
HAL Id: hal-01358767
https://hal.science/hal-01358767v1

Submitted on 4 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Manipulation planning: addressing the crossed foliation
issue

Joseph Mirabel, Florent Lamiraux

To cite this version:
Joseph Mirabel, Florent Lamiraux. Manipulation planning: addressing the crossed foliation issue.
IEEE International Conference on Robotics and Automation 2017, May 2017, Singapour, Singapore.
�hal-01358767�

https://hal.science/hal-01358767v1
https://hal.archives-ouvertes.fr


Manipulation planning: addressing the crossed foliation issue

Joseph Mirabel1,2 and Florent Lamiraux1,2

Abstract— This paper deals with manipulation planning.
First, we propose a new tool called the constraint graph to
describe the various motion constraints relative to a manipu-
lation planning problem. Then, we describe a problem arising
for some manipulation planning problems called the crossed
foliation issue. We propose a extension of RRT algorithm that
explores the leaves of the foliations generated by motion con-
straints and that solves the crossed foliation problem. Finally,
we show a wide variety of problem that our approach can solve.

I. INTRODUCTION

Manipulation planning as a computational geometry prob-
lem has raised a lot of interest for the past fourty years. Pio-
neering works by [1] and [2] first considered low dimensional
problems where robots and objects move in translation. [3] is
the first work that applies random motion planning methods
developed a few years earlier [4] to the manipulation plan-
ning problem. Recently, the domain has regained in interest
with various variants where papers propose approaches that
tackle the inherent complexity of manipulation planning.
The domain is traditionally divided into several categories.
Navigation among movable obstacles (NAMO) consists in
planning a path for a robot that needs to move obstacles in
order to reach the goal configuration [5], [6], [7]. Rearrange-
ment planning consists in automatically finding a sequence
of manipulation paths that moves several objects from initial
configurations to a specified goal configuration [8], [9], [10].
Multi-arm motion planning has also given rise to a lot of
papers [11], [12], [13]. From a geometric point of view,
manipulation planning is a hybrid problem where discrete
states (gripper A holds object B) are defined by continuous
constraints on the positions of objects and robots. States are
connected by manipulation trajectories that give rise to the
underlying structure of a graph the nodes of which are the
discrete states [14]. This structure although not expressed
as such is present in various papers [15], [16], [17]. The
partially discrete nature of the problem has also given rise
to integration of task and motion planning techniques [18],
[19], [20], [21], [22].

A. The crossed foliation issue

Surprisingly, the geometric structure of the problem, ap-
parently well understood [23] has not been investigated in
depth and some simple problems are out of reach for most

*This work has been partially supported by the national PSPC-Romeo 2
project, has received funding from the European Communitys Seventh
Framework Programme (FP7/2007-2013) under grant agreement n 609206
and n 608849.

1CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ de Toulouse, LAAS, F–31400 Toulouse, France

placement
robot

objectob
je

ct

grasp

qinit

qgoal

possible connection

Fig. 1: If the grasp is unique, any pair of grasp configurations
are connectable by a transfer path.

of the previously cited papers that explore the configuration
space using RRT-like methods.

Let us consider the problem of manipulation defined by a
cylindrical vertical object like a bottle, a table and a simple
6-dof manipulator robot with a gripper. The configuration
space of the system is C , [−π, π]6×SE(3). This problem
is defined by two states

1) placement: the subspace of configurations of the sys-
tem where the object is standing on the table: height
of object is constant, roll and pitch of the object are
equal to 0.

2) grasp: the subspace of configurations where the object
is grasped by the robot.

Admissible motions in placement are called transit paths,
while admissible motions in grasp are called transfer paths.
Along transit paths, the position of the object on the ta-
ble remains constant. This constraint defines a foliation of
placement. Leaves of the foliation are parameterized by the
3 remaining degrees of freedom of the object on placement:
horizontal translation and yaw angle of the object.

In many cases grasp is defined by a fixed relative position
between the gripper and the object. In this case, grasp is
not foliated (or composed of only one leaf). In this case,
extending a RRT-tree from the initial configuration and from
the goal configuration will solve the problem of moving the
object at another configuration. The trees will connect in
grasp space.

In the general case, objects can be grasped in a continuous
way. In our example, the relative orientation of the object
with respect to the gripper is free around the vertical axis of
the object. In this case, grasp is also foliated. The foliation is
parameterized by the relative angle of the object with respect
to the gripper along the object axis. In this case, RRT-trees
rooted in placement will never meet, since the probability



placement
robot

objectob
je

ct
grasp

qinit

qgoal

Fig. 2: The crossed foliation issue: if grasp and placement
are foliated, trees rooted at initial and goal configurations
will never meet.

that both trees start exploring grasp with the same grasp is
equal to 0. We call this issue the crossed foliation issue.
Figures 1 and 2 illustrate the reasoning.

To our knowledge, this issue has never been stated and
solved in a general way. Note that [3], [12] and [10]
overcome the issue by searching grasp ∩ placement and by
approximating the non-feasible solution path by a sequence
of admissible manipulation paths.

B. Contribution

The contributions of this paper are

1) to propose a new concept (briefly introduced in [7])
called the constraint graph that encodes the constraints
relative to any manipulation problem,

2) to propose an algorithm that automatically builds the
constraint graph of a given problem,

3) to propose a simple algorithm called Manipulation
RRT that solves manipulation problems encoded in
a constraint graph, including problems featuring the
crossed foliation issue.

Experimental results are proposed at the end of the paper.
They provide an example of manipulation problem where
Romeo robot holds a placard with two hands and needs to
perform a sequence of one hand and two hand grasps to
rotate the object. This example would be very difficult to
solve with other existing approaches.

II. MANIPULATION GRAPH

Let C denote the Cartesian product of the configuration
spaces of all robots and objects considered. We make use of
the following concepts:

a) Numerical constraint f : C1 mapping from C to Rm

where m is an integer. q ∈ C is said to satisfy the constraint
iff

f(q) = 0 (resp. f(q) ≤ 0 )

if f is an equality (resp. inequality) constraint.

Placement Grasp

Transit

Grasp object

Release object

Transfer

Fig. 3: Constraint graph of a robot with one gripper manip-
ulating one object.

b) Parameterized numerical constraint g: same as
equality constraint, except that the constraint is satisfied iff

g(q) = g0

where g0 ∈ Rm is called the parameter of the numerical
constraint.

c) Projection proj on a numerical constraint f : map-
ping from a subspace of C to C such that for any q in the
input subspace, proj(q) satisfies the numerical constraint. In
our implementation, projection is obtained by using Newton-
Raphson algorithm.

d) Constraint graph: graph the nodes of which are
called States and the edges of which are called Transitions.
The space of admissible configurations of a manipulation
problem is the union of the states.

e) State: a state contains a numerical constraint. A
configuration belongs to the state iff it satisfies the numerical
constraint.

f) Transition: a transition contains a parameterizable
numerical constraint g. The constraint graph contains a
transition T between two states S0 and S1 if there exists

1) q0 ∈ S0, q1 ∈ S1

2) a path γ from [0, 1] to C such that

γ(0) = q0 and γ(1) = q1

∀t ∈ [0, 1], g(γ(t)) = g(q0)

Note that:
1) the existence of a transition does not imply the exis-

tence of a path between the corresponding states, (for
instance placement on a table unreachable by a robot
may be connected to grasp by a transition),

2) the constraint graph is not unique and depends on
the partition of the admissible configuration space into
numerical constraints,

3) for most manipulation problems, it is easy to produce
an effective constraint graph.

Figure 3 displays the constraint graph of the simple example
described in Section I-A

A. Construction of the constraint graph

In this section, we explain how a constraint graph is
automatically built from a set of objects and robot grippers.



1) Placement: they are defined by contact between con-
vex polygons attached to objects or to the environment.
the contact constraint between two polygons P0 and P1 is
satisfied iff the center of P1 (projection of the center of mass
of object 1 onto P1 plane) lies inside P0 and if P0 and P1

normals are colinear. We denote by

CONTACT(L1, L2)

the numerical constraint that enforces contact between either
polygon of two sets L1 (attached to the object) and L2 (at-
tached to the environment). This single constraint is defined
by evaluating the constraint defined by the closest pair of
polygons in L1 and L2.

2) Grasp: We attach to each gripper a frame centered at
the center of the gripper (between the jaws), and to each
object one or several frames called handles. A gripper can
grasp an object when both frames coincide (up to possible
degrees of freedom for symmetric objects, like free rotation
around axis for cylindrical objects, free translation for long
and thin objects,...). We denote by

GRASP(g, h)

the numerical constraint defined by the grasp of handle h by
gripper g. The dimension of the constraint can be less than
6 if the grasp does not constrain all the degrees of freedom
(5 for cylindrical objects for instance).

Grippers, handles and contact surfaces are part of the
description of the robots, objects, environment and need to
be provided.

As explained above grasp and contact constraints may
partially constrain the relative position of an object with
respect to a gripper or to the environment. Once an object is
grasped, however or once it is released in contact, the relative
position becomes fully constrained. We thus define

FIXED(obj, g)

where obj is an object and g is either a robot gripper or the
environment as the parameterizable numerical constraint that
keeps the relative position of the object with g constant.

B. Algorithm

Algorithm 1 describes the construction of the constraint
graph relative to a problem of manipulation where some
objects are grasped by robot grippers. One or several handles
are attached to each object. obj.handles denotes the set of
handles of object obj (line 19). The algorithm loops over all
possible combinations of “some grippers hold some handles”
(Lines 7, 8) and creates a state for each combination. Method
GETSTATE returns the state built with the combination of
grasps f1 given as input (Line 14). Then transitions are
created from the new state to each state defined by the same
set of grasps minus one (lines 11-15).

Function MAKESTATE loops over all ungrasped objects
and creates constraints so that those objects stay in stable
contact pose (Line 19). Then it loops over each grasp defined
by f1 (Line 23) and creates the corresponding constraint.
Lines 22 and 27 store foreach state a set of parameterized

Algorithm 1 Build the constraint graph

1: G← set of grippers,
2: H ← set of handles,
3: O ← set of objects (with contact polygons),
4: P ← set of contact polygons of the environment
5: function BUILDCONSTRAINTGRAPH
6: states ← ∅
7: for all subset G′ of G by increasing cardinal do
8: for all injective mapping f1 from G′ to H do
9: S1 ← MAKESTATE(f1, G′)

10: states ← states ∪{S1}
11: for all g1 ∈ G′ do
12: G′′ ← G′ \ {g1}
13: f0 ← f1 restricted to G′′

14: S0 ← states.GETSTATE(f0)
15: MAKETRANSITIONS(S0, S1)
16: MAKETRANSITIONS(S1, S1)
17: function MAKESTATE(f1, G′)
18: S ← EMPTYSTATE
19: for all obj ∈ O|f1(G′) ∩ obj.handles = ∅ do
20: Ccontact ←CONTACT(obj.polygons, P )
21: S.constraints.ADD(Ccontact)
22: S.transConstr.ADD(FIXED(obj, env))
23: for all g1 ∈ G′ do
24: Cgrasp ←GRASP(g1, f1(g1))
25: S.constraints.ADD(Cgrasp)
26: if Cgrasp.dimension < 6 then
27: S.transConstr.ADD(FIXED(f1(g1).obj, g1))
28: return S
29: function MAKETRANSITIONS(S0, S1)
30: T0 ←EMPTYTRANSITIONBETWEEN(S0, S1)
31: T1 ←EMPTYTRANSITIONBETWEEN(S1, S0)
32: T0.constraints.ADD(S0.transConstr)
33: T1.constraints.ADD(S1.transConstr)

numerical constraints that will be inserted in edges by
function MAKETRANSITIONS.

III. MANIPULATION PLANNING

In this section, we explain how we use the previously built
contraint graph to plan manipulation paths in order to solve
the crossed foliation issue.

The number of nodes of the constraint graph may quickly
grow when the number of objects and grippers increases. The
user may provide as input only a subset of relevant grasps to
algorithm 1 so that the result remains tractable. This subset
can be provided as a grasp-placement table as in [24], [10].

A. Exploration using the constraint graph

For each state of the constraint graph, we define a proba-
bility distribution over all transitions starting from this state.
By default the uniform distribution is a reasonable option.

Then our manipulation planning algorithm consists in
exploring the transitions of the constraint graph as follows.

1) shoot a random configuration qrand,



2) find the closest node qnear in the current roadmap,
3) find the state of this node in the constraint graph,
4) sample a transition getting out of this state,
5) extend qnear along the transition up to qnew following

Algorithm 2,
6) try to connect qnew to other connected components of

the roadmap (Algorithm 3).

Algorithm 2 Constrained extension

1: function CONSTRAINEDEXTEND(qnear,qrand,T )
2: S ← T .TARGETNODE
3: gt ← T .CONSTRAINT
4: fs ← S.CONSTRAINT
5: proj ← PROJECTOR(fs = 0, gt = gt(qnear))
6: qproj ←proj(qrand)
7: p1 ← INTERPOLATE(qnear,qproj)
8: pathProj ← PROJECTOR(gt = gt(qnear))
9: p2 ← PROJECTPATH(p1, pathProj)

10: p3 ← TESTCOLLISION(p2)
11: qnew ← FINALCONFIGURATION(p3)
12: return qnew, p3

Algorithm 2 describes Step 5 above. gt denotes the pa-
rameterized numerical constraint of transition T (Line 3). fs
denotes the numerical constraint of target state S (Line 4).
g right hand side is initialized with qnear (Line 5). qproj

is obtained by projecting qrand (Line 6). Line 9, the path
is projected, by discretizing and projecting on the transition
constraint. The resulting path is tested for collision. In case of
collision or projection failure, p3 is the part of the path that
was successfully projected and collision-free. After calling
the constrained extension algorithm, qnew is added as a new
roadmap node, and p3 is added as a new roadmap edge
starting from qnear.

Algorithm 3 Connect configurations along a transition

1: function CONNECT(q1, q2)
2: S1 ←STATE(q1)
3: S2 ←STATE(q2)
4: T ←TRANSITION(S1, S2)
5: if T is None then return failure
6: g ← T .CONSTRAINT
7: if g(q2) 6= g(q1) then return failure
8: proj ← PROJECTOR(g = g(q1))
9: p1 ← INTERPOLATE(qnear,qproj)

10: p2 ← PROJECTPATH(p1, proj)
11: p3 ← TESTCOLLISION(p2)
12: if no collision and projection success then return p3
13: else return failure

Algorithm 3 tries to connects new nodes created by
Algorithm 2 to other connected components of the roadmap,
as in any classical implementation of RRT algorithm. First
the function looks for a transtion between the configurations.
If a transition exists, the function checks that q1 and q2 are

on the same leaf of the transition foliation. If not the function
returns failure.

As explained in the introduction, if states S1 and S2 are
foliated, Line 7 will always return failure.

B. Crossed foliation transition

The crossed foliation issue arises when two transitions
connecting two nodes back and forth are both foliated. In
Algorithm 1, lines 32 and 33, it corresponds to the param-
eterized constraints S1.transConstr and S2.transConstr
to be both non-empty.

In this case, as explained in Figure 2, the exploration
algorithm described in Section III-A will never succeed in
connecting configurations from different trees.

To solve this issue, we add between S1 and S2 a new type
of transition called crossed foliation transition. This type of
transition stores the parameterized numerical constraints of
transition S1 → S2 as g1, and the parameterized numerical
constraints of transition S2 → S1 as g2.

When extending a node belonging to S1 through this tran-
sition, the extension algorithm picks a random configuration
q1 in another connected component of the current roadmap
and lying in state S1. Constraint g2 = q2(q1) is then added
to the projector (Line 5 of Algorithm 2). As a consequence,
qproj is on the same leaf as q1 for the transition linking S2

to S1. As a consequence, Algorithm 3 may connect these
configurations.

When adding crossed foliation transition to the graph, we
need to redefine the probability distribution of edges getting
out of each node. Thus, when extending a node of a state, the
algorithm alternates between regular extension and crossed
foliation extension.

IV. EXPERIMENTAL RESULTS

In this section, we show some experimental results
demonstrating the effectivity of our algorithm. Algo-
rithms are implement in an open source software called
HPP [14]: https://humanoid-path-planner.github.io/hpp-doc.
Experiments are run on a standard 2.4GHz, RAM 4Go, 4
cores, desktop computer.

A. Romeo holding a placard

In this example, Romeo holds a placard. The manipulation
planning problem consists in rotating the placard around the
vertical axis. To do so, the robot needs to go through a
sequence of states where the robot holds the placard by the
right hand, the left hand and both hands. Applying a task
planning based approach for this problem seems difficult
since the minimal sequence of tasks highly depends on
the workspace of the robot arms and is very difficult to
precompute.

The results obtained after 20 runs of our algorithms are
displayed in Table I. The variance of the computation time
is surprisingly high. We chose not to interrupt path planning
after a threshold time as usually done for difficult problems.
Note that the model of the robot is very accurate (each
hand has four fingers with 3 segments) and a lot of time

https://humanoid-path-planner.github.io/hpp-doc


Fig. 4: Baxter permutes the position of 3 boxes.

Fig. 5: Humanoid robot Romeo holding a placard. In final
configuration, the placard is rotated by 180 degrees. The
manipulation planning algorithm needs to explore manifolds
defined by right, left and both hand grasps.

Min Median Max
Number of nodes 42 1370 7002
Time of computation (s) 19 880 6500

TABLE I: Romeo holding a placard

is spent in collision checking. Moreover, the solution path
goes through several “narrow passages” since grasping the
pole requires to avoid a lot of collisions between the object
and the fingers. Half of the time, the problem is solved in
less than 15 minutes. The accompanying video shows a path
solving the manipulation problem.

B. Rearrangement planning

On these 4 test cases, Baxter robot moves boxes on a
table. In cases 1 and 2, only the left arm is used. In cases 3
and 4, both arms are used. The constraint graph is given in
Figure 6. In the first case, the box positions are only shifted
and the problem is monotone. In the other 3 cases, the boxes
are to be permuted so the solutions to these 3 problems are
not monotone.

Table II, the accompanying video and Figure 4 summarizes
the results. The solver is able to find solutions in all the
four cases. For cases 1 and 2, the problem is not difficult
and the solution comes quickly. Cases 3 and 4 corresponds
to artificially-hard toy problems, yet the planner is able to
discover a solution in a reasonable amount of time.

pregrasp

freeintersec

pregrasp

intersec

preplace

r_gripper grasps box1

preplace

r_gripper grasps box2

Fig. 6: Constraint graph for Case 1 with Baxter robot: 2
boxes and considering only the right arm. The constraint
graph is produced by an extension of Algorithm 1 that
inserts waypoint corresponding to approaching positions of
the gripper in front of the object.

Case 1 shows that our approach is not as efficient as task
planning based approaches on monotone cases. In contrast,
we can solve non-monotone instances, as shown in cases 2,
3, 4. These cases shows the ability to discover new common
valid placement. Case 3 and 4 also show the ability of the
planner to consider simultaneous manipulation.

C. Grasping behind a door

We demonstrate here the implementation of a more com-
plex manipulation planning problem. A mobile (humanoid)
robot has to grasp an object and place it inside a fridge
while opening the fridge door. Once more, the sequence of
high level actions is not given. We also demonstrate that this
approach, valid for mobile robots, can simply be extended
to humanoid robots. First, we generate a path for the sliding
robot. Then the path can be post processed [25], [26] to

Time (s) Nb nodes
Case Nb Arm Min Med Max Min Med Max

1
2 Right 0.15 1.4 3.5 11 55 141

2 1.1 4.6 10.6 42 199 482
3 Both 3.7 18 60 103 273 832
4 3 76 397 1028 664 3659 8830

TABLE II: Minimum / median / maximum solving time and
number of nodes, over 20 runs, for various cases with Baxter
robot. “Nb” represents the number of boxes.



Fig. 7: Romeo puts a box in a fridge.

generate a walking trajectory. We successfully planned a path
where Romeo robot takes an object and puts it in a fridge.
The solution found is included in the video and summarized
in Figure 7.

V. CONCLUSION

The main contribution of this paper is the introduction
of the constraint graph as a tool to model and solve
manipulation planning problems. We propose an algorithm
using this tool to explore the configuration space of the
system, but we truly think that many existing manipulation
planning approaches (task planning based, multi-arm ma-
nipulation, navigation among movable obstacles,...) could be
implemented using this tool.

The purely geometric algorithm that we propose in this
paper is certainly not the most efficient on any benchmark,
but it is the most general that we know about.

Future improvements include solving explicit constraints
in an explicit way: when an object is rigidly fixed to a
gripper, the position of the object depends on the position
of the gripper. Expressing this as a numerical constraint is
unefficient. Better handling collision-checking by not testing
collision for objects that are fixed together will also improve
performance.

REFERENCES

[1] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proceedings of the fourth annual symposium on Computational
geometry. ACM, 1988, pp. 279–288.

[2] R. Alami, T. Simon, and J.-P. Laumond, “A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps,” in 5th International Symposium on Robotics Research, Tokyo,
Japan, 1989.

[3] T. Simon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,” International Journal of
Robotics Research, vol. 23, no. 7/8, July 2004.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, August 1996.

[5] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[6] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102.

[7] S. Dalibard, A. Nakhaei, F. Lamiraux, and J. Laumond, “Manipulation
of documented objects by a walking humanoid robot,” in IEEE
International Conference on Humanoid Robots (Humanoids). IEEE,
2010, pp. 518–523.

[8] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics Science and Systems, Roma, Italy, 2015.

[9] J. Ota, “Rearrangement of multiple movable objects-integration of
global and local planning methodology,” in Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 2. IEEE, 2004, pp. 1962–1967.

[10] P. Lertkultanon and Q.-C. Pham, “A single-query manipulation plan-
ner,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 198–
205, 2015.

[11] M. Gharbi, J. Cortés, , and T. Siméon, “Roadmap composition for
multi-arm systems path planning,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Saint-Louis, USA,
2009.

[12] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion plan-
ner for dual-arm industrial manipulators. in proceedings of,” in IEEE
International Conference on Robotics and Automation, Hongkong,
China, 2014, pp. 928–934.

[13] A. Dobson and K. Bekris, “Planning representations and algorithms
for prehensile multi-arm manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, 2015.

[14] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “Hpp: a new software for constrained
motion planning,” in IEEE/RSJ Intelligent Robots and Systems, Octo-
ber 2016.

[15] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-
tional Journal of Robotics Research, p. 0278364910396389, 2011.

[16] S. Jentzsch, A. Gaschler, O. Khatib, and A. Knoll, “MOPL: A multi-
modal path planner for generic manipulation tasks,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, September 2015, http://youtu.be/1QRvjBw58bU.

[17] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[18] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” International Journal of
Robotics Research, vol. 28, 2009.

[19] J. Barry, L. Kaelbling, and T. Lozano-Pérez, “A hierarchical approach
to manipulation with diverse actions,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013.

[20] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Workshop on the
Algorithmic Foundations of Robotics, 2014.

[21] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[22] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Hybrid reasoning
for geometric rearrangement of multiple movable objects on cluttered
surfaces,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), Hong Kong, China, 2014.

[23] M. Vendittelli, J.-P. Laumond, and B. Mishra, Algorithmic Foundations
of Robotics XI, ser. Tracks in Advanced Robotics. Springer, 2015, vol.
107, ch. Decidability of Robot Manipulation Planning: Three Disks in
the Plane, pp. 641–657.

[24] P. Tournassoud, T. Lozano-Prez, and E. Mazer, “Regrasping,” in IEEE
International Conference on Robotics and Automation, vol. 4, 1987,
pp. 1924–1928.

[25] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[26] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 3555–3561.

http://youtu.be/1QRvjBw58bU

	INTRODUCTION
	The crossed foliation issue
	Contribution

	Manipulation graph
	Construction of the constraint graph
	Placement
	Grasp

	Algorithm

	Manipulation planning
	Exploration using the constraint graph
	Crossed foliation transition

	Experimental results
	Romeo holding a placard
	Rearrangement planning
	Grasping behind a door

	Conclusion
	References

