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ABSTRACT 

In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries 

through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how 

much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of 

plane harmonic waves, we examine the relationships between the amplification level and the most 

relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique 

incidence of plane waves). The FMBEM results show that the most important parameters for wave 

amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two 

parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes 

and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D 

basin asymmetry are also studied and incorporated in the derived rules. 
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INTRODUCTION 

The amplification of seismic waves in alluvial deposits is strongly influenced by the geometry and 

mechanical properties of the surficial layers. The estimation of this amplification in codes is mainly 

performed through simplified 1D approaches. However the amplification process can significantly differ 

between the 1D (horizontal layering) and the 2D/3D cases because of focusing effects and waves 

generated at basin edges, (e.g., Paolucci 1999). Some analytical and numerical results have been already 

derived by various authors for the response of basins with simple geometries to incident seismic waves. 

Bard and Bouchon (1985) studied rectangular and sine-shaped soft layers embedded in a rigid half space 

considering incident plane SH-waves. The propagation of plane vertical SH-waves in 2D cylindrical 

basins was analyzed by Semblat et al. (2010) and Bonnet (1999) using the Boundary Element Method in 

the frequency domain. Rodriguez-Zuñiga et al. (2005) studied the case of a 3D cylindrical basin having 

a rectangular vertical cross-section and found a large difference between the 2D and 3D response at the 

center of the basin. Papageorgiou and Pei (1998) considered incident body and Rayleigh waves in 3D 

cylindrical basins with semicircular cross-section. In the works of Bard and Bouchon (1985) and Jiang 

and Kuribayashi (1988), it was reported that the fundamental frequencies of the basins only depend on 

the aspect ratio and the 1D fundamental frequency at the center of the valley. The 3D wave diffraction 

by a semi-spherical canyon has been also studied (Lee 1978; Kim and Papageorgiou 1993; Yokoi 2003; 

Liao et al. 2004; Chaillat et al. 2008) and 3D wave amplification due to surface heterogeneities has also 

been quantified (Sánchez-Sesma and Luzón, 1995; Komatitsch and Vilottte 1998; Drawinski 2003; 

Moczo et al. 2002; Chaillat et al. 2009). Smerzini et al. (2011) made comparisons of 3D, 2D and 1D 

amplification using the Spectral Element Method with a 3D model of the Gubbio plain in Italy. Olsen et 

al. (2000) found differences among 3D/2.5D/1D amplification and duration with a 3D finite difference 

model of the Upper Borrego Valley, California. The 2D amplification features may be interpreted 

through 2D/1D amplification factors with respect to the case of a horizontal layer (Chavez-Garcia and 

Faccioli 2000, Gélis et al. 2008; Makra et al. 2005; Semblat et al. 2010). The estimation of 3D/1D 

amplification factors in different 3D configurations is the main goal of this paper. 

The 3D amplification of seismic waves is modeled through the Fast Multipole Method (FMM). This 

formulation of the Boundary Element Method (BEM) allows the acceleration of iterative solvers for the 

global linear system of equations. The application of the Fast Multipole Boundary Element Method 

(FMBEM) is beneficial in problems of elastic wave propagation involving strong velocity gradients or 

3D unbounded domains since large BEM meshes are required (Makra et al. 2005; Chaillat et al. 2008; 

Chaillat et al. 2009; Delépine & Semblat 2012). Extension of the FMBEM to propagation in weakly 

dissipative viscoelastic media was carried out by Grasso et al. (2012). In this work, we apply the 

formulation of the FMBEM for viscoelastic media to study wave amplification phenomena in 3D basins 

with canonical geometries subjected to incident plane waves. Following the work done by Makra et al. 

(2005) and Semblat et al. (2010) for canonical or realistic 2D configurations, we identify the 

fundamental frequencies of the basin, and study the relationships between the amplification level and 

relevant mechanical parameters such as impedance contrast, aspect ratio and damping. Finally, we 

synthesize the results to propose simple rules for 3D/1D amplification factors including 3D basin 

asymmetry effects.  
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THE FAST MULTIPOLE BOUNDARY ELEMENT METHOD 

Following the discussion in Grasso et al. (2012), the classical boundary integral representation formula 

gives the displacement 𝑢 in the direction 𝑘 at point 𝐱 in the interior Ω of an isotropic homogeneous 

viscoelastic solid in the absence of body forces as: 

𝑢𝑘 𝐱 =   𝑡𝑖 𝐲 𝑈𝑖
𝑘 𝐲 − 𝐱; 𝝎 − 𝑢𝑖

𝑘 𝐲 𝑇𝑖
𝑘 𝐱, 𝐲; 𝝎  

𝜕Ω

𝑑𝑆𝑦  (1) 

where 𝐭 is the traction vector, 𝑈𝑖
𝑘 𝐲 − 𝐱; 𝜔  and 𝑇𝑖

𝑘 𝐱, 𝐲; 𝜔  denote respectively the i-th component of 

the displacement and traction vectors associated to the viscoelastic fundamental solution generated at a 

point 𝐲 by a unit point force applied at 𝐱 along the direction 𝑘, given by: 

𝑈𝑖
𝑘 𝑦 − 𝑥; 𝜔 =

1

𝜇 𝑘 𝑠
2
  𝛿𝑞𝑠𝛿𝑖𝑘 − 𝛿𝑞𝑘 𝛿𝑖𝑠 

𝜕

𝜕𝑥𝑞

𝜕

𝜕𝑦𝑠
𝐺  𝐲 − 𝐱 ; 𝑘 𝑠

2 +
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑦𝑘
𝐺  𝐲 − 𝐱 ; 𝑘 𝑝

2   

𝑇𝑖
𝑘 𝐱, 𝐲; 𝜔 = 𝐶 𝑖𝑗 𝑕𝑙 𝜔 

𝜕

𝜕𝑦𝑙
𝑈𝑕

𝑘 𝐲 − 𝐱; 𝜔 𝑛𝑗  𝐲  

(2) 

where 𝑘 𝑝,𝑠 𝜔 = 𝑘𝑝,𝑠 𝜔  1 + 𝛽 𝜔  , 𝐧(𝐲) is the outward unit normal, 𝐺 𝑟; 𝑘   is the free-space 

Green’s function for the Helmholtz equation, given by: 

𝐺 𝑟; 𝑘  =
exp 𝑖 𝑘 𝑟 

4𝜋𝑟
= exp −𝛽𝑘𝑟 

exp 𝑖𝑘𝑟 

4𝜋𝑟
     𝛽 > 0 (3) 

𝛽(𝜔) is the material damping ratio, and 𝐶 𝑖𝑗 𝑕𝑙  is given by the constitutive relation for a viscoelastic 

medium in terms of the complex valued Lamé parameters  𝜆  𝜔  and  𝜇  𝜔 : 

𝐶 𝑖𝑗 𝑕𝑙 𝜔 =  𝜆  𝜔 𝛿𝑖𝑗 𝛿𝑘𝑙 +  𝜇  𝜔 𝛿𝑖𝑗 𝛿𝑘𝑙 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘   (4) 

When the boundary conditions 𝑡𝐿  are imposed, the integral representation of eq. (1) leads to: 

 𝛫𝑢  𝐱 = 𝑓 𝐱       (𝐱 ϵ 𝜕𝛺)   (5) 

where: 

 𝛫𝑢  𝐱 = 𝑐𝑖𝑘 𝐱 𝑢𝑖𝑘 𝐱 +  𝑃. 𝑉.   𝑢𝑖 𝐲 
𝜕𝛺

𝑇𝑖
𝑘 𝐱, 𝐲; 𝜔 𝑑𝑆𝑦  

𝑓 𝐱 =  𝑡𝑖
𝐿 𝐲 𝑈𝑖

𝑘 𝐱, 𝐲; 𝜔 
𝜕𝛺

𝑑𝑆𝑦  

(6) 

where (P.V.) indicates the Cauchy principal value singular integral. The free term 𝑐𝑖𝑘  depends on the 

local geometry of the boundary and is equal to 𝛿𝑖𝑘 2  for any point on a smooth boundary.  

Once Eq. (5) has been discretized using 𝑁𝐼 isoparametric boundary elements, a square complex-valued 

matrix equation of size 𝑁 = 3𝑁𝐼 is obtained. The coefficient matrix is fully populated, making its 
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storage and resolution impractical for models with sizes exceeding 𝑁 = 𝑂 104 . The FMBEM tackles 

this problem by reformulating and expanding the fundamental solutions in terms of products of 

functions of 𝐱 and 𝐲, lowering the overall complexity to 𝑂(𝑁𝑙𝑜𝑔𝑁) (for the multilevel formulation see 

Chaillat et al., 2008). The expansion of the fundamental solution needs to be truncated by computational 

necessity and the truncation parameter 𝑚 needs to be carefully chosen as to guarantee sufficient 

accuracy. To properly choose the truncation parameter 𝑚, empirical criteria has been developed for 

elastodynamics by Chaillat et al. (2008). For the viscoelastic case, Grasso et al. (2012) established an 

optimum rule to select 𝑚 which is linearly related to the damping ratio 𝛽. 

NUMERICAL MODELS FOR VARIOUS 3D BASIN GEOMETRIES 

The physical model we use for this study corresponds to a basin embedded in a halfspace, which is 

subjected to an incident field of plane P or S waves, as shown in Figure 1. Since the FMBEM used here 

is based on the full-space fundamental solution, the mesh must include the free surface which, for 

implementation purposes, must be truncated as shown in Figure 1. According to Jiang and Kuribayashi 

(1988) and Grasso et al. (2012), a truncation radius L=5R where R is the radius of the basin at the free 

surface, gives satisfactory results. 

The interface between the basin and the underlying bedrock follows the equation: 

 
𝑥

𝑅
 

2

+  
𝑦

𝑅
 

2

+  
𝑧

𝑕
 

2

= 1,            𝑧 ≤ 0 (7) 

where 𝑕 is the maximum depth of the valley. The geometrical and mechanical properties of the problem 

are described in Table 1, where 𝑣𝑠1 and 𝑣𝑠2 are the shear wave velocities of the half space and the basin, 

respectively. 

Several values of the horizontal aspect ratio are considered 𝜅𝑕 = 𝑅 𝑕 = 0.5, 1, 2, 3, ranging from deep 

to shallow basins, as shown in Fig. 2. Different velocity ratios are also considered, 𝜒 = 2, 3, 4, 6, the 

higher the value of 𝜒 = 𝑣𝑠1 𝑣𝑠2 , the softer the basin. We also consider incident P and S waves, at 

incidence angles 𝜃 = 45°, 30° and 0° (vertical incidence). The size of the resulting numerical models 

ranged from 16461 to 92565 degrees of freedom. 

BASIN AMPLIFICATION WITH ELASTIC MODEL 

Previous results on 2D amplification 

Previous researches on 2D canonical basins give the variations of the amplification level and the related 

frequencies as parametric functions of the horizontal aspect ratio 𝜅𝑕 = 𝑅 𝑕  and the velocity ratio 

𝜒 = 𝑣𝑠1 𝑣𝑠2 , (Semblat et al. 2010). These numerical results for elliptical basins (Fig. 2) have been 

computed with the classical BEM and are in agreement with Bard and Bouchon’s results (1985) for 

sinusoidal basins in terms of fundamental frequencies, that is: 

𝑓2𝐷 =
𝑣𝑠2

4𝐻
 1 + 𝜅𝑣

2 (8) 

where 𝜅𝑣 = 1 𝜅𝑕 = 𝑕/𝑅  is the vertical shape ratio, R is the basin half width, 𝑕 is the basin depth, and 

𝑣𝑠2 is the velocity in the basin. 
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As shown in Fig. 3, the 2D basin amplification in the elastic case may be very large (up to 50!) when 

compared to the 1D case (dotted line). It shows the influence of 2D basin effects in the undamped case. 

For realistic basin geometries and damped media, Makra et al. (2005) and Gélis et al. (2008) proposed 

2D/1D amplification factors around 3 in a given frequency range. In the following, the 3D/1D 

amplification factor will be assessed in both the undamped and damped cases. 

P-wave amplification in 3D elastic basins 

The amplification due to wave diffraction caused by the presence of an elastic semi-spherical basin in 

the propagation media has been already studied by Sánchez-Sesma (1983) for the case of vertically 

incident P-waves. In his study Sánchez-Sesma reports an amplification level of 170 per cent (relative to 

the amplitude of the free field) for the particular case of a basin with aspect ratio 𝑅 𝑕 = 1 and velocity 

ratio 𝜒 =  1.414 at a frequency of about 0.23 Hz. The need to study the effects of interface depth and 

curvature on wave amplification was already emphasized by Sánchez-Sesma (1983). In Chaillat et al. 

(2009), the accuracy of the FM-BEM results have been verified by comparing them with solutions 

provided by Sanchez-Sesma, (1983). 

In this work, we define the amplification factor as the maximum of the displacement at the free surface 

of the basin 𝑈𝐵  over the maximum of the displacement at the free surface of the half space. Since 

incident waves are reflected at the free surface of the half space, the total displacement field at the free 

surface of the half space 𝑈𝐹 is composed of the incident and reflected waves. This total displacement 

field 𝑈𝐹 is the input of the numerical model, which is imposed at the boundary limiting the half space. 

The amplification can then be expressed as: 

𝐴 =
max 𝑈𝐵  

max 𝑈𝐹 
 (9) 

It is important to note that we take the value max 𝑈𝐵   regardless of its place of occurrence, and 

therefore, its location might or might not be the center of the basin. However, we know that for the 

fundamental mode of basin vibration, the maximum displacement will occur at the center of 

symmetrical basins both for P and S waves. It is in the case of the higher modes of vibration that the 

location of maximum displacement may not be at the center of the basin and such location will be 

different for various frequencies (see for instance, plots of vibrations modes in Jiang and Kuribayashi, 

1988). This fact should be taken into account when interpreting amplification for higher modes with Eq. 

(9). In Fig. 4 we can observe the 3D amplification factor for the vertical component due to a vertically 

incident P-wave when we fix the aspect ratios 𝑅 𝑕  and vary the ratio of velocities 𝜒. The results are 

plotted as a function of the normalized frequency 𝑓 = 𝑓/𝑓𝑟𝑝 , where 𝑓𝑟𝑝 = 𝑣𝑝2 4𝑕  is the 1D resonance 

frequency at the center of the basin, and 𝑣𝑝2 is the P wave velocity of the basin. Let us note that the 

velocity 𝑣𝑝2, needed to compute 𝑓𝑟𝑝  can be computed as 𝑣𝑝2 = 𝑣𝑠2 ∙ 𝛾,  where  𝑣𝑠2 = 𝑣𝑠1/𝜒 and 

𝛾 =  (1 − 2𝜈2)/[2 1 − 𝜈2 ]. We take 𝑣𝑠1= 1 km/s, and the Poisson ratio of the basin 𝜈2  and its height 

𝑕, are given in Table 1. Then for a basin with 𝜒 = 2 the 1D resonance frequency is 𝑓𝑟𝑝 = 0.234 Hz. In 

figure 4 the reported maximum normalized frequency is 4, therefore the maximum frequency considered 

for this basin is  0.234 × 4 = 0.94 Hz. 
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We can observe in Figure 4 that the aspect ratio 𝑅 𝑕  mainly affects the fundamental frequency. The 

higher the aspect ratio (that is, the shallower the basin), the lower the fundamental frequency. For the 

case 𝜒 = 6 (Fig. 4b) the amplification can reach unrealistic values of up to 90. We can confirm that in 

most cases, the ratio of velocities does not affect the fundamental frequency of the 3D basin. We can 

also observe in Figure 4 that for some basins with aspect ratio 𝑅 𝑕 = 3, the 3D peak frequency appear 

lower than the 1D frequency. Because these are very shallow basins, the peak is dominated by the 

effects of the “wave trapping” and not by the fundamental modes of vibration as discussed by Bard and 

Bouchon (1985) in the 2D case.  

In Table 2 and Fig. 5 we can observe the amplification spectra for the fundamental and second modes of 

a semi-spherical basin subjected to incident plane P-waves. By amplification spectrum we mean the plot 

showing the peak values of the amplification function (9) versus the frequencies at which those peaks 

occur. The plots in Figure 5 basically summarize the two first peaks of the amplification functions 

shown in Figure 4. For each value of the velocity ratio 𝜒 the plots move from lower to higher 

frequencies as the shape ratio 𝑅 𝑕  decreases. The variation of peak amplification with 𝑅 𝑕  however, is 

not significant. The effects of the aspect ratio and the ratio of velocities are similar to that derived by 

Semblat et al. (2010) in the 2D case, but the level of amplification considering the 3D effects is much 

higher. However, in realistic cases, there will be attenuation due to material damping and therefore the 

amplification levels will not be as high as those found for this undamped model. 

BASIN AMPLIFICATION WITH 3D DAMPED MODEL 

Incident P-wave 

Considering a 3D basin model with 5% damping and a halfspace with 0.5% damping, the amplification 

levels for the vertical component for a vertically incident P-wave are shown in Fig. 6 for several aspect  

𝑅 𝑕  and velocity ratios 𝜒. The results show there is no significant change in the resonance frequency 

with damping, but the amplification factor is significantly reduced, with a stronger reduction for the 

second and higher modes. Amplification factors for the 3D damped semi-spherical basin subjected to 

vertically incident P-waves are shown in Table 3 and Fig. 7. The higher amplification level observed in 

the figure is around 14 and corresponds to the deepest and the softest basin. For the basin with 𝜒 = 2 on 

the other hand, the amplification factor gets down to 3. 

Now, we consider different directions of incidence for the incoming field. In Fig 8, we compare the 

results for 𝜃 = 0° (vertical incidence) and 𝜃 = 30°, 45°, for the case of the deepest 3D basin. We notice 

that the 3D amplification of the vertical component at the fundamental and predominant frequencies 

decreases with non-vertical incidence.  

Incident S-wave 

In this part we study the 3D amplification due to an incident S-wave. The S-wave induces important 

amplification in two components of displacement, the vertical component, and the horizontal component 

oriented in the direction of the S-wave polarization (in this example the direction of the 𝑥-axis). Thus, 

we compute the amplification factors 𝐴𝐻  and 𝐴𝑉 , for the horizontal and vertical displacement 

components respectively, using the total magnitude of the free field displacement 𝑈𝐹 as follows: 
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𝐴𝑉 =
max 𝑈𝑧

𝐵  

max 𝑈𝐹 
,                  𝐴𝐻 =

max 𝑈𝐻
𝐵  

max 𝑈𝐹 
 (10) 

where 𝑈𝑧
𝐵 and 𝑈𝐻

𝐵 are the magnitudes of the horizontal and vertical components of displacement at the 

top of the basin, respectively. Figure 9 illustrates amplification factors for S-waves with incidence angles 

𝜃 = 0°, 30°, 45° for the deeper 3D basins (𝑅 𝑕 = 0.5, 𝑅 𝑕 = 1). In this case the frequency is 

normalized as 𝑓 = 𝑓/𝑓𝑟𝑠 , where 𝑓𝑟𝑠 = 𝑣𝑠2 4𝑕 . In order to compare how the amplification factors 𝐴𝑉  

and 𝐴𝐻  vary with 𝑓 , we have plotted −𝐴𝑉  in the same axis as 𝐴𝐻 , with the understanding that they both 

are always positive, as indicated by definitions (10). As expected, as the incidence angle increases, the 

amplification of the horizontal component is reduced, whereas the amplification of the vertical 

component is increased. It is important to note that surface waves contribute to the higher amplification 

in the vertical component when 𝜃 = 45°. 

EFFECTS OF 3D BASIN SHAPE 

In this section we study the influence of different simple geometries on wave amplification in 3D 

alluvial basins. Results for 2D effects have been derived by Sanchez-Sesma and Velazquez (1987) for an 

infinite dipping layer, and by Paolucci and Morstabilini (2006) for a wall-layer system. A soil layer of 

thickness 𝑕, delimited laterally by a rigid bedrock dipping vertically is referred as a wall-layer system. 

Paolucci and Mostabilini (2006) obtained 2D/1D amplification between 1.4 and 1.7 considering 2.5% 

and 1% damping factors for the soil layer. The 2D amplification factors estimated in these studies had a 

maximum of 1.7 for the most severe case. Also for the 2D case, amplification in rectangular and sine-

shaped basins was investigated by Bard and Bouchon (1985), concluding that 2D resonance dominates 

in basins with large aspect ratio. An amplification factor of about 1.75 was reported by Bonnet (1999) 

for 2D cylindrical basins with circular cross-section, at the center of the basin.  

We compare here the amplification factor for three different 3-D shapes. The elliptical shape has already 

been described in the previous sections and in equation (7). The second shape we consider corresponds 

to a super-ellipsoid of fifth degree, given by the following equation: 

 
𝑥

𝑅
 

5

+  
𝑦

𝑅
 

5

+  
𝑧

𝑕
 

5

= 1,            𝑧 ≤ 0  (11) 

When the exponent of the super-ellipsoid is 5 the basin geometry is closer to a “box” shape as shown in 

Figure 10. The third shape we consider in this study is a 3D cosine shape (see Fig. 11), which can be 

expressed as: 

4𝑝2  
𝑧

𝑕
 =  cos  𝜋𝑠

𝑥

𝑅
 + 2𝑝 − 1  cos  𝜋𝑠

𝑦

𝑅
 + 2𝑝 − 1  (12) 

where 𝑝 is the percentage of the height of a full cosine cycle (in this study 𝑝 = 0.9) and the parameter 𝑠 

is given by: 

cos 𝜋𝑠 = 1 − 2𝑝 (13) 

Note that the total depth of the basin is 1, but the shape is scaled such that its height is only 90% of the 

total height of a full cosine cycle. We selected this percentage instead of the complete height of the 
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cosine (for which 𝑝 would be 1) to avoid numerical artifacts at the intersection of the basin boundary 

and the free surface, which occur when two surfaces intersect with the same tangent. 

Considering the “equivalent shape ratio” 𝜅 𝑕 = 𝑙0/𝑕 used by Jiang and Kirubashi (1988), where 𝑙0 is the 

half width over which the depth of the basin is half its maximum value, we can take into account the 

difference in thickness of the three basin shapes, as shown in Figure 12. We can see in Figure 12(b) that 

even though the three shapes have the same aspect ratio (𝜅𝑕 = 𝑅/𝑕) the cosine shape has the lowest 

equivalent shape ratio. 

In Figure 13 we can see the effect of different equivalent shape ratios on the amplification factors for the 

three different basin shapes, when they are subjected to vertically propagating S-waves, for the case of 

an aspect ratio 𝜅𝑕 = 0.5 (Figures 13a-13c) and 𝜅𝑕 = 2 (Figures 13e-13f). The amplification level for the 

ellipsoidal shapes remains almost the same, both for the horizontal and vertical components; however 

the difference in the exponent 𝑛 leads to different fundamental and dominant frequencies. On the other 

hand, we can see slightly higher amplification factors for the fundamental frequency in the case of the 

basin with cosine shape, a result that was expected, since there are strong basin edge effects and there is 

more trapping of waves due to the lower thickness of the basin. The same trends are observed in Figure 

14, which shows the amplification on top of the three different basins for S-waves with 30° angle of 

incidence. There is higher amplification for the vertical component for the cosine and ellipsoidal basins 

when 𝑅/𝑕 = 2 and 𝜃 = 30°, however, it corresponds to higher modes. In Figure 15, we compare the 

fundamental frequency obtained for the three different basin shapes for the aspect ratios 𝑅/𝑕 = 0.5 (Fig. 

15a) and 𝑅/𝑕 = 2 (Fig. 15b). We can observe that in both cases the normalized fundamental frequency 

𝑓/𝑓𝑟𝑠   has little variation with the velocity ratio (below 25% for 𝑅/𝑕 = 0.5 and about 7% for 𝑅/𝑕 = 2) 

and is in fact mainly determined by the equivalent shape ratio. For the basin with aspect ratio 𝑅/𝑕 = 0.5 

the maximum variation of the normalized fundamental frequency with the equivalent aspect ratio is of 

44%. In the case of the normalized predominant frequency 𝑓/𝑓𝑝𝑠  (second mode), shown in Figure 16, 

we have similar conclusions. According to Figure 16, the maximum variation of the normalized 

predominant frequency is of 7% with the velocity ratio, and of 45% with the equivalent shape ratio. 

 

EFFECTS OF ASYMMETRY 

In this section we assess the effects of basin asymmetry, changing the radius of the basin in the 𝑥- or 𝑦- 

direction. In Figure (17a) the radius in the 𝑦- direction is twice the radius in the 𝑥-direction, and in 

Figure (17b) the radius in the 𝑥-direction is twice the radius in the 𝑦-direction. Thus, the parameter 

𝜅𝑥𝑦 = 𝑅𝑥/𝑅𝑦  will be different for these two basins. The effect of asymmetry will then be different for 

these two cases since the dimension of lower basin thickness would be either parallel or perpendicular to 

the direction of polarization of the incident S-wave. We also consider the case when the direction of 

polarization of the incident plane waves does not coincide with the direction of any basin radii but it is 

45° from the 𝑥- axis [Figure (17c)]. 

In Figure 18 and in Figure 19 we can see the amplification factor for the symmetric, and the two 

asymmetric basins, for the aspect ratios 𝑅/𝑕 = 0.5 and 𝑅/𝑕 = 3, respectively. It is observed in these 

two cases that the basin response is similar for the symmetric and the asymmetric basin with 𝜅𝑥𝑦  =  2. 

This is related to the fact that these basins have the same radius in the direction of polarization of the 
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incident wave (𝑥- direction). Whereas the asymmetric basin with 𝜅𝑥𝑦  =  0.5 the radius in the direction 

of polarization is half of the other two, and thus, its response differs even though the amplification level 

is only slightly different. Figures 18(d) and 19(d) show that when the direction of polarization is 45° 

from the 𝑥- axis the amplification is reduced. Another way to characterize the effects of asymmetry and 

the direction of polarization of the incident wave is with the product 𝜅𝑅 𝑙𝑝/𝑅  where 𝜅𝑅  is the ratio 

between the larger radius 𝑅𝐿 and shorter radius 𝑅 of the basin, and 𝑙𝑝  is half the dimension of the basin 

parallel to the direction of polarization of the incident wave. Note that for a symmetric (semi-spherical) 

basin 𝜅𝑅 = 1 and 𝑙𝑝/𝑅 = 1. In Figure 20 we present the results for the asymmetric basins in the form of 

isovalue curves of amplification as function of the parameter 𝜅𝑅 𝑙𝑝/𝑅  and normalized frequency. From 

the results we conclude that the main effect of basin asymmetry is an increase in the fundamental and 

predominant frequencies. The lowest fundamental frequency in Fig. (20) corresponds to the symmetric 

basin, that is, to the case 𝜅𝑅 𝑙𝑝/𝑅 = 1. 

Figure 21 shows the normalized fundamental frequency for the asymmetric basins when subjected to 

vertically incident S-waves. In this figure the basin fundamental frequency is normalized with respect to 

the frequency of the symmetric basin. As expected, we can observe in Figure (21) that as the aspect ratio 

increases (shallower basins), the difference in fundamental frequency due to asymmetry is reduced. 

Furthermore, as it was observed for the symmetric case, the fundamental frequencies are practically 

independent of the velocity ratio 𝜒. On the other hand, Figure (22) shows amplification in asymmetric 

basins with respect to amplification on symmetric ones. The results show that basin asymmetry leads to 

higher amplification levels for the case 𝑅𝑥/𝑅𝑦  =  2 (an increase of about 10% with respect to 

symmetric basins), the difference being more pronounced (with a reduction of up to 50%) for the 

narrower basins with lower velocity contrast 𝜒.  

SIMPLE RULES TO ASSESS 3D BASIN EFFECTS 

Based on the results presented in the previous sections we derive simple rules to compute the 

fundamental frequencies and the associated amplification factors, in terms of two parameters, the 

equivalent shape ratio 𝜅 𝑕 = 𝑙0/𝑕 and the factor 𝜒 =  𝜉2/2𝜉1  𝜌1/𝜌2 𝜒, where 𝜉2 = 5% and 𝜉1 = 0.5% 

are the damping ratios of the basin and the half space, respectively . We are particularly interested in the 

case of incident S-waves. Since in this section we propose rules for amplifications corresponding to the 

fundamental mode of vibration, it should be understood that its location is the center of the basin. Now, 

for the fundamental frequency of the basin we propose the following relation: 

𝑓0

𝑓𝑟𝑠
= 1 +  𝜅 𝑕 −1.24 (14) 

The plot of the proposed equation along with the data used for its derivation is presented in Figure 23. 

We also plot in Figure 23 the rule to compute the normalized fundamental frequency for shear response 

proposed by Jiang and Kuribayashi (1988). The two rules predict practically the same results. Note that 

when the equivalent shape ratio 𝜅 𝑕  becomes large (shallower basins), the fundamental frequency tends 

to the 1D resonance frequency. On the other hand, Figure 24 shows the amplification on top of the basin 

corresponding to the fundamental frequency. We obtain the 3D/1D amplification factor when we 

normalize this 3D amplification with the factor 𝜒 =  𝜉2/4𝜉1  𝜌1/𝜌2 𝜒, consisting of the elastic 1D 

resonance amplification  𝜌1/𝜌2 𝜒, and a damping relation  𝜉2/4𝜉1 . The data obtained from our 
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simulations (normalized 𝜒 ) is very close to the 3D/1D amplification factors computed by Olsen (2000) 

for long period (0-0.5 Hz) basin response using 3D finite difference simulations for several southern 

California basins. He reported 3D/1D velocity amplification factors less than about 4 at the deepest parts 

of the basins. Now, using the results from our simulations (shown in Figure 24), we propose to define 

the 3D/1D amplification factor in three regions as follows: 

𝐴

𝜒 
=  

1.7 + 1.42𝜅 𝑕 𝜅 𝑕 ≤ 1.2 
3.40 1.2 < 𝜅 𝑕 ≤ 2

1 + 3.64 𝜅 𝑕 −0.60 2 < 𝜅 𝑕

  (15) 

The predicted 3D/1D amplification factor obtained with this equation is also shown in Figure 24. Even 

though Jiang and Kuribayashi (1988) also proposed a rule to compute basin amplification, we do not 

compare it here with ours since it is not formulated in terms of 3D/1D response. Besides, the rule by 

Jiang and Kuribayashi (1988) is based on computations considering damping only for the basin (elastic 

halfspace), whereas Eq. (15) is based on computations we performed with 0.5% damping for the 

halfspace. Thus, because of the difference made by the radiation of energy at the halfspace, the 

predictions made with the rule of Jiang and Kuribayashi (1988) will be higher than those obtained with 

Eq. (15). For values of the equivalent aspect ratio greater than two, the proposed function is decreasing, 

and when 𝑙0 𝑕  approaches infinity, the 3D/1D amplification factor tends to that of the 1D elastic 

response times the damping relation. Finally, these rules to estimate the 3D fundamental frequency and 

3D/1D amplification factor should also be corrected for basin asymmetry effects. We propose the 

following linear rule to correct the fundamental frequency for such effects: 

𝑓0(𝑎𝑠𝑦𝑚 )

𝑓0(𝑠𝑦𝑚 )
= 1.36 − 0.1𝜅𝑕  (16) 

where 𝑓0(𝑎𝑠𝑦𝑚 ) and 𝑓0(𝑠𝑦𝑚 ) are the fundamental frequencies of the asymmetric and symmetric basin, 

respectively. The parameter 𝜅𝑕  is the aspect ratio obtained using the lower radius, and the parameter 𝑙0 

in Equation (14) corresponds to the lower half-width of the asymmetric basin. Now, since we propose 

Eq. (16) after observing from our computations an increase in the fundamental frequency due to 

asymmetry, then the relation 𝑓0(𝑎𝑠𝑦𝑚 )/𝑓0(𝑠𝑦𝑚 ) given by (16) should be greater than 1. Thus, Eq. (16) is 

valid only for shape ratios 𝜅𝑕 ≤ 3.6. Finally, for the 3D/1D amplification factor 𝐴(𝑎𝑠𝑦𝑚 ) of the 

asymmetric basin we suggest a simple increase of 10% in the amplification 𝐴(𝑠𝑦𝑚 ) of the symmetric 

basin: 

𝐴(𝑎𝑠𝑦𝑚 ) = 1.1𝐴(𝑠𝑦𝑚 ) (17) 

With the application of formula (17), the maximum amplification factor predicted with our rules is of 

3.74.  
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CONCLUSIONS 

We have computed the amplification of seismic waves in 3D basins when subjected to incident fields of 

plane P and S waves through the Fast Multipole Boundary Element Method in the frequency domain. 

We considered basin models with and without attenuation due to material damping. In accordance with 

previous studies, the FMBEM results show that the largest amplification levels correspond to the 

deepest basin with the strongest impedance ratio. However, we have found the ratio of velocities and the 

asymmetry to be the most important parameters for 3D wave amplification. The effects of asymmetry 

appear to be more significant for the fundamental frequency as the level of amplification was found to 

be increased by only 10%. In this study we considered 5% basin damping, and we found amplification 

factors at the top of the basin due to incident body waves to be close to four times higher than the 1D 

amplification level. Simple rules were derived to compute the fundamental frequency and its 

corresponding amplification factor at the center of 3D alluvial basins, with respect to the 1D elastic 

response. The proposed equations are expressed in terms of only the equivalent shape ratio 𝜅 𝑕 , the 

basin/bedrock impedance contrast and the damping ratios. 

As discussed in Semblat et al. (2005) the combined effect of basin geometry and soil layering may be 

important for amplification, and it should be considered for future, more detailed studies. Besides, the 

results obtained in this investigation are limited to low frequencies and small deformations that fall 

within the linear approximation of the basin response. However, simple criteria and practical rules 

should be targeted in order to make the results useful for practitioners. 

DATA AND RESOURCES 

All computations made in this work were performed using COFFEE, a FORTRAN code based on the 

FMBEM, developed by Stéphanie Chaillat for frequency-domain elastodynamics, and extended to 

viscoelasticity by Eva Grasso. The 3D meshes were generated with the GMSH code developed by C. 

Geuzaine and J.F. Remacle. 
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FIGURE CAPTIONS 

Figure 1. A 3D semi-cylindrical basin embedded in a half space and subjected to a plane wavefield. 

Figure 2. Basins with different aspect ratios. (a) 𝑅/𝑕 =  0.5 (b) 𝑅/𝑕 =  1 (c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 

Figure 3. Maximum amplification and related frequencies (in Hz) for variable shape ratios 𝑘𝑕 and 

velocity ratios . Here the symbol L has been used instead of R for the radius of the basin. Taken from 

Semblat et al. (2010). 

Figure 4. Amplification at the top of the undamped 3D basin due to vertically incident P-waves for 

different aspect ratios. (a) 𝑅/𝑕 =  0.5 (b) 𝑅/𝑕 =  1 (c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 

Figure 5. Amplification spectra for the first and second elastic modes of a semi-spherical basin for a 

vertically incident P-wave. (a) First mode (b) Second mode. 

Figure 6. Amplification at the top of the 3D basin with 5% damping due to vertically incident P-waves. 

(a) 𝑅/𝑕 =  0.5 (b) 𝑅/𝑕 =  1 (c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 

Figure 7. Amplification spectra for the first and second modes of 3D damped semi-spherical basin due 

to a vertically incident P-wave. (a) First mode (b) Second mode. 

Figure 8. Amplification at the top of the 3D deepest basin with 5% damping and 𝑅/𝑕 =  0.5 due to 

incident P-waves. (a) Vertical incident (b) 𝜃 = 30 degrees (c) 𝜃 = 45 degrees 

Figure 9. Comparison of amplification at the top of the 3D basin with 5% damping due to S-waves with 

different angles of incidence. (a) 𝑅/𝑕 =  0.5, 𝜃 = 0 degrees (b) 𝑅/𝑕 =  0.5, 𝜃 = 30 degrees (c) 

𝑅/𝑕 =  0.5, 𝜃 = 45 degrees (d) 𝑅/𝑕 =  1, 𝜃 = 0 degrees (e) 𝑅/𝑕 =  1, 𝜃 = 30 degrees (f) 𝑅/𝑕 =  1, 

𝜃 = 45 degrees. 

Figure 10. 3D basin model with super-ellipsoid shape. (a) View of the mesh for the super-ellipsoid and 

the truncated free surface. (b) A cross section corresponding to the 𝑥-𝑧 plane. 

Figure 11. 3D basin model with shape of a 3D half sine. (a) View of the mesh for the 3D cosine and the 

truncated free surface. (b) A cross section corresponding to the 𝑥-𝑧 plane (the period is adjusted so that 

the height of the bell is only 90% of that of a full cosine cycle). 

Figure 12.Basin shapes considered in the study. (a) Cross section corresponding to the 𝑥-𝑧 plane. (b) 

Equivalent shape ratio 𝑙0/𝑕 for the three basin shapes for a unitary radius. 

Figure 13. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves 

with different equivalent shape ratios. (a) 𝑅/𝑕 = 0.5, basin with cosine shape (b) 𝑅/𝑕 = 0.5, basin with 
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ellipsoidal shape, 𝑛 = 2 (c) 𝑅/𝑕 = 0.5, basin with super-ellipsoidal shape, 𝑛 = 5 (d) 𝑅/𝑕 = 2, basin with 

cosine shape (e) 𝑅/𝑕 = 2, basin with ellipsoidal shape, 𝑛 = 2 (f) 𝑅/𝑕 = 2, basin with super-ellipsoidal 

shape, 𝑛 = 5. 

Figure 14. Amplification at the top of the 3D basin with 5% damping due to S-waves with incidence 

angle 𝜃 = 30°. (a) 𝑅/𝑕 = 0.5, basin with cosine shape (b) 𝑅/𝑕 = 0.5, basin with ellipsoidal shape, 𝑛 = 

2 (c) 𝑅/𝑕 = 0.5, basin with super-ellipsoidal shape, 𝑛 = 5 (d) 𝑅/𝑕 = 2, basin with cosine shape (e) 

𝑅/𝑕 = 2, basin with ellipsoidal shape, 𝑛 = 2 (f) 𝑅/𝑕 = 2, basin with super-ellipsoidal shape, 𝑛 = 5. 

Figure 15. Normalized fundamental frequency 𝑓0/𝑓𝑟𝑠 as a function of equivalent shape ratio 𝑘𝑕. (a) 

Basin with aspect ratio 𝜅𝑕 =  0.5 (b) Basin with aspect ratio 𝜅𝑕 =  2. 

Figure 16. Normalized predominant frequency 𝑓𝑝/𝑓𝑟𝑠 as a function of equivalent shape ratio  𝜅𝑕. (a) 

Basin with aspect ratio 𝜅𝑕 =  0.5 (b) Basin with aspect ratio 𝜅𝑕 =  2. 

Figure 17. 3D basin models with asymmetry. (a) Basin with 𝑅𝑥/𝑅𝑦 =  0.5 (b) Basin with 𝑅𝑥/𝑅𝑦 =  2. 

(c) Basin with 𝑅𝑥/𝑅𝑦 =  2, direction of polarization of incident plane wave 45°. 

Figure 18. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves 

for 𝑅/𝑕 = 0.5. (a) Symmetric basin (b) Basin with 𝜅𝑥𝑦 =  0.5  (c) Basin with 𝜅𝑥𝑦 =  2 (d)  Basin with 

𝜅𝑥𝑦 =  2 and polarization direction at 45°. 

Figure 19. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves 

for 𝑅/𝑕 = 3. (a) Symmetric basin (b) Basin with 𝜅𝑥𝑦 =  0.5  (c) Basin with 𝜅𝑥𝑦 =  2 (d)  Basin with 

𝜅𝑥𝑦 =  2 and polarization direction at 45°. 

Figure 20. Amplification factor at the top of the basin with 5% damping due to vertically incident S-

waves for 3D symmetric and asymmetric basins. 

Figure 21. Fundamental frequency in a 3D asymmetric basin normalized with respect to the fundamental 

frequency of the symmetric basin. (a) Basin with 𝑅𝑥/𝑅𝑦 =  0.5  (b) Basin with 𝑅𝑥/𝑅𝑦 =  2. 

Figure 22. Amplification in a 3D asymmetric basin normalized with respect to the amplification of a 

symmetric basin. (a) Basin with 𝑅𝑥/𝑅𝑦 =  0.5  (b) Basin with 𝑅𝑥/𝑅𝑦 =  2. 

Figure 23. Normalized fundamental frequency 𝑓𝑜𝑓𝑟𝑠 as a function of equivalent shape ratio. 

Figure 24. 3D/1D amplification factor 𝐴/[(𝜉2/4𝜉1)(𝜌1/𝜌2𝜒)] as a function of equivalent shape ratio 

for 5% damping in the basin. 

TABLE CAPTIONS 

Table 1. Mechanical properties for basin and halfspace. Properties with subscript 2 correspond to the 

basin, and properties with subscript 1 correspond to the halfspace. 

Table 2. Amplification factors for first and second elastic modes of basin vibration due to a vertically 

incident P-wave. 

Table 3. Amplification factors for first and second modes of damped basin vibration due to a vertically 

incident P-wave. 
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FIGURES 

 

 
Figure 1. A 3D semi-cylindrical basin embedded in a half space and subjected to a plane wavefield. 

 

 

(a) (b) 

  
(c) (d) 

  

Figure 2. Basins with different aspect ratios 𝑅 𝑕 . (a) 𝑅/𝑕 =  0.5 (b) 𝑅/𝑕 =  1 (c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 
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Figure 3. Maximum amplification and related frequencies (in Hz) for variable shape ratios 𝑘𝑕  and velocity ratios . Here the symbol L 

has been used instead of R for the radius of the basin. Taken from Semblat et al. (2010). 

 

  

  

Figure 4. Amplification at the top of the undamped 3D basin due to vertically incident P-waves for different aspect ratios. (a) 𝑅/𝑕 =
 0.5 (b) 𝑅/𝑕 =  1 (c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 
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Figure 5. Amplification spectra for the first and second elastic modes of a semi-spherical basin for a vertically incident P-wave. (a) 

First mode (b) Second mode. 

 

  

  

Figure 6. Amplification at the top of the 3D basin with 5% damping due to vertically incident P-waves. (a) 𝑅/𝑕 =  0.5 (b) 𝑅/𝑕 =  1 
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(c) 𝑅/𝑕 =  2 (d) 𝑅/𝑕 =  3. 

 

  

Figure 7. Amplification spectra for the first and second modes of 3D damped semi-spherical basin due to a vertically incident P-wave. 

(a) First mode (b) Second mode. 
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Figure 8. Amplification at the top of the 3D deepest basin with 5% damping and 𝑅/𝑕 =  0.5 due to incident P-waves. (a) Vertical 

incident (b) 𝜃 = 30 degrees (c) 𝜃 = 45 degrees 

 

   

   
Figure 9. Comparison of amplification at the top of the 3D basin with 5% damping due to S-waves with different angles of incidence.  

(a) 𝑅/𝑕 =  0.5, 𝜃 = 0 degrees (b) 𝑅/𝑕 =  0.5, 𝜃 = 30 degrees (c) 𝑅/𝑕 =  0.5, 𝜃 = 45 degrees (d) 𝑅/𝑕 =  1, 𝜃 = 0 degrees (e) 

𝑅/𝑕 =  1, 𝜃 = 30 degrees (f) 𝑅/𝑕 =  1, 𝜃 = 45 degrees. 
 

(a) 

 

(b) 

 

Figure 10. 3D basin model with super-ellipsoid shape. (a) View of the mesh for the super-ellipsoid and the truncated free 

surface. (b) A cross section corresponding to the 𝑥-𝑧 plane.  
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(a) 

 

(b) 

 

Figure 11. 3D basin model with shape of a 3D half sine. (a) View of the mesh for the 3D cosine and the truncated free 

surface. (b) A cross section corresponding to the 𝑥-𝑧 plane (the period is adjusted so that the height of the bell is only 90% 

of that of a full cosine cycle).  
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(a) 

 

(b) 

 

Figure 12.Basin shapes considered in the study. (a) Cross section corresponding to the 𝑥-𝑧 plane. (b) Equivalent shape 

ratio 𝑙0/𝑕 for the three basin shapes for a unitary radius.  

 

 

    

   
Figure 13. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves with different equivalent 

shape ratios. (a) 𝑅/𝑕 = 0.5, basin with cosine shape (b) 𝑅/𝑕 = 0.5, basin with ellipsoidal shape, 𝑛 = 2 (c) 𝑅/𝑕 = 0.5, basin with 

super-ellipsoidal shape, 𝑛 = 5 (d) 𝑅/𝑕 = 2, basin with cosine shape (e) 𝑅/𝑕 = 2, basin with ellipsoidal shape, 𝑛 = 2 (f) 𝑅/𝑕 = 2, 
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basin with super-ellipsoidal shape, 𝑛 = 5. 
 

  
  

   
Figure 14. Amplification at the top of the 3D basin with 5% damping due to S-waves with incidence angle 𝜃 = 30°. (a) 𝑅/𝑕 = 0.5, 

basin with cosine shape (b) 𝑅/𝑕 = 0.5, basin with ellipsoidal shape, 𝑛 = 2 (c) 𝑅/𝑕 = 0.5, basin with super-ellipsoidal shape, 𝑛 = 5 

(d) 𝑅/𝑕 = 2, basin with cosine shape (e) 𝑅/𝑕 = 2, basin with ellipsoidal shape, 𝑛 = 2 (f) 𝑅/𝑕 = 2, basin with super-ellipsoidal 

shape, 𝑛 = 5. 
 

 

  

Figure 15. Normalized fundamental frequency 𝑓0/𝑓𝑟𝑠  as a function of equivalent shape ratio 𝑘 𝑕 . (a) Basin with aspect ratio 

𝜅𝑕  =  0.5 (b) Basin with aspect ratio 𝜅𝑕  =  2.  
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Figure 16. Normalized predominant frequency 𝑓𝑝/𝑓𝑟𝑠  as a function of equivalent shape ratio  𝜅 𝑕 . (a) Basin with aspect ratio 

𝜅𝑕  =  0.5 (b) Basin with aspect ratio 𝜅𝑕  =  2.  
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(c) 

 

Figure 17. 3D basin models with asymmetry. (a) Basin with 𝑅𝑥/𝑅𝑦  =  0.5 (b) Basin with 𝑅𝑥/𝑅𝑦  =  2. (c) Basin with 𝑅𝑥/𝑅𝑦  =  2, 

direction of polarization of incident plane wave 45°. 
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Figure 18. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves for 𝑅/𝑕 = 0.5. (a) 

Symmetric basin (b) Basin with 𝜅𝑥𝑦  =  0.5  (c) Basin with 𝜅𝑥𝑦  =  2 (d)  Basin with 𝜅𝑥𝑦  =  2 and polarization direction at 

45°.  
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Figure 19. Amplification at the top of the 3D basin with 5% damping due to vertically incident S-waves for 𝑅/𝑕 = 3. (a) 

Symmetric basin (b) Basin with 𝜅𝑥𝑦  =  0.5  (c) Basin with 𝜅𝑥𝑦  =  2 (d)  Basin with 𝜅𝑥𝑦  =  2 and polarization direction at 

45°.  

 

 

Figure 20. Amplification factor at the top of the basin with 5% damping due to vertically incident S-waves for 3D 

symmetric and asymmetric basins.  
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Figure 21. Fundamental frequency in a 3D asymmetric basin normalized with respect to the fundamental frequency of the 

symmetric basin. (a) Basin with 𝑅𝑥/𝑅𝑦  =  0.5  (b) Basin with 𝑅𝑥/𝑅𝑦  =  2.  

 

  
Figure 22. Amplification in a 3D asymmetric basin normalized with respect to the amplification of a symmetric basin. (a) 

Basin with 𝑅𝑥/𝑅𝑦  =  0.5  (b) Basin with 𝑅𝑥/𝑅𝑦  =  2.  
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Figure 23. Normalized fundamental frequency 𝑓𝑜 𝑓𝑟𝑠  as a function of equivalent shape ratio. 

 

 

Figure 24. 3D/1D amplification factor 𝐴/  𝜉2/4𝜉1  𝜌1/𝜌2 𝜒  as a function of equivalent shape ratio for 5% damping in 

the basin. 
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TABLES 
 

Parameter Value 

Maximum depth (𝑕) 1 

Aspect ratio (𝜅𝑕 = 𝑅/𝑕) 𝑅 

Velocity ratio (𝜒) 𝑣𝑠1 𝑣𝑠2  

Ratio of densities (𝜌2/𝜌1) 0.6 

Poisson ratio of basin (𝜈2) 0.30 

Poisson ratio of halfspace (𝜈1) 0.25 

Table 1. Mechanical properties for basin and halfspace. Properties with subscript 2 correspond to the basin, and 

properties with subscript 1 correspond to the halfspace. 

 

𝜒 = 2 𝜒 = 3 𝜒 = 4 𝜒 = 6 

fr (Hz) A fr (Hz) A fr (Hz) A fr (Hz) A 

First Mode 

0.43 5.16 0.29 13.45 0.22 27.33 0.148 54.72 

0.29 5.12 0.2 13.91 0.15 25.59 0.103 62.55 

0.239 4.63 0.164 11.26 0.124 22.22 0.084 58.07 

0.22 4.74 0.15 9.9 0.115 23.9 0.079 62.42 

Second Mode 

0.84 6.8 0.56 15.45 0.42 27.06 0.265 31.42 

0.46 6.04 0.3 16.16 0.23 52.04 0.154 89.79 

0.276 4.51 0.193 9.25 0.145 13.9 0.097 25.03 

0.269 4.49 0.153 9.99 0.136 22.08 0.092 49.34 

Table 2. Amplification factors for first and second elastic modes of basin vibration due to a vertically incident P-wave. 
 

𝜒 = 2 𝜒 = 3 𝜒 = 4 𝜒 = 6 

fr (Hz) A fr (Hz) A fr (Hz) A fr (Hz) A 

First Mode 

0.421 3.58 0.281 6.79 0.222 10.2 0.148 14.06 

0.292 3.4 0.203 6.88 0.152 9.89 0.101 13.77 

0.234 3.12 0.159 5.56 0.122 8.4 0.08 9.77 

0.206 2.86 0.15 4.4 0.108 5.04 0.076 8.45 

Second Mode 

0.842 3.23 0.561 6.66 0.421 8.09 0.288 8.34 

0.456 2.78 0.304 6.58 0.228 8.03 0.152 9.99 

0.304 2.9 0.164 5.78 0.126 8.65 0.085 12.97 
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0.262 2.95 0.153 4.27 0.117 7.14 0.08 11.14 

Table 3. Amplification factors for first and second modes of damped basin vibration due to a vertically incident P-wave. 
 


