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Adding an Integrator to Backstepping: Output Disturbances Rejection
for Linear Hyperbolic Systems

Pierre-Olivier Lamare1, Florent Di Meglio2

Abstract— We consider the output disturbance rejection
problem for linear first-order hyperbolic systems with anti-
collocated boundary input and output. We employ backstepping
to construct the controller. We incorporate an integral action
into the target system, yielding a Delay Differential Equation
(DDE) and use a classical result to obtain a sufficient condition
for its stability in L∞-norm. Then, we show that the full-state
feedback control with the integral action rejects in-domain and
boundary disturbances from the output. Besides, we show that
when incorporating integral-action into the observer system,
the resulting output feedback control rejects the disturbances
too.

I. INTRODUCTION

A wide number of physical networks may be represented
by hyperbolic systems. Among them we can cite the hy-
draulic networks [3], [10], road traffic networks [11], oil well
drilling [1], [8], or gas pipeline networks [12]. Due to the
importance of such applications from an applicative point of
view a large number of results concerning their control is
emerging this last decade.

The boundary control of 2× 2 linear hyperbolic systems
has been analyzed in [1], [2], [10], [14], [16], [17]. The
generalization for 2× 2 quasilinear hyperbolic systems has
been made in [5], for semilinear equations in [15], and for
n×n systems in [9], [13]. The disturbance rejection problem
has attracted the attention for this class of systems recently
as in [1], [2], [10], [14], [16]. In [1], [2] the rejection
of a perturbation affecting the left hand side of a 2× 2
linear hyperbolic system is solved with backstepping. In [14],
the stabilization of a reference trajectory is solved with
a proportional-integral controller. Though [10] considered
an integral action for output rejection its effectiveness is
validated on experimental data. In [16], a sliding mode
control approach is used to reject a boundary time-varying
input disturbance. The results related to the present paper are
the results in [14] for the integral control, [9], [17] for the
control and observer by backstepping.

The construction of controller using backstepping for
2×2 linear hyperbolic system has been introduced in [17].
Since this seminal work, generalization of the method have

1Pierre-Olivier Lamare was with Laboratoire Jean Kuntzmann, Uni-
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been made for n× n systems [9], [13], for disturbance
rejection [1], [2], for adaptive observer [8], for trajectory
generation [13], [14].

This paper deals with output disturbance rejection for
linear first-order hyperbolic systems with anti-collocated
boundary input and output. We want to incorporate an
integral action to a controller based on backstepping. The
solution is obtained by mapping the original system into a
target system where the integral term is added. The resulting
system is a cascade of two Delay Differential Equations
(DDE). Thus, the stability analysis can be led using the
semigroup approach and a sufficient condition on the co-
efficient of the integrator is derived. This analysis imposes
to consider the L∞-norm for the stability of the PDE system
(Section III-A). Then, the rejection of the perturbations by
the controller obtained with the inverse transformation is
proved (Section III-B). Since this controller requires the
knowledge of the distributed states, its implementation is un-
realistic. Thus, we consider an observer-controller structure
(Section IV-A). For the proposed observer system to be stable
in presence of perturbations, an integral action is added. We
show that this action is able to stabilize the observer states
around a perturbed version of the real states (Section IV-B).
Then, we show that the resulting output feedback control law
still rejects the output disturbances (Section V). Finally, we
show that the obtained results may be generalized to systems
(Section VI) of arbitrary numbers of PDEs.

II. PROBLEM STATEMENT

We consider the following system

ut +λ1(x)ux = γ1(x)v (1)
vt −λ2(x)vx = γ2(x)u (2)

u(0, t) = qv(0, t) (3)
v(1, t) = ρu(1, t)+U(t) (4)
v(0, t) = y(t) , (5)

where t ∈ [0,+∞) is the time variable, x ∈ [0,1] is the
spatial variable, y is the output of the system, q 6= 0, ρ

are constant parameters, and U is the control input. The
functions λ1, λ2 belong to C2 ([0,1]) and satisfy λ1(x),
λ2(x) > 0, for all x ∈ [0,1], and the functions γi, i = 1,2
belong to C1([0,1]). Now let us assume that there exist
some disturbances d1, d2 ∈C1 ([0,1]) on the right-hand side
of (1), (2) respectively and some disturbances d3, d4 ∈ R
on the right-hand side of (3), (4), respectively. The sys-



tem (1)–(4) becomes

ut +λ1(x)ux = γ1(x)v+d1(x) (6)
vt −λ2(x)vx = γ2(x)u+d2(x) (7)

u(0, t) = qv(0, t)+d3 (8)
v(1, t) = ρu(1, t)+U(t)+d4 . (9)

The aim of this paper is to propose a control U for which
the perturbations are rejected in the output y(t).

III. INTEGRAL ACTION TOGETHER WITH A FULL-STATE
FEEDBACK CONTROL LAW

Let us denote the space L∞(0,1)×L∞(0,1)×R by E.

A. Target System

We consider the following target system

αt +λ1(x)αx = 0 (10)
βt −λ2(x)βx = 0 , (11)

with the following boundary conditions

α(0, t) = qβ (0, t) (12)
β (1, t) =−kIη(t) , (13)

where
η̇(t) = β (0, t) . (14)

The initial data α0 and β 0 are supposed to be bounded, and
therefore lie in L∞(0,1). The following Lemma assesses the
stability properties of this system.

Lemma 1: Let kI be such that

0 < kI <
π

2τ
(15)

where
τ =

∫ 1

0

1
λ2(ξ )

dξ , (16)

then, the equilibrium (α,β ,η)> ≡ (0,0,0)> of sys-
tem (10), (11) with boundary conditions (12), (13), and (14)
is exponentially stable for the L∞-norm.

Proof: Differentiating (13) we get

dβ (1, t)
dt

=−kIβ (0, t) . (17)

We have
β (0, t) = β (1, t− τ) . (18)

Hence, we have

dβ (1, t)
dt

+ kIβ (1, t− τ) = 0 , (19)

where τ is defined in (16). Using Theorem 5.1.7 of [6]
we have that the semigroup corresponding to the delay
differential equation (19) is exponentially stable if and only
if the roots of the function

∆(s) = s+ kIe−τs (20)

lie in C−. Letting z = τs and q =−kIτ the equation

s+ kIe−τs = 0 (21)

becomes
q− zez = 0 . (22)

By Theorem 13.8 of [4] the roots of this equation lie in C− if
and only if (15) holds. Hence, under assumption (15), β (1, t)
is exponentially stable. It is not hard to check that it implies
that β is exponentially stable for the L∞-norm, and therefore
that α too. Now by (18) we get

η̇(t) =−kIη(t− τ) . (23)

Thus, using the same argument as above η is exponen-
tially stable for the L∞-norm. This concludes the proof of
Lemma 1.
To map the original system (1), (2) to the target sys-
tem (10), (11) we use the following backstepping transfor-
mation, introduced in [17]

α(x, t) = u(x, t)−
∫ x

0
Kuu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kuv(x,ξ )v(ξ , t)dξ (24)

β (x, t) = v(x, t)−
∫ x

0
Kvu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kvv(x,ξ )v(ξ , t)dξ . (25)

The kernels Kuu, Kuv, Kvu, and Kvv satisfy a well-posed
set of linear first-order hyperbolic equations on a triangular
domain T , detailed in [17], that possesses a unique solution
in L∞(T ). Besides, from the transformation (25) evaluated
at x = 1, one gets

U(t) =−kIη(t)−ρu(1, t)+
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ

+
∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ , (26)

with
η̇(t) = y(t) . (27)

The following proposition assesses the stability properties of
the unperturbed system.

Proposition 1: Consider system (1), (2) with boundary
conditions (3), (4) where U is given by (26), η satisfies (27),
and with bounded initial conditions

(
u0,v0,η0

)
∈ E. Then,

there exist two positive constants κ and λ such that the
following holds for all t ≥ 0

|(u,v,η)|E ≤ κe−λ t ∣∣(u0,v0,η0)∣∣
E . (28)

Proof: Using Lemma 1 and the invertibility of the
backstepping transformation (24), (25) as a Volterra equation
of the second kind, the result holds.

B. Disturbance Rejection with the Full-State Feedback Con-
trol Law and Integral Action

The aim of this section is to prove that the perturbed
system (6)–(9) with U given by (26) rejects in the output
the perturbations. More precisely, we prove the following
theorem.



Theorem 1: Consider system (6), (7) with bounded initial
conditions

(
u0,v0,η0

)
∈ E, boundary conditions (8), (9)

where U is given by (26), η satisfies (27) and kI satisfies

0 < kI <
π

2τ
, (29)

where τ is given by (16). Then the following holds

lim
t→+∞

|v(0, t)|= 0 . (30)

Proof: The equilibrium Z = (uss,vss)
> of the perturbed

system (6)–(8) and (4) is the solution of the following
ordinary differential equation

Z′(x) = F(x)Z(x)+G(x), (31)

where F(x) =

(
0 γ1(x)

λ1(x)

− γ2(x)
λ2(x)

0

)
, G(x) =

(
d1(x)
λ1(x)

− d2(x)
λ2(x)

)
with bound-

ary conditions

Z1(0) = d3 (32)
Z2(0) = 0 . (33)

Besides, given (9), the equilibrium value of U , which we
denote Uss, satisfies

Uss = vss(1;d1,d2,d3)−ρuss(1;d1,d2,d3)−d4 . (34)

The ordinary differential equation (31) together with the
boundary conditions (32), (33) is a well-posed initial value
problem for x. The equilibrium depends on d1, d2, and
d3. Let us denote this equilibrium by uss(x;d1,d2,d3),
vss(x;d1,d2,d3). Using (26) it follows from (34) that the
equilibrium value of η , namely ηss, satisfies

ηss =−
vss(1;d1,d2,d3)−d4−θss

kI
, (35)

where

θss =
∫ 1

0
Kvu(1,ξ )uss (ξ ;d1,d2,d3)dξ

+
∫ 1

0
Kvv(1,ξ )vss (ξ ;d1,d2,d3)dξ . (36)

Let us define

u(x, t) = u(x, t)−uss (x;d1,d2,d3) (37)
v(x, t) = v(x, t)− vss (x;d1,d2,d3) (38)

η(t) = η(t)−ηss . (39)

Using (31) with Z = (uss,vss)
> together with (6), (7) it is

shown that the variables u and v satisfy

ut +λ1(x)ux = γ1(x)v (40)
vt −λ2(x)vx = γ2(x)u . (41)

Setting x = 0 in (37), (38), and using (8), (32), and (33) we
get that

u(0, t) = qv(0, t) . (42)

Setting x = 1 in (38) and using (9), (26), (35), and (39) we
arrive at

v(1, t) = ρu(1, t)− kIη(t)−ρu(1, t)+
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ

+
∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ . (43)

Using (39) and the fact that

v(0, t) = v(0, t) , (44)

relation (27) becomes

η̇(t) = v(0, t) . (45)

Under Proposition 1 the zero equilibrium of (40)–(43) and
(45) is exponentially stable. It remains to show that relation-
ship (30) holds. Since, our initial condition is bounded and
lies in E, the solution (v− vss,u−uss,η−ηss)

> is bounded
and lies in E. Thus, the following holds

|v(0, t)| ≤
∣∣∣(v− vss,u−uss,η−ηss)

>
∣∣∣
E
. (46)

Using (28) we get that relationship (30) holds. This con-
cludes the proof of Theorem 1.

Remark 1: A filtered integral action is proposed in [15]
for a hyperbolic Lotka-Volterra system, meaning that the
integrator is given by

η̇(t) =−εη(t)+ v(t,0) (47)

where ε > 0 is a small coefficient. This filtering has been
introduced to be able to lead a Lyapunov analysis with
a “diagonal” Lyapunov function analogous to a L2-norm.
Unfortunately, this approach does not enable proving that
the disturbances are rejected for the output in the present
case, although the closed-loop system does exhibit a stable
behavior. In [14], a “non-diagonal” Lyapunov function has
been introduced to avoid the filtering and to be able to prove
the compensation of perturbations in the output using the
L2-norm.

IV. BOUNDARY OBSERVER

The control law (26) is a full-state feedback law. Its prac-
tical implementation as such would require measurements of
the distributed states u and v, which is unrealistic in practice.
In this section, we recall the observer design from [9]
estimating states from boundary measurements and prove
that the observer still asymptotically reaches an equilibrium
profile in the presence of disturbances.

A. Observer Structure

Since the measured output is v(0, t), we consider the
following observer designed in [9]

ût +λ1(x)ûx = γ1(x)v̂− p1(x)(y(t)− v̂(0, t)) (48)
v̂t −λ2(x)v̂x = γ2(x)û− p2(x)(y(t)− v̂(0, t)) , (49)

with the following boundary conditions

û(0, t) = qv(0, t) (50)
v̂(1, t) =−kIη̂(t)+ρ û(1, t)+U(t) , (51)



where
˙̂η(t) = v(0, t)− v̂(0, t) . (52)

Defining the estimate error variables ũ(t,x) = u(t,x)− û(t,x)
and ũ(t,x) = v(t,x)− v̂(t,x), this yields the following error
system

ũt +λ1(x)ũx = γ1(x)ṽ+ p1(x)ṽ(0, t)+d1(x) (53)
ṽt −λ2(x)ṽx = γ2(x)ũ+ p2(x)ṽ(0, t)+d2(x) , (54)

with boundary conditions

ũ(0, t) = d3 (55)
ṽ(1, t) =−kIη̂(t)+ρ ũ(1, t)+d4 , (56)

where
˙̂η(t) = ṽ(t,0) . (57)

Let us consider the solution (uss,vss)
> of the ordinary differ-

ential equation (31) with the boundary conditions (32), (33).
Using (56), it follows

η̂ss =−
vss(1;d1,d2,d3)−ρuss(1;d1,d2,d3)−d4

kI
. (58)

Let us define

ŭ(x, t) = ũ(x, t)−uss(x;d1,d2,d3) (59)
v̆(x, t) = ṽ(x, t)− vss(x;d1,d2,d3) (60)

η̆(t) = η̂(t)− η̂ss . (61)

Using (31) with Z = (uss,vss)
> together with (53), (54) it is

shown that the variables ŭ and v̆ satisfy

ŭt +λ1(x)ŭx = γ1(x)v̆+ p1(x)v̆(0, t) (62)
v̆t −λ2(x)v̆x = γ2(x)ŭ+ p2(x)v̆(0, t) . (63)

Setting x = 0 in (59) and using (55), (32) we get that

ŭ(0, t) = 0 . (64)

Setting x = 1 in (60) and using (56), (58), and (61) we get
that

v̆(1, t) =−kIη̆(t)+ρ ŭ(1, t) . (65)

Using (61) and the fact that

v̆(0, t) = ṽ(0, t) , (66)

relation (57) becomes

˙̆η(0, t) = v̆(0, t) . (67)

To find the injection gain p1(x) and p2(x) we map the
system (62), (63) into the target system

α̃t +λ1(x)α̃x =
∫ x

0
g(x,ξ )α̃(ξ , t)dξ (68)

β̃t −λ2(x)β̃x = γ2(x)α̃ +
∫ x

0
h(x,ξ )α̃(ξ , t)dξ (69)

with the boundary conditions

α̃(0, t) = 0 (70)

β̃ (1, t) =−kIη̂(t) , , (71)

where

˙̂η(t) = β̃ (0, t) . (72)

To this end, we consider the backstepping transformation
introduced in [9]

ŭ(x, t) = α̃(x, t)+
∫ x

0
m1(x,ξ )β̃ (ξ , t)dξ (73)

v̆(x, t) = β̃ (x, t)+
∫ x

0
m2(x,ξ )β̃ (ξ , t)dξ . (74)

The gains p1, p2 are given by

p1(x) =−λ2(0)m1(x,0) (75)
p2(x) =−λ2(0)m2(x,0) . (76)

B. Stable Error Estimate System in presence of Disturbances

The following proposition asseses the stability properties
of the observer error system in the presence of disturbances.

Proposition 2: Consider system (53), (54) with boundary
conditions (55), (56) where η̂ satisfies (57), bounded initial
condition

(
ũ0, ṽ0, η̂0

)> ∈ E, such that kI satisfies

0 < kI <
π

2τ
, (77)

where τ is given by (16), and gains p1, p2 defined in (75)
and (76) respectively. Then, there exist two positive constants
λ and κ such that the following holds for all t ≥ 0

|(ŭ, v̆, η̆)|E ≤ κe−λ t ∣∣(ŭ0, v̆0, η̆0)∣∣
E . (78)

Proof: Using the proof of Lemma 1, Lemma 1 and
Proposition 3 from [7], and the invertibility of the backstep-
ping transformations (24), (25) as a Volterra equation of the
second kind, the result holds.

Remark 2: An adaptive observer is designed in [8] for
(n+ 1)–state heterodirectional hyperbolic systems in pres-
ence of uncertain parameters. Somehow these uncerain pa-
rameters may be seen as perturbations for the systems. The
estimates converge to the actual value of the state. Here, the
estimates do not converge to the actual value of the state
but converge to a perturbed value of the state. The proposed
method still performs output disturbance rejection, as shown
in the next section.

V. DISTURBANCE REJECTION BY THE OUTPUT
FEEDBACK CONTROL

Consider system (6), (7) with boundary conditions (8), (9)
where U has the following form

U(t) =−kIη(t)−ρ û(1, t)+
∫ x

0
Kvu(x,ξ )û(t,ξ )dξ

+
∫ x

0
Kvv(x,ξ )v̂(t,ξ )dξ , (79)

where η satisfies (27). The aim of this section is to prove
that the disturbance are rejected, in the sense of Theorem 1,
for the output v(0, t) with this control law. To prove the main
result of this paper we need an ISS result for the following
system

αt +λ1(x)αx = 0 (80)
βt −λ2(x)βx = 0 , (81)



with the boundary conditions

α(0, t) = qβ (0, t) (82)
β (1, t) =−kIη(t)+g(t) , (83)

where η satisfies (14) and g is a bounded function in
L∞ (R+). It is given in the following proposition.

Proposition 3: Consider system (80), (81) with boundary
conditions (82), (83) where η satisfies (14). Let kI be such
that

0 < kI <
π

2τ
, (84)

where τ is given by (16). Then, there exist two positive
constants κ , λ , and a class K function γ such that

|(α,β ,η)|E ≤ κe−λ t ∣∣(α0,β 0,η0)∣∣
E + γ

(
|g|L∞(0,t)

)
. (85)

Proof: If β is the solution of equation (81) with the
boundary condition (83), then the function

ρ(x, t) = β (x, t)−g(t) (86)

satisfies the equation

ρt −λ2(x)ρx =−ġ(t) , (87)

with the boundary condition

ρ(1, t) =−kIη̃(t) , (88)

where
˙̃η(t) = ρ(0, t)+g(t) . (89)

We have
dρ(1, t)

dt
=−kIρ(0, t)− kIg(t) . (90)

Moreover, it may be shown that

ρ(x, t) = ρ

(
1, t−

∫ 1

x

1
λ2(ξ )

dξ

)
+g
(

t−
∫ 1

x

1
λ2(ξ )

dξ

)
−g(t) , (91)

is the solution to (87). Hence, we get

dρ(1, t)
dt

=−kIρ(1, t− τ)− kIg(t− τ) . (92)

Using the proof of Lemma 1 and Lemma 1, Proposition 3
from [7] the result holds.
We are now ready to state the main result of the paper
assessing the output disturbance rejection by the output
feedback controller.

Theorem 2: Consider system (6), (7) with boundary con-
ditions (8), (9) where U is given by (79), η satisfies (27),
bounded initial condition

(
u0,v0,η0

)> ∈ E, such that kI
satisfies

0 < kI <
π

2τ
, (93)

where τ is given by (16). Then the following holds

lim
t→+∞

|v(t,0)|= 0 . (94)

Proof: The equilibrium Z̃ = (ûss, v̂ss)
> of the sys-

tem (48)–(50) with

v̂(1, t) =U(t) , (95)

is zero. We are still considering the equilibrium
uss (x;d1,d2,d3) and vss (x;d1,d2,d3) defined as the solution
of the ordinary differential equation (31) with the boundary
conditions (32), (33). Note that (ûss, v̂ss)

> 6= (uss,vss)
> in

general. From (9) it follows that the equilibrium value of
U , namely Uss satisfies

Uss = vss (1;d1,d2,d3)−ρuss(1;d1,d2,d3)−d4 . (96)

Using (79) and (33) with Z = (uss,vss)
>, it follows from (96)

that the equilibrium value of η , namely η ′ss, satisfies

η
′
ss =−

vss(1;d1,d2,d3)−ρuss(1;d1,d2,d3)−d4

kI
. (97)

Let us define

u(x, t) = u(x, t)−uss (x;d1,d2,d3) (98)
v(x, t) = v(x, t)− vss (x;d1,d2,d3) (99)

η(t) = η(t)−η
′
ss . (100)

Using (31) with Z = (uss,vss)
> together with (6), (7) it is

shown that the variables u and v satisfy

ut +λ1(x)ux = γ1(x)v (101)
vt −λ2(x)vx = γ2(x)u . (102)

Setting x = 0 in (98), (99), and using (8), (32), and (33) we
get that

u(0, t) = qv(0, t) . (103)

Setting x = 1 in (99) and using (9), (79), (97), (100) together
with the fact that

û(x, t) =−(ũ(x, t)−uss(x))+u(x, t) (104)
v̂(x, t) =−(ṽ(x, t)− vss(x))+ v(x, t) , (105)

we get that

v(1, t) = ρu(1, t)− kIη(t)−ρu(1, t)

+
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ

−
∫ 1

0
Kuv(1,ξ )(ũ(ξ , t)−uss (ξ ;d1,d2,d3))dξ

−
∫ 1

0
Kvv(1,ξ )(ṽ(ξ , t)− vss (ξ ;d1,d2,d3))dξ

+ρ (ũ(1, t)−uss (1;d1,d2,d3)) . (106)

Boundary condition (106) may be rewritten formally as

v(1, t) = ρu(1, t)− kIη(t)−ρu(1, t)+
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ

+
∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ −g(t) , (107)

where

g(t) =−ρ (ũ(1, t)−uss (1;d1,d2,d3))

+
∫ 1

0
Kvu(1,ξ )(ũ(ξ , t)−uss (ξ ;d1,d2,d3))dξ

+
∫ 1

0
Kvv(1,ξ )(ṽ(ξ , t)− vss (ξ ;d1,d2,d3))dξ . (108)



Using (100) and the fact that

v(0, t) = v(0, t) , (109)

relation (27) becomes

η̇(t) = v(0, t) . (110)

The function g(t) is exponentially stable by Proposition 2.
Using transformation (25) and Proposition 3, the zero equi-
librium of (101)–(103), (107), and (110) is exponentially
stable. Relationship (94) is proved analogously to the proof
for relationship (30) in Theorem 1. This concludes the proof
of Theorem 2.

VI. THE CASE OF GENERAL LINEAR SYSTEMS

For some positive integers n, m, let us denote by E ′, the
space L∞(0,1)×·· ·×L∞(0,1)︸ ︷︷ ︸

n+m

×Rm.

The methodology presented above may be generalized for
systems of higher dimension. Let us consider the case of a
general system, that is

ut +Λ
+(x)ux = Γ

++(x)u+Γ
+−(x)v+D1(x) (111)

vt −Λ
−(x)vx = Γ

−+(x)u+Γ
−−(x)v+D2(x) , (112)

with the boundary conditions

u(0, t) = Qv(0, t)+D3 (113)
v(1, t) = Ru(1, t)+U(t)+D4 , (114)

where Λ+, Λ− are diagonal positive definite matrices in Rn×n

and Rm×m respectively, Γ++, Γ+−, Γ−+, Γ++, Q, and R are
some matrices in Rn×n, Rn×m, Rm×n, Rm×m, Rn×m, and Rm×n

respectively. The perturbations D1, D2, D3, and D4 are some
vectors in Rn, Rm, Rn, and Rm respectively.

By adding integrators in the target system introduced
in [13], and using the backstepping transformations proposed
in the latter reference, the following theorem may be proved.

Theorem 3: Consider system (111), (112) with
bounded initial condition

(
u,v,η0

)
∈ E ′, boundary

condition (113), (114), with

U(t) =−KIη(t)−Ru(1, t)

+
∫ 1

0
[Kvu(1,ξ )u(ξ , t)+Kvv(1,ξ )v(ξ , t)]dξ , (115)

where K ∈Rn×n, L ∈Rm×m are the kernels of the backstep-
ping transformations (see [13]), and

η̇(t) = (v1(0, t), . . . ,vm(0, t))
> (116)

KI =

 k1
I 0
0

. . .
km

I

 , (117)

such that
0 < ki

I <
π

2τi
, i = 1, . . . ,m, (118)

with

τi =
∫ 1

0

1
µi(ξ )

dξ , (119)

where the µi(·), i = 1, ...,m are the diagonal entries of Λ−(·).
Then, for all i = 1, ...,m, the following holds

lim
t→+∞

|vi(0, t)|= 0 . (120)

Proof: [Sketch of proof] We only briefly sketch the
proof due to lack of space, and the fact that it follows the
same steps as the proof of Theorem 2. The backstepping
transformation introduced in [13] maps the unperturbed
system to the following target system

αt +Λ
+(x)αx = Γ

++(x)u+Γ
+−(x)v+

∫ x

0
C(x,ξ )α(ξ )dξ

+
∫ x

0
C−(x,ξ )β (ξ )dξ (121)

βt −Λ
−(x)βx = G(x)β (t,0) (122)

with the boundary conditions

α(t,0) = Qβ (t,0) (123)
β (t,1) =−KIη(t) (124)

and

η̇(t) = β (t,0) , (125)

where C+ and C− are L∞ functions on a triangular do-
main T ⊂ R2 and G is a lower triangular matrix with zero
diagonal, i.e.

G(x) =


0 · · · · · · 0

g2,1(x)
. . . . . .

...
...

. . . . . .
...

gm,1 · · · gm,m−1(x) 0

 . (126)

The equilibrium (α,β ,η)> = (0,0,0)> of this system is
exponentially stable. Indeed, given the structure of G(·), the
first component of β satisfies

dβ1(t,1)
dt

+ k1
I β1(t− τ1,1) = 0 , (127)

which is exponentially stable provided k1
I satisfies (118) as

shown in the proof of Lemma 1. Then, the second component
of β satisfies

dβ2(t,1)
dt

+ k2
I β2(t− τ1,1) = g21β1(t,0) . (128)

Considering the right-hand-side term of (128) as an ex-
ponentially decaying input, and noticing that the unforced
system is exponentially stable, thus ISS, yields that β2 also
exponentially converges to zero. By induction, β exponen-
tially converges to zero, and so does α using a similar ISS
argument. The rest of the proof follows the same steps as in
the case of two equations.
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Fig. 1. Time evolution of the controlled output v(t,0).

VII. NUMERICAL SIMULATIONS

In this section, we illustrate our result with numerical
simulations. We consider the following system parameters

Λ
+ =

(
1 0
0 2

)
, Λ

− =

(
2 0
0 1

)
, (129)

Γ
++ =

(
0 0
1 −0.5

)
, Γ

+− =

(
2 0
−2 3

)
, (130)

Γ
−+ =

(
2 0
1 1

)
, Γ

−− =

(
1 0
−0.5 1

)
, (131)

Q0 =

(
0.1 0
1 1.1

)
, R1 =

(
0.5 0
2 −0.5

)
. (132)

One can readily check that the subsystem (u1,v1)
> cannot

be stabilized using static output feedback. More precisely, as
proved in [3], there does not exist an L2 Control Lyapunov
Function. This justifies the use of backstepping to asymptot-
ically stabilize the unperturbed system. Besides, we add the
following disturbances

d1(x) =
(

sin(2πx)
cos(2πx)

)
, d2(x) =

(
−0.5+ cos(2πx)

x

)
,

(133)

d3 =
(
−2 −0.5

)>
, d4 =

(
1 2

)>
. (134)

We implement the full-state control law (115) with the
following parameters

k1
I =

1
3

π

2τ1
, k1

I =
1
6

π

2τ2
. (135)

The response in boundary outputs v(t,0) and u(t,1) are de-
picted on Figures 1 and 2, respectively. As expected from the
theory, the outputs v(t,0) converge to zero, whereas u(t,1)
converges to its perturbed steady-state value, which is dif-
ferent from zero.

VIII. CONCLUSIONS
We have presented a simple way to reject unknown

constant output disturbances when backstepping is used to
stabilize a system. The proposed method guarantees stability
of the closed-loop system in the L∞ norm. In future works,
we plan to study the robustness of the proposed method to
uncertainties on model parameters.
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Fig. 2. Time evolution of u(t,1).
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