5. TIME-DEPENDENT WIGNER DISTRIBUTIONS

5.1. Wave function for the system of oscillators. Let p(¢, k) and 7(t, k), for

ke 'ﬁ'n, denote the Fourier transforms of, respectively, the momentum and elon-
gation components of the microscopic configurations {p,(t)}.er, and {r,(t)}zer,,,

as in (3.1). Since they are real valued we have, for any k € T,
Pt k) = Z ™k (t) = p(t, —k) and likewise 7*(¢, k) = 7(t,—k).  (5.1)
z€Ty

The wave function associated to the dynamics is defined as

U (t) = 1.(t) + ipe(t), zeT,.

Its Fourier transform equals

~

Dt k) =Pt k) +ip(t, k),  keTn.

Taking into account (5.1) we obtain
~ L~ -~
p(tv k) = Z (w(ta k) - 1/’ (tv _k))a

~ 1/~ ~
With these definitions we have |1, |*> = 2€, and the initial thermal energy spec-
trum, defined in (3.14), satisfies

1, (0, k) = 1, (0, k) + Im[Cov, (5(0, k), 7(0,k))],  keT,. (5.2)

Here Cov,(X,Y) := E,[XY*]| — E,[X]E,[Y™*] is the covariance of complex ran-
dom variables X and Y, and

0,(0,8) 1= 5[50, ) — E,[50, B

Using Cauchy-Schwarz inequality we conclude easily that
1

Sn(0.k) < un(0,k) < 20,(0,k), ke T,.

Therefore, (3.15) is equivalent with

1 ~2
— 0,k)y < +o0. 5.3
s X o) 53)

After a straightforward calculation, the equation that governs the time evolution
of the wave function can be deduced from (2.3) as follows:

dp(t, k) = — n? (2@ sin? (k)0 (t, k) + sin(2mk) 0" (¢, —k)) dt

S B kK P K R aRR), (54

k' e’]ATn
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with initial condition ’(Z)\(O, k) = 7(0, k). The semi-martingales {/\A/'(t, k); t =0}
are defined as

N(t, k) = Z N (yn?t)e 2k, keT,.

x€T,,

Observe that we have A “(t k) = N (t,—k). In addition, its mean and covariance
equal respectively

<d./\7(t, k)> = n® S dt,
(AN (t, k), AN (t, k') = yn’t 6y dt,
where 9, , is the usual Kronecker delta function, which equals 1 if z = y and 0

otherwise. The conservation of energy, and Parseval’s identity, imply together
that:

[0@)] ;0 = [#(0)],. forall £ = 0. (5.5)

5.2. Wigner distributions and Fourier transforms. The Wigner distribu-
tion W (t) corresponding to the wave function ¢ (t) is a distribution defined by
its action on smooth functions G € C*(T x T) as

(WH), G = 3 STWF (o, b)(FG) (3 ), (5.6

keT,, N€Z

where the Wigner function Wt (t) is given for any (k,n) € T, x Z by
1 ~ n\ ~
W (k) = o B (8 k4 1) (2, )| 5.7
(k) = 5 BB (0 k+ D)0, 5.)

Here, we use the mapping Z s n — I € ﬁ‘n, and FG(n,v) denotes the Fourier
transform with respect to the first variable.

Remark 5.1. Note that this definition of the Wigner function is not the standard
symmetric one. Indeed, since the setting here is discrete, it turns out that (5.7)
1s the convenient way to identify the Fourier modes, otherwise we would have
worked with ill-defined quantities, for instance -, which are not always integers.

The main interest of the Wigner distribution is that mean convergence of
the empirical energy profile (3.20) can be restated in terms of convergence of
Wigner functions (more precisely, their Laplace transforms, see Theorem 7.5 be-
low), thanks to the following identity: if G(u,v) = G(u) does not depend on the
second variable v € T, then

(WE(1),G) = % M EJem]e(%). (5.8)

n
z€Ty

14



Indeed, from (5.6) we obtain then

WH.6) =55 3, 3 SB[ ()0 )]kt (FG) (o),

ke’]l‘ z,x'€Ty, neZ
(5.9)
Performing the summation over k£ we conclude that the right hand side equals

2n Z ZE )]12( =

z,z'€Ty, neZ

D (FCy M), (5.10)

where 17 is the indicator function of the set of integers. Since 0 < z,2’ < n —1
and |1/1:,3(15)|2 = 2&,(t) we conclude that the above expression equals

- le %E 2 (FG)* () = % 21; E.[&1)]G (%) (5.11)

and (5.8) follows. Identity (5.8) can be also interpreted as follows: the k-average
of the Wigner distribution gives the Fourier transform of the energy:

omiz? 1 a(, N
- W+ t 777 = o iz, W)J:( )| = _Enlg <ta_):|7 UGZ
(5.12)
To close the equations governing the evolution of Wt (t), we need to define three
other Wigner-type functions. We let

Wt k) = 5 B 0 (1 k= D)0 ~0)| = W) —h), (513)
Y (tn, k) = 21nE _w(t,k + g){b\(t, —k)], (5.14)
Yo (tn, k) = %En 0 (t, k- %)@*(t, l{:)} — (V) (t, =, —k).  (5.15)

5.3. Properties of the Wigner distributions.

5.3.1. Weak convergence. From (3.13) we have that, for any n > 1 and G €
C®(T x T),

KWi(t), G (5.16)
< @ snlelg { k%: En[ J(t, k+ %) ’2] }2{ kgn En[}{/)\(t, k)}Q] }2 1Glo

|G
<o [Z 0| = clc
eT,,

15



where the norm |G| is defined by (3.7). Hence, for the corresponding dual norm,
we have the bound

sup sup {\Wg(t)\; + W, ()], + \\Y;(t)u’o - \Y;(t)”’o} <4C. (5.17)

20 n>1
Condition (3.11) ensures that, if G(u,v) ) at the initial time ¢ = 0 we have
+
Jim, (WE0).6) = J a

5.3.2. Decomposition into the mechanical and fluctuating part. We decompose
the wave function into its mean w.r.t. £, and its fluctuating part, as follows:

Bu(t) = Pp(t) + 0u(t),  wETay t20.
Notice that for the initial data we have 1,(0) = 7o (%) It need not be true
for ¢ > 0. The Fourier transform of the sequences {¢_(t)} and {,(t)} shall be

denoted by (t, k) and {/;(t, k). The deterministic function (¢, k) satisfies the
autonomous equation:

A%

Ao (t, k) = — n? (2 sin?(nk)(t, k) + sin(20k) 0 (¢, —k)) at
~n2y {w(t )= (¢, —)} at, (5.18)

with initial condition (0, k) = (F,ro)(k).
The Wigner distribution W' (¢) can be decomposed accordingly as follows:

W) = W, () + W (1), (5.19)
where the Fourier transforms of W: (t) and W; (t) are given by
— 1= n\ =*
_= — — .2
Wt k) i= 56 (tk+ 1) 0 (2 ) (5.20)
~ 1 = i <*
+ - n
Wit i= o8 3+ 2) §n | (5.21)

for any (n,k) € Z x T,.

At initial time ¢t = 0, to simplify notations we write W: (n, k) := W:(O, n, k)
and W (n, k) := W.r(0,n, k). Note that the mean part is completely explicit: we
have

— 1
W, (n,k) = %(Fnro) <k + ) (Furo)*(k), (5.22)
Recalling (5.2), the initial thermal energy spectrum can be rewritten as
1
1, (0, k) = [\w (0, k)| ]
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Reproducing the decomposition (5.14) one can easily write similar definitions

for W, , W; and the respective ?,Jf , \?:{ distributions. Due to the fact that
1,(0) = r9(%) and is real-valued (and extending the convention of omitting the
argument ¢ = 0 for all Wigner-type distributions) we have

W, (0, k) =W, (n.k) =Y, (k) =Y, (. k) = Walro s m. k), (5.23)
where we define
. L n -
Walr s 0. k) = 5= (Far) (k4 1) (Far)*(k), (5.24)

for any r € C(T) and (1, k) € Z x T,.

5.3.3. Asymptotics of I/va/;r . Throughout the remainder of the paper we shall use
the following notation: given a function f : T, — C we denote its k-average by

LfO)], = % > f(k). (5.25)

ke’fn

The initial fluctuating Wigner function is related, as n — 400, to the initial
thermal energy eqm (0, u) = eg(u) — r2(u)/2 as follows:

[W;(n, -)] — s (Feam(0,))(n),  for any neZ. (5.26)

n mM—00

The last convergence follows from Assumption 3.1 and from an explicit compu-
tation that yields:

[Wr0], = 2 3 Efe)i 7 (D) (D),

n
x€T,

In addition, Assumption 3.4 on the initial spectrum (see (3.15)) implies that

2
|+

n=1 nez

—~ ~ 2
0, :=supsup{ 5[]+ 7ol | }<+oo. (5.27)
L{*,Jr} n

5.3.4. Wigner distribution associated to a macroscopic smooth profile. Similarly
to (5.24), given a continuous real-valued function {r :=r(u) ; u € T}, define

Wi 06 = sFE+MFE©, O (529)
Observe that, for any n € Z,
S . = S F) ) (5.29)
EeZ
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Proposition 5.2. Suppose that r € C(T) and G € C*(T x T). Then

i, 33 [ )G 0] = 3 (S0 0.9 76y (0.0)

n— -+ n
neZ neZ N EEZ (530)
1

-5 | 60 du

Proof. We prove the proposition under the assumption that r € C*(T). The
general case can be obtained by an approximation of a continuous initial profile
by a sequence of smooth ones.

Using the dominated convergence theorem we conclude that the expression on
the left hand side of (5.30) equals >, ; lim,,— 1o fo(n), with

fln) = [Wo n )FG) ()| . mel. (5.31)

n

This can be written as

/

m T 3 e B D rran

keT,, ©7'€Tn

Using Fourier representation (see (3.5)), we can write f,,(n) as

o XY e AT (2 (Fr) (€)(FG) (.0 ).

£.8'e€Z myx,x’€Ty,

Due to smoothness of r(-), its Fourier coefficients decay rapidly. Therefore for a
fixed n € Z and for any p € (0,1) we have that the limit lim,,_,, f,(n) equals

"AC

lm s D, X, e TR (Fry () (FE)(FG) (. ).

n— -+ 2n2
[&|<n? m,z,x'€Ty

€']<n?
Summing over x,z" we conclude that lim,_, . f,.(7) equals

i LS 1 (P (MY (e (B (€ FG (0.,

n n
|€|<n? meTy,
[¢'|<n”?

Taking into account the fact that m € T,, and the magnitude of &, £ is negligible
when compared with n we conclude that the terms under the summation on the
right hand side are non zero only if m+ ¢ =0and m+&£+n=0,orm+¢& =n

18



and m+ & +n=n. Therefore

dn S = N 2 YD Gumsen Sumse (PO QENEOFC) (1.0)

n—>+OO
[€|<nP meTy,
€'|<n?

+ lim 1 Z 2 50,m+§+n 50,m+§’ (]—“r)*(g)(]-"r)(ﬁl)(]:G)* (n’@>

n—-+0o0 n
|€|<n? meTy,
[¢'|<n”?

= 5 (FGY(,0) L(Fr) ©(Fr(E + )

el
and formula (5.30) follows. O

In particular, for the initial conditions of our dynamics, Proposition 5.2 and
(5.23) imply:

dim W0, )(FG) (n0)] = Y Wiros 0. &)(FG) (1.0)
nez ez (532)

= % L ro(u)G* (u,0) du

One of the main point of the proof of our theorem is to show that this convergence

holds for any macroscopic time ¢ > 0, i.e. that for any compactly supported
G e C*(R, x T?) we have

lim Zf T, )(]—"G)*(t,n,-)] dt

n—-+0o0 n

= f W(res n, O(FG) (tn, 01t (5.33)
EMEL

1
= —f r2(t,u)G (t,u) dtdu.
2 R+ xT

This would amount to showing that the Wigner distribution W: (t) associated to
1, (t) is asymptotically equivalent to the one corresponding to the macroscopic
profile r (¢,-) via (5.28). This fact is not a consequence of Theorem 3.7, that
implies only a weak convergence of 1,(t) to r(t,-). We will prove (5.33) in
Proposition 7.1 below, showing the convergence of the corresponding Laplace
transforms (see (7.2)).

6. STRATEGY OF THE PROOF AND EXPLICIT RESOLUTIONS

6.1. Laplace transform of Wigner functions. Since our subsequent argu-
ment is based on an application of the Laplace transform of the Wigner functions,
we give some explicit formulas for the object that can be written in case of our
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model. For any bounded complex-valued, Borel measurable function R, 3¢ — f;
we define the Laplace operator £ as:

+0
LN ::f e Mf, dt, A > 0.
0
Given the solution r; = r(t,-) of (3.17), we define the Laplace transform of the
Wigner distribution (5.28) associated to a macroscopic profile, as follows: for any
()\77775) € RJr X Z27

+00

wir s 1, E)N) = LW (r 5 1,€) () :f MW (ry . €) dt.

0

The following formulas are easily deduced, by a direct calculation, from (3.17),
and are left to the reader:

Lemma 6.1. For any (\,n,&) € R, x Z* we have

. o W(TO ; 7775)
w(r.; n,6)(\) = % EICET NS (6.1)
Consequently,
SE(F (@) ) = 5 [ 7 () o)

=4 Y+ O w(r.; n, (V). (6.2)

EeZ

Finally, we define w; the Laplace transform of W as the tempered distribu-
tion given for any G € C*(T x T) and A > 0 by

GEW, 6 = [ (Wi, Gatim X S u (DTG (0. )

keT,, N€Z
(6.3)
where w," is the Laplace transform of W,! as follows:
+a0 R
w(A\n, k) = J e MW (t,m, k) dt, A\, k)eR, xZ xT,.
0

In a similar fashion we can also define w,, (\) and y(\) the Laplace transforms
of W (t) and Y (1), respectively, and their counterparts w,,, and y.

6.2. Dynamics of the Wigner distributions. Using the time evolution equa-

tions (5.4), one can first write a closed system of evolution equations for W (t), Y. *(¢)

defined respectively in (5.7), (5.13), (5.14), (5.15).
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For that purpose we first define two functions d,,s and o, s as follows: for any

(n,k) e Z x T,

(0ns)(n, k) := 2n<sin2 (ﬂ(k + %)) - sin2(7rk:)),
(ons)(n, k) := 2<sin2 (71'(/{} + %)) + Sin2(ﬂ'/{7)).

(6.4)

For the brevity sake, we drop the variables (t,7,k) € Ry x Z x 'ﬁ‘n from the

subsequent notation. From (5.4) one can easily check that:

(W, = —in(8,s) W,5 —n?sin(2rk) Y,;F — n?sin (2 (k + 1))
+n® LW, —Y,F —Y,),

n

+an® L(2W, = Y,F —Y,"),

where L is the operator that is defined for any f : Z x 'ﬁ'n — C as

(Lf) (0, k) = [f(n.)], — fn. k), (n,k) e Z x T,

V-

n

oY, = n?sin(2nk) W — mQ( ) Y F —n?sin (27T(k + 1)) W,

(6.5)

+n® L(2Y,F — W, — )+ Z -V,
9 keTn
Y, = n’sin (27 (k + L)) W, + in’(0,s) Y, — n®sin(2wk) W,
+n® L(2Y, — WS =W, ) +n Z (Y —
keT,,
oW, = in(6,s) W, +n’sin (2r(k+ 1)) Y, + n’sin(27k) Y,

Recalling the decomposition (5.19) and the evolution equations (5.18) for the

mean part of the wave function, we have similarly that Wf (1), 7:_: (
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autonomous equations:
JF

(oW = —in(6,s) W,

n n

—n?sin(27k) Y,

. —nosin(2r(k+ 1)) Y,

n

—ynZ(ZW: —7: —7;),

oY, = n?sin(2rk) W, —in*(0,s) Y, —n’sin 2r(k+ 1) W,
2 -t T ET 7
—yn” (2Y, -W, =W, ),
T ( . ) o ~_ (6.6)
oY, =n’sin (2m(k+ 1)) W, +in’*(ons) Y, —n’sin(2rk) W,
— 7n2 (2Y W:: — W;)

AW, = in(6,s) W, +n’sin (27 (k + 1)) Y, +n?sin(2rk) Y,
—n? (2W, -V, -Y,),

\

6.3. Laplace transform of the dynamical system. We deduce from (6.5) an
equation satisfied by tv,, - the four-dimensional vector of Laplace transforms of
the Wigner functions defined by tv,, := [w,, v, v, w]T. For the clarity sake we
shall use the notation

1:=[1,1,1,1]%, e:=[1,—-1,—-1,1]",

00 := [W;7(0),Y,7(0), Y, (0), W, (0)]",

52 = [W:,?Z,V;,W;]T, o0 = [W;,}N/HJF,?[,W;]T,

and from (5.19) we have 00 = 8" +9°. As before, we shall often drop the variables
(A, m, k) from the notations. Taking the Laplace transform of both sides of (6.5)
we obtain a linear system that can be written for any (A, n, k) in the form

(Mn mn)()‘a n, k) = 02(777 k) + ’7”2 IN()‘a 77) €, (67)
where Z,, is defined as the scalar product
In()\v 77) =e |:mn()‘7777 )]n = |:(u}1J1r - y:zr - y; + U};)()\, 7, >]n
In addition, the 2 x 2 block matrix M,, := M, (A, n, k) is defined as follows:

A, —n? 7, Id,
M,, = : (6.8)
—n? 4t Idy B,

where, given a positive integer N, Idy denotes the N x N identity matrix, and
A,, B, are 2 x 2 matrices:

an =Py b, —n*y”
An = y Bn =
_n2fy+ bn _n2,y+ *
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Here and below,

{an = A+ in(d,5) + 2yn?, {’V:{ =7 £ sin (27(1{7 + %))’

6.9
by := A+ in*(0,5) + 2yn?, yF = £ sin(27k). (6.9)

Remark 6.2. Note that the term yn*Z,(\,n) e (in the right hand side of (6.7))
contains all the effect of the random flips of velocities, which occur with intensity
v > 0. The other components of the system (M, and v°) only come from the
Hamiltonian dynamaics and the initial condition.

An elementary observation yields the following symmetry properties

71%(_777 _k) = 77?(777 k)7 fyi(_,'% _k) = 71(777 k)v (610)
By the linearity of the Laplace transform we can write

o, =1, + W, (6.11)
where T, is the Laplace transform of (W, (¢),Y. (1), Y, (t), W, (t)), and 0, is
the Laplace transform of (W,F(¢),Y,!(¢),Y, (t), W, (t)).

Performing the Laplace transform of both sides of (6.6) we conclude that o,
solves the equation

M, 0, =8 =W, 1. (6.12)
Using (6.7) we conclude that m,, solves
M, v, =00 + yn* T, e. (6.13)

Following (6.11) we also write Z,, = Z,, + in, where

and  Z,(\,n) :=e- [%N(A,n, )] .

n

Z.(A\n):=e- [En()\, n, )]

In Appendix 8.1, we show that the matrix M, is invertible, therefore we can solve
and rewrite (6.12) and (6.13) as:

n

, =W, M;'1, (6.14)
w, = M 102 +n* T, M, ! e. (6.15)

In Section 7 we study the contribution of the terms appearing in the right hand
sides of both (6.14) and (6.15) that reflect upon the evolution of the mechanical
and fluctuating components of the energy functional.

7. PROOF OF THE HYDRODYNAMIC BEHAVIOR OF THE ENERGY

In this section we conclude the proof of Theorem 3.8, up to technical lemmas
that are proved in Section 8.
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7.1. Mechanical energy tv,,. We start with the recollection of the results con-
cerning the mechanical energy. The Laplace transform tv,, is autonomous from
the thermal part and satisfies (6.14). Let us introduce, for any A > 0 and 7 € Z,
the mechanical Laplace- Wigner function

W<T0 ) nag)
mech<)\ 77) &ZZ %[&Q N (f v ’17)2] N )\ (71)

From Lemma 6.1, it follows that W[ _, (\,n) is the Fourier-Laplace transform
of the mechanical energy density epecn(t,u) = %(r(t,u))Q, where r(t,u) is the
solution of (3.17).

Given M e N we denote by Py, the subspace of C*(T x T) consisting of all
trigonometric polynomials that are finite linear combinations of e?™e2™€? with
ne{-M,...,.M}, £ €Z and u,v e T.

Proposition 7.1 (Mechanical part). For any M € N there exists Ay > 0 such
that for any G € Py and X > \y; we have

* o W(TO ; 7775) *
T}%Z[ (An, ) (FG) (n,.)]n = <1§Z : P (€ 7)) +>\(]—"G) (n,o))1

- <§ L L Y (r(t,u))> G*(u,0) dt du)l

(7.2)

Moreover, for any ne {—M,..., M}

EE+nW(ro; 1,¢)
1 A
ng{}@{vnf n} vgéy +(E+m)?]+ A

_ %g@f ((@ur)?) (m) ) (). (7.3)

The proof of Proposition 7.1 is exposed in Section 8.3.

7.2. The closing of thermal energy equation. We now analyse equation

(6.15) concerning the fluctuating part. After averaging (6.15) over k € T, and
scalarly multiplying by e, we obtain the equation:

~

T =20 +yn? (Z, + T,) M,, (7.4)

where
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Therefore from (7.4) we solve explicitly

n? 2\ n) + (02 Zu(A,0)) (RPMa (X))
n2(1 —n? My (A, n)) .

Z.(\n) = (7.5)

Asymptotics of n?Z,,(\,n) is given in (7.3). Below we describe the terms n? P ()\ n)
and n2M,,()\,n) that also appear in the right hand side of (7.5).

Lemma 7.2. Fiz M € N. There exists A\yy > 0 such that, for any A > Ay and
ne{-M,.. M}

nh_I)rolo {fynQ ./\/ln()\,n)} =1, (7.6)
Tim {n2 (1= n® M,(\, n))} = %()\ + ”:”2), (7.7)

and
zim {2 20 ()} = (Feam(0,1)) (1), (7.8)

As a direct consequence of the above lemma and (7.3), we obtain:

Corollary 7.3. Fiz M € N. There exists A\yy > 0 such that, for any A > Ay,
ne{-M,.., M}

lim Z,(\,7) = 2W (A7),

n—ao0

where
WhaOum = (v Z0)  (Fean@9) )+ 5-£(F (@) ) 0}

The following lemma finalizes the identification of the limit for the Fourier
transform of the thermal energy:

Proposition 7.4. Fix M € N. There exists A\py > 0 such that, for any A > Ay,
ne{-M,.., M}

lim {fn(A,n) — 2 [@t (A7, -)]n} ~ 0. (7.9)

n—o0

The proofs of Lemma 7.2 and Proposition 7.4 go very much along the lines of
the arguments presented in Section 8 and we will not present the details here.
They are basically consequences of the following limit

lim {n er - MY\, n, k) e}——

n—0o0

which is proved in Section 8.2.
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7.3. Asymptotics of w, and tv,,. With a little more work one can prove the
following local equilibrium result, which is an easy consequence of Proposition
7.1, Corollary 7.3 and Proposition 7.4 (recall also (6.15)).

Theorem 7.5. Fix M € N. There exists Ay > 0 such that, for any A\ > \y; and
G € Py we have

Jim, 3 | v (76 0],

= S Wi [ FOron0 vt W) FEr @0} 710

neZ

and

lim (5 Om )(FG) (09)] = 3 Wiheahum) (FG)' (.0, (7.11)

n— 400
nez nez
We will not give the details for the proof of this last theorem, since the argument
is very similar to Proposition 7.1.

7.4. End of the proof of Theorem 3.8. From the uniform bound (5.17), we
know that the sequence of all Wigner distributions {W(-), Y (), Y, (:), W, (\)}.
is sequentially pre-compact with respect to the x-weak topology in the dual space
of LY(R,, Ag). More precisely, one can choose a subsequence n,, such that any of
the components above, say for instance W (-), x-weakly converges in the dual
space of L'(R, Ag) to some W (-).

To characterize its limit, we consider w;’ (\) obtained by taking the Laplace
transforms of the respective W (-). For any A > 0, it converges x-weakly, as
Ny — 400, in Af to some w*(A) that is the Laplace transform of W*(-). The
latter is defined as

(W), G = L COWEH), e NGy At A= 0, Ge Ay

Given a trigonometric polynomial G € C*(T x T) we conclude, thanks to Theorem
7.5, that for any A > Ay,

(wr(\),G) = e e(t,u)G(u,v) dt du dv, (7.12)
Ry xT?2
where e(t,u) is defined as in Theorem 3.8 and M € N is such that FG(n,v) =0
for all |n| > M.

Due to the uniqueness of the Laplace transform (that can be argued by ana-
lytic continuation), this proves that in fact equality (7.12) holds for all A > 0.
By a density argument it can be then extended to all G € Ay and shows that
WH(t,u,v) = e(t,u), for any (t,u,v) € R, x T?. This ends the proof of (3.20),
and thus Theorem 3.8.
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8. PROOFS OF THE TECHNICAL RESULTS STATED IN SECTION 7

In what follows we shall adopt the following notation: we say that the sequence
Cn(A\,n, k) < 1if for any given integer M € N, there exist A\y; > 0 and ny, € N
such that

sup {Cn()\,n, kE); A> Xy, ne{—=M,...,M}, n>ny, ke 'ﬁ‘n} < +o0.
8.1. Invertibility of M, (A, n, k).

Proposition 8.1. The matriz M, (A, n, k) defined in (6.8) is invertible for all
n=1,A\>0and (n,k)eZ xT,.

Proof. The block entries of the matrix M,, defined in (6.9) satisfy the commuta-
tion relation

0 —2y7n? Rela,, — b, ]
[A,, B,] = A,B, — B, A, = = 0.
—2vn? Relb, — a,] 0

Thanks to the well known formula for the determinants of block matrices with
commuting entries we have (see e.g. [4, formula (Ib), p. 46])

det(M,,) = det(A, B, — 7 vnn* 1ds) = |a,bf, + n*(67,)|° — 4n*y "y~ (Re[a,))?
and, substituting from (6.9), we get

Aet(M,) = n® ((5,5) (005) + (7))
+ (A + 27712)2 {)\2 +n?(49\ + (6,9)%)
+ n4(2 sin*(2mk) + 2sin” (27 (k + 1)) + (ans)2> } (8.1)
Here d,s, 0,5 are given by (6.4) and

dn(n, k) i=n(y "y —~lq,) = n<sin2 (2m(k + 1)) — sin2(27rk)>.

The proposition is a direct conclusion of (8.1). O

It is also clear that

det(M,,) = n®A,, (8.2)
where
A, = i{472 Ly + 497 (4N + (6,5)%) + ((0n8)(0ns) + (07 ))2} + 4y Ln + %
nT 2 n n ns/\On n nd T3
(8.3)
for some |C,| < 1 and
Lo(n, k) :=n? <2 sin®(2mk) + 2sin” (27 (k + 1)) + (Jns)Q). (8.4)
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On the one hand, note that for k sufficiently far from 0, the dominant term is
(49*T,,)/n? and then

A, ~ 49 (4sin®(27k) + 16 sin*(7k)) .
On the other hand, for k& = % and fixed & € Z we have
2 &y _ 1 S N 2 2 (2 2
n An<)\,n, n) = nﬁdet(Mn)()\,n,n> 16+ [)\7+27r &+ (m+9) )] (8.5)

Since the block entries of M,, commute we can also write

_— [Aan . (%j%n‘l)mz]l 0 1 B,  ~n?lds
" 0 [Aan — (7;7;”4)1(12] B v n? 1d, A,
Note that
= 1 atb, +n3 (0v,) 27 n® Rela,]
[Aan - (7:{%7”4)“2] = Jet(M,,)

2y n? Relb,]  anb +n3 (67,)

With these formulas we conclude that

dy Ydn  aCh Y
1 vy, dy Tl v

S . ; , (8.6)

YnCn YV AmCn  (dy) ()

VI yte,  ytdn (d)

where all the constants are explicit and given by

dt = ar bn}Q + 120! (67,) — 27 7" n* Re[a,],

d, = b} an}Z +nPa’ (07,) — 27 7 n* Re[b,],

d, == 2n*a} Re[a,] — n’alb, — n’(07,),
d? = 2n?b’ Re[b,] — nanb’ — n®(6v,),

Cn = nanbl + n’(07,),

& = 2n* Re[ay].

8.2. Asymptotics of the coefficients. Substituting from (6.9) into the respec-
tive formulas of (8.7) and then identifying the order of magnitude of the appearing
terms we conclude the following:
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Lemma 8.2. The following asymptotic equalities hold:

+ .
% = 473 + 4y sin®(27k) + 2y(0,5)* — H9n5) (472 + (crns)Q) + %,
% = 49" — 2iy(0,s) + sin® (27 (k + 1)) — sin®(27k) + % o
d
n_z = 49 — 2iy(0,s) + sin®(27k) — sin® (27 (k + 1)) — 2iy (5;;8) — (5n8)7£0n8) +
0
& n
w T
0
n_z = 49 — 2iy(0,s) + sin®(27k) — sin® (27 (k + 1)) — 2iy (5;;8) — (5n8)7§0n8) +
dy, 3 .2 2 .2 n .2 &
5= 4y + Ay sin (2rk) — 4ivy=(o,s) + 27<sm (27 (k + 1)) — sin (27Tk)) +3
with C,, < 1.

From the above asymptotics it is clear that M, (X, n, k) — 0 for a fixed k # 0.
In addition, M, (A, 7, %) and n? ¥ M, (A, 7, k) tend to finite limits that we
need to compute explicitly in order to complete the proof.

Using (8.6), (8.2) and the formulas for the asymptotics of the entries of M1,
provided by Lemma 8.2, we conclude that

191, (8.8)

lim M, (A, ,§) ~ ]

woso - AP T D 8 [ + (€ + )]
The above in particular implies that e - M- 1(\, ), %)1 — 0, for any £ € Z. By
the same token we can also compute

. 2 T np-1 é _ Am? (& + )
nETOO {n e M, ()\7777 n)l} A2 29w [E2 4+ (E+n)?) (8.9)
and
lim {n2 T MY\, g k;)} _ L1001, k2o (8.10)
oo n s 1y 27 s YUy Uy )

We prove here only (8.9) and we let the reader verify (8.8) and (8.10) using similar
computations. An explicit calculation gives

2=
2T (M7 1) = N En 8.11
n-e ( n ) det(Mn>7 ( )
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where
2, (A k) 1= 2Re[d! — d ] + 7 (d — (d2)7) + 7 (dy — )
+ 4isin (27 (k + 2))Im[c,] + 4sin(27k) sin (27 (k + 1)) ).

Substituting from (8.7) yields:

= (A, k) =\ + 2m2){2[n4(ans)2 —n2(5,5)°]
+ 4in! ((sin(2mk) = sin (27 (k + 1)) ) (05)
+ 4m3<sm (27 (k +2)) + sin(27r/<;)> (6,5)
+ 8n* sin(27k) sin (27 (k + 2)) } (8.12)
From the above and a direct calculation we obtain (8.9).

8.3. Proof of Proposition 7.1. Basically the argument follows the same idea
as the proof of Proposition 5.2. In fact (8.8) implies that w,,(\, 7, k) concentrates

on small k-s like W: (n, k). The main difficulty is to deal with the averaging [-],.
For that purpose, for p € (0, 2) define

ﬁ‘n,p = {k eT, : |sin(rk)| = n_p} (8.13)

and its complement ﬁ‘; p = '/]I\'n\'ﬂl\'nvp. Recall the left hand side of (7.2): it can be
written as I,, + I1,,, where I,, and II,, correspond to the summations over ﬁ‘n,p and
T, , respectively. First we show that for G € Py

I —2 > (MO ) W, (0, k) (FG) (k) — 0. (8.14)
neZ keTn,p
In fact we have

S (0 (o ) (0 S)eror (v )

nez " §|=nP

0

<olele ) 3 I (v )] o

In|<M [§|=nP

where the constant C' depends only on the initial mechanical energy. Then by the
same argument as the one used in the proof of Proposition 5.2, and from (5.30)
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and (8.8) we have

i 303 (M (o)1) ()6 ()

\77|<M |§|<nP

YW ro s 1,€) N
RN Er e R

This concludes the proof of (7.2). Concerning the proof of (7.3), recall that
To=le-M,' )W, |

and that we have already computed the limit (8.9). Consequently, the result will
follow if we are able to show that the contribution to the k-averaging from the
higher frequencies is negligible. The quantity n? Z,, can be written as I, + II,,,
where I,, and II,, correspond to the summations over T,, , and ']T; o respectively.
Using the explicit computations (8.11), (8.12) and (8.3) we can write

n*e-(M;'1)—y1=77" {2<sin(27rl<;) — sin (27 (k + %)))2 + &}

n

!

X {2 sin’(2mk) + 2sin® (27 (k + 1)) + (0n5)* + —"} .

n2
It is clear from the above equality that
n2 e (M;l 1)()\7777 k) -

lim sup sup = 0. (8.15)

A D <M e,

|
Thanks to (8.15) we conclude that limnﬁﬂo(l — 1) = 0, where

E—— Z W' (n, k). (8.16)

ke’]l‘n P

After a straightforward calculation using the definition of W:: (n, k) (see (5.20)
and (5.22)) we conclude that (8.16) equals

Z 3 st DY~k N Er©Fr @),

n

where 1y is the mdlcator function of the integer lattice. Due to the assumed
separation of k from 0, see (8.13), and the decay of the Fourier coefficients of
ro(+) (that belongs to C*(T)) we conclude from the above that lim, [/, = 0,
thus also lim,, ., 1, = 0.

Moreover, a similar calculation also yields

=5 3 e ) (A, ) (Fr)(€+ m(Fr)(6),

£€Np n
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where
Ny = {fe Z o |¢ <2, |sin(Z)| < n*p}.

Using the dominated convergence theorem we conclude from (8.9) that

. Ar*€(E +n) W(ro; n,€)
d T = 2 e @ @

(8.17)

8.4. Proof of Lemma 7.2 and Proposition 7.4. Since (7.6) is a direct con-
sequence of (7.7), we prove directly (7.7), that is a consequence of the following
lemma.

Lemma 8.3. The following asymptotic equality holds:

2,2
S i (1= amt M) = - (A TR S sy

where |Cy| < 1.

Proof. After a direct calculation, we obtain

Sp(\n) = lm (det(Mn) — vnz@n)} ,

n

where
0, = QRe[d; bdo 12920 — QM] 3 (dy + (d2)) = 7F (d + dO).

Therefore, from (8.7) and Lemma 8.2, we have

Sp(\n) = A L.(
2771 ~
keT,, k'ETn
where
_— L, 42Xy + (6,8)2 + &=
U T 4N+ (008)2 + 7 2((608) (008) + (57m)) + S
_ 1% ((008) (628) + (57))”

Ty 44Xy + (6,8)2 + 772((6,5) (0,8) + (5%))2 + G

n

The expressions C,,, C}, satisfy |C,| + |C}| < 1. Directly from the definition of I,,
and II,, we conclude that |I,| + |II,| < 1 and

lim 1 Z I — (27”7)2[ [4sin(?wzv) sin?(7v) +‘ siln(élm))]2
v 4sin®(27v) 4+ 16sin* (7o)
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Using trigonometric identities
2sin?(7v) = 1 — cos(2mv) and  sin(4mv) = 2sin(27v) cos(27v)
we conclude that the last integral equals
J [2sin(27v) (1 — cos(2mv)) + sin(47rv)]2 B J sin?(27v) dy — 1
T 4sin?(27v) + 41 — cos(27v)]? 1 2(1 — cos(27v)) 2
Thus, we obtain

1 m2n? C
Sn )\, = _<)\ > _na
W) =5 (A =)+
with |C),| < 1. O

It remains to prove (7.8).This would be a direct consequence of (8.10), but we
need some care in exchanging the limit with the [-],, averaging.
Choose p € (0, 1), then we can decompose
~ 1 ~ ~
nQ[e- (M, 02)] -5 ([Wn*] + [Wn‘] ) + KM + K@
n Y n n
where

1 1 ~
Kr(zl)()\777> = E Z <n2eT M;1<>\7n7 k) - % U_> ’ 091(777 k)

keTn,p

with u = [1,0,0, 1], and the definition of K differs from KV only in that the
range of the summation in k extends over T7, .
From (5.26) we have

~

lim [W;(n,-)]n = lim [Wn‘(n,-)]n = (Feum(0,-) (),

n—ao0 n

and therefore we only have to prove that Kr(bl) and KT(LQ) vanish as n — o. Con-

)

. 1 .
cerning K,(L we write

(K| < sup
keTn,p

1
n*e’ M '(\,n, k) — — u
2y

0

1
2TM71)\ k) — —
e ML) - o

< C sup : (8.19)

keTn,p o0

where C' depends on the bound on the initial energy. By direct estimation, using
the information on the asymptotic behavior for the coefficients of M !, provided
by (8.10), we conclude that the right hand side of (8.19) converges to 0 as n — 0,
for any given A and 7.

Concerning KV(LQ), since n? et~ M 1(\, n, k) are uniformly bounded in k, for any

integer M there exists a constant C; > 0 such that, for all n, A > Ay, || < M,

KOO <2 S [k,

keTs, o
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Using the Cauchy-Schwarz inequality we have

NI

Chroa. (L o
KD )| < T3, | ) E R, k)|’

A~
C

1
< Oy <%>2w§—>0,

where w, is given by (5.27). This concludes the proof of Proposition 7.2.
Proposition 7.4 is also a direct consequence of (8.10): instead of computing the
limit of

T = (@) = 55 = 5 + @) un, )]

we can compute the limit of

n

by using very similar arguments.
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