
HAL Id: hal-01358703
https://hal.science/hal-01358703

Submitted on 1 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validating Numerical Semidefinite Programming Solvers
for Polynomial Invariants

Pierre Roux, Yuen-Lam Voronin, Sriram Sankaranarayanan

To cite this version:
Pierre Roux, Yuen-Lam Voronin, Sriram Sankaranarayanan. Validating Numerical Semidefinite Pro-
gramming Solvers for Polynomial Invariants. 23rd Static Analysis Symposium (SAS), Sep 2016, Ed-
inburgh, United Kingdom. �10.1007/978-3-662-53413-7_21�. �hal-01358703�

https://hal.science/hal-01358703
https://hal.archives-ouvertes.fr


Validating Numerical Semidefinite Programming
Solvers for Polynomial Invariants.

Pierre Roux1, Yuen-Lam Voronin2, and Sriram Sankaranarayanan2

1 ONERA – The French Aerospace Lab, Toulouse, FRANCE
2 University of Colorado, Boulder, CO, USA

Abstract. Semidefinite programming (SDP) solvers are increasingly used as
primitives in many program verification tasks to synthesize and verify polyno-
mial invariants for a variety of systems including programs, hybrid systems and
stochastic models. On one hand, they provide a tractable alternative to reasoning
about semi-algebraic constraints. However, the results are often unreliable due to
“numerical issues” that include a large number of reasons such as floating-point
errors, ill-conditioned problems, failure of strict feasibility, and more generally,
the specifics of the algorithms used to solve SDPs. These issues influence whether
the final numerical results are trustworthy or not. In this paper, we briefly survey
the emerging use of SDP solvers in the static analysis community. We report on the
perils of using SDP solvers for common invariant synthesis tasks, characterizing
the common failures that can lead to unreliable answers. Next, we demonstrate ex-
isting tools for guaranteed semidefinite programming that often prove inadequate
to our needs. Finally, we present a solution for verified semidefinite programming
that can be used to check the reliability of the solution output by the solver and a
padding procedure that can check the presence of a feasible nearby solution to the
one output by the solver. We report on some successful preliminary experiments
involving our padding procedure.

1 Introduction

Program analysis techniques using abstract interpretation, especially numerical domain
program analysis, rely fundamentally on the ability to reason about constraints expressed
in a suitable logic that stems from the abstract domain. Typical reasoning tasks include
the problem of checking satisfiability of an assertion in the logic used in emptiness
and inclusion checks, and characterizing elements of the cone of consequences of an
assertion used to compute the transfer function and join operations [16]. The process of
using basic solver primitives has led to many constraint-based approaches to synthesizing
and verifying invariants for programs [2,15,25,26,27,52]. Initial approaches that focused
on linear systems [25,26,52] have been generalized to address nonlinear (polynomial)
systems [2,4,28,42]. Other extensions to hybrid systems and stochastic systems have
also been proposed [12,17,47].

However, extensions to polynomial systems necessarily face the challenge of reason-
ing about polynomial inequality constraints. While the problem of checking satisfiability
of these constraints is well-studied, precise solutions to this problem are as yet intractable
for large problems. Likewise, computing the cone of consequences precisely is also
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prohibitively expensive in practice, requiring quantifier elimination. A more tractable
alternative uses a convex relaxation from the given polynomial system to a semidefinite
programming problem (SDP) using the sum of squares (SOS) relaxation [36,43,55]. Such
a relaxation guarantees soundness when used in invariant checking/synthesis tasks, and
has been shown to have nice theoretical guarantees. However, in practice, the approach
requires us to use SDP solvers. It is well-known that precise solutions of SDPs is a hard
and open research question. For instance, there are SDPs which have a feasible solution
but no rational feasible solutions. Therefore, most solvers seek an approximate solution.
At the same time, it is well known (but not well documented) that numerical SDP solvers
are also hard to use in practice. The presence of “numerical issues” leads to unreliable
answers from the SDP solvers, that in turn lead to unsound results when employed in
program analysis tasks.

In this paper, we characterize numerical issues into many types. At one end of the
spectrum, we have issues that arise from floating-point errors and approximate answers,
since numerical solvers seldom reach a true optimal solution. At the other end, certain
problems are not well posed, depending on the nature of the solution technique used.
One common reason involves the failure of strict feasibility. Using actual examples from
the literature, we show how the answers from popular numerical SDP solvers can be
wrong and potentially mislead even a careful user who pays due attention to the various
errors reported by the SDP solver.

Finally, we address some of the numerical problems raised. We first present a sound
verification procedure that can check the answer from the solver and help us decide
whether the answer is qualitatively correct. Next, we provide a padding procedure that
helps reformulate a given problem into a stricter version so that if an approximate,
floating-point solver can find a reliable answer to the stricter version, then we conclude
feasibility of the original version. We integrate our framework into a polynomial invariant
synthesis/verification task, showing how our ideas can successfully address numerical
issues arising from the solver.

2 Motivating Examples

In this section, we illustrate through two examples the scenario where numerical SDPs
give seemingly sensible solutions to simple invariant generation problems, and yet the
generated invariants are not sound.

Consider the program in Fig. 1. Does there exist an inductive invariant3 in the
form

{
(x1, x2) ∈ R2

∣∣ p(x1, x2) ≥ 0
}

for some polynomial p? A tractable sufficient
condition that guarantees this can be formulated using the SOS optimization approach
(see Section 3), resulting in an SDP instance that can be solved by numerical solvers. The
widely used SDPT3 [59] solver reports a solution. Although all the DIMACS errors [53]
are less than 10−8, not raising any suspicion, we found traces of the program that violate
this purported invariant (see Fig. 1).

As another example, we consider a program from ADJÉ et al. [1] and the “invariant”
they offer, generated with numerical solvers (Fig. 2). Note that the purported invariant is

3 In the remainder of this paper, the word “invariant” is used for inductive invariant.
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(x1, x2)∈
{
x1, x2

∣∣ x2
1 + x2

2 ≤ 1.52
}

while (1) { // Find Inv. p(x1, x2) ≥ 0
x1 = x1 * x2;
x2 = -x1;

}

p(x1, x2) :

(
1 + 2.46x21 + 2.46x22 − 5× 10−7x41
−2.46x21x22 − 5× 10−7x42

)
−2 0 2

−2

0

2

Fig. 1: (Left) An example program, and “loop invariant” p(x1, x2) ≥ 0 synthesized
using numerical solvers. (Right) The claimed “invariant” and dashed lines showing
violations.

(x1, x2)∈ [0.9, 1.1]× [0, 0.2]
while (1) {
pre_x1 = x1; pre_x2 = x2;
if (x1ˆ2 + x2ˆ2 <= 1) {
x1 = pre_x1ˆ2 + pre_x2ˆ3;
x2 = pre_x1ˆ3 + pre_x2ˆ2;

} else {
x1 = 0.5 * pre_x1ˆ3

+ 0.4 * pre_x2ˆ2;
x2 = -0.6 * pre_x1ˆ2

+ 0.3 * pre_x2ˆ2;
}

}

2.510902467 + 0.0050x1 + 0.0148x2 − 3.0998x
2
1

+ 0.8037x
3
2 + 3.0297x

3
1 − 2.5924x

2
2

− 1.5266x1x2 + 1.9133x
2
1x2 + 1.8122x1x

2
2 − 1.6042x

4
1

− 0.0512x
3
1x2 + 4.4430x

2
1x

2
2 + 1.8926x1x

3
2 − 0.5464x

4
2

+ 0.2084x
5
1 − 0.5866x

4
1x2 − 2.2410x

3
1x

2
2 − 1.5714x

2
1x

3
2

+ 0.0890x1x
4
2 + 0.9656x

5
2 − 0.0098x

6
1 + 0.0320x

5
1x2

+ 0.0232x
4
1x

2
2 − 0.2660x

3
1x

3
2 − 0.7746x

2
1x

4
2

− 0.9200x1x
5
2 − 0.6411x

6
2 ≥ 0

Fig. 2: (Left) An example program taken from from ADJÉ et al. [1] (Example 4).
(Right) Purported invariant at loop head synthesized using SDP solvers [1].

−1 0 1 2 3 4

−1

0

1

−1 0 1

−1

0

1

Fig. 3: (Left) The candidate invariant from Fig. 2 with arrows showing concrete tran-
sitions. The arrows leaving it are counterexamples to its inductiveness. (Right) The
invariant of degree 8 whose soundness is proved using the approach in this paper.
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indeed not inductive: one can find points in it whose image after one iteration of the loop
body exits the invariant (Fig. 3). Fig. 3 also depicts an actual invariant, proved using the
method in this paper.

3 Sum of Squares (SOS) and Semidefinite Programs (SDP)

In this section, we provide the background for sum of squares (SOS) optimization from
the perspective of proving entailments for program analysis (invariant synthesis/verifica-
tion) tasks. We then trace the steps along which SOS optimization problems are relaxed
to semidefinite programs (SDP).

Let R denote the set of real numbers and x : (x1, . . . , xn) denote a vector of real-
valued variables. The ring of multivariate real polynomials over x is denoted by R[x].
The degree of any polynomial p(x) ∈ R[x] is denoted by deg(p). A template polynomial
is of the form p(c,x) :

∑s
j=1 cj pj(x), where p1, . . . , ps are basis polynomials and

c : (c1, . . . , cs) is a placeholder for parameters serving as scalar multiples of the basis
polynomials. A generic template polynomial of degree d > 0 is formed by choosing all
monomials of degree up to d as the basis polynomials, and has s =

(
n+d
d

)
parameters.

3.1 Semi-algebraic Assertions and Entailment Problems

A semi-algebraic assertion ϕ is a finite conjunction of polynomial inequalities:

ϕ : p1(x) ≥ 0 ∧ · · · ∧ pm(x) ≥ 0.

It denotes a corresponding semi-algebraic set JϕK : {x ∈ Rn | x |= ϕ}. As such, semi-
algebraic assertions subsume useful abstract domains such as polyhedra and ellipsoids.
They also represent a rich class of constraints with a decidable entailment checking
problem [7]. We define two classes of problems involving semi-algebraic sets that are
commonly used as primitives.

Definition 1 (Entailment Checking). Given two semi-algebraic assertions ϕ and ψ
over x, check if ϕ |= ψ, i.e., for all x ∈ Rn, if x |= ϕ, then x |= ψ.

Definition 2 (Parametric Entailment). Let c : (c1, . . . , cs) represent parameters. The
input to a parametric entailment problem consists of k pairs (ϕi, pi)ki=1, wherein ϕi is a
semi-algebraic assertion and pi(c,x) is a template polynomial. The goal is to compute
a value c such that all the entailments hold:

(ϕ1 |= p1(c,x) ≥ 0) ∧ · · · ∧ (ϕk |= pk(c,x) ≥ 0) .

The entailment checking and its analog of parametric entailment checking are funda-
mental primitives that we will use for synthesizing and checking invariants of programs.
The example below illustrates the application of these primitives.
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(x1, x2)∈ I :
{
(x1, x2)

∣∣ x2
1 ≤ 1 ∧ x2

2 ≤ 1
}

while (1) {
pre_x1 = x1; pre_x2 = x2;
if (x1 >= x2) {
x1 = 0.687 * pre_x1 + 0.558 * pre_x2

- 0.0001 * pre_x1 * pre_x2;
x2 = -0.292 * pre_x1 + 0.773 * pre_x2;

} else {
x1 = 0.369 * pre_x1 + 0.532 * pre_x2

- 0.0001 * pre_x1ˆ2;
x2 = -1.27 * pre_x1 + 0.12 * pre_x2

- 0.0001 * prex_x1 * pre_x2;
}

} −2 −1 0 1 2
−2

−1

0

1

2

Fig. 4: (Left) An example program. (Right) Invariant Jp(x1, x2) ≥ 0K, along with exe-
cutions that start inside the initial set I (square).

Invariant checking: Consider the program in Fig. 4. We wish to prove that all executions
remain inside a safe set S : {(x1, x2) | |x1| ≤ 2 ∧ |x2| ≤ 2}. To prove this, we consider
an inductive invariant {(x1, x2) | p(x1, x2) ≥ 0}, where

p(x1, x2) : 37− x22 + x31 − 2x21x2 + 2x32 − 12x41 − 10x21x
2
2 − 6x1x

3
2 − 6x42. (1)

Fig. 4 shows the invariant region p(x1, x2) ≥ 0. To show that it is indeed an invariant
that establishes S as a safe set, we check that the following conditions hold:

(a) Initial condition: 1− x21 ≥ 0 ∧ 1− x22 ≥ 0 |= p(x1, x2) ≥ 0,
(b) Consecution (loop) conditions: Let τ1(x1, x2) : (0.687x1+0.558x2−0.0001x1x2,
−0.292x1 + 0.773x2) denote the transition enabled by the condition x1 ≥ x2, and
τ2(x1, x2) : (0.369x1 + 0.532x2 − 0.0001x21, −1.27x1 + 0.12x2 − 0.0001x1x2)
denote the transition enabled by the condition x1 < x2. We require two conditions,
corresponding to the two transitions in the loop:

(i) x1 − x2 ≥ 0 ∧ p(x1, x2) ≥ 0 |= p̂1 ≥ 0, where p̂1 = p ◦ τ1, and
(ii) x2 − x1 ≥ 0 ∧ p(x1, x2) ≥ 0 |= p̂2 ≥ 0, where p̂2 = p ◦ τ2.

(c) Safety conditions: p(x1, x2) ≥ 0 |= −2 ≤ x1 ≤ 2 ∧ −2 ≤ x2 ≤ 2.

The invariant checking problem is then a series of polynomial entailment checking.

Invariant synthesis: The invariant synthesis problem requires us to synthesize polynomi-
als that satisfy some entailment conditions, such as p(x1, x2) in (1) satisfying the initial,
loop and safety conditions. To do so, we parameterize a template polynomial as follows:

p(c,x) :

(
c1 + c2x1 + c3x2 + c4x

2
1 + c5x1x2 + c6x

2
2 + c7x

3
1 + c8x1x

2
2+

c9x
2
1x2 + c10x

3
2 + c11x

4
1 + c12x

3
1x2 + c13x

2
1x

2
2 + c14x1x

3
2 + c15x

4
2

)
. (2)

We then search for values of c = (c1, . . . , c15) such that the following entailments hold:

(a) Initial condition: 1− x21 ≥ 0 ∧ 1− x22 ≥ 0 |= p(c,x) ≥ 0,



6 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

(b) Loop conditions: The loop condition for the transition τ1 is (x1−x2 ≥ 0 ∧ p(c,x) ≥
0 |= p̂1(c,x) ≥ 0), where p̂1 = p ◦ τ1. However, we note that in this condition, a
parametric polynomial inequality appears on the antecedent side. This leads to hard
bilinear optimization problems that are beyond the scope of this paper (see [51] for
a discussion of this issue). We impose a stronger condition on p that states that p
must be non-decreasing for each loop iteration4:

(i) x1 − x2 ≥ 0 |= p̂1(c,x) ≥ p(c,x), and
(ii) x2 − x1 ≥ 0 |= p̂2(c,x) ≥ p(c,x), where p̂2 = p ◦ τ2.

The invariant synthesis problem is thus reduced to a parametric entailment problem.

3.2 Solving Entailment Problems

There are numerous approaches to solving semi-algebraic entailment checking and
parametric entailment problems. We classify these into four broad classes: (a) quantifier
elimination for the theory of polynomial inequalities, (b) interval arithmetic with branch-
and-bound, (c) linear programming relaxations, and (d) sum of squares relaxations that
will be the focus of our exposition.

Exact Approaches: It is well-known that the logical theory of polynomial inequalities
admits effective decision procedures and a quantifier elimination procedure, originally
discovered by TARSKI and further developed by COLLINS, HONG, WEISPFENNING
and others [7,13,14,57,61]. These procedures attempt to solve the entailment problem
ϕ |= ψ by checking the unsatisfiability of the assertion ϕ(x) ∧ (¬ψ(x)). This problem
is known to be NP-hard in theory, and hard to solve, in practice. Typical sizes of problems
that can be tackled involve polynomials with ∼ 5 variables, and degrees ∼ 3 [19].

Likewise, an exact approach for the parametric entailment problem requires to
perform a quantifier elimination of the form:

(∀ x)
(
ϕ1(x) ⇒ p1(c,x) ≥ 0 ∧ · · · ∧ ϕk(x) ⇒ pk(c,x) ≥ 0

)
.

Doing so leads to an assertion that can be expressed purely in terms of c. If this assertion
is satisfiable, a solution c = c∗ can be extracted.

Branch-and-Bound (BnB) Approaches: They work over states x that are a priori
restricted to a compact set X . They proceed by subdividing X into finitely many in-
terval (hyper-rectangular) cells. Inside each interval, the entailment is evaluated using
interval arithmetic [23,24] or a branch-and-bound scheme using linear programming
relaxation of the constraints [8]. BnB approaches can be used to check whether an entail-
ment ϕ |= ψ holds by checking the unsatisfiability of the assertion ϕ(x) ∧ (¬ψ(x)).
They can conclude soundly that the entailment holds or even find a witness x such that
ϕ(x) ∧ (¬ψ(x)) is satisfied. Unfortunately, due to computational limitations, these
techniques may also terminate without an answer. Recent work on delta-satisfiability
procedures have carefully analyzed this condition to conclude that a “nearby” formula is

4 Control theorists call (opposite of) such functions Lyapunov functions [22].
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satisfiable [24]. BnB approaches can extend beyond polynomial programs and invariants.
Currently, BnB approaches are restricted to solving entailment problems. Their applica-
tion to solving parametric entailment problems remains an open challenge. Part of the
challenge involves the optimal subdivision of X to search for solutions c.

Linear Programming (LP) Relaxations: Linear programming relaxations have been
considered for checking polynomial entailment and solving parametric entailment prob-
lems (see BEN SASSI et al. for details and further references [8]). LP approaches are
primarily based on so-called Handelman relaxation and reformulation linearization.
Given an entailment problem with p1, . . . , pk as antecedents. We generate “valid in-
equalities” that are consequences of the original antecedents. This is achieved by simply
multiplying the antecedents together, enriching the set of possible antecedents. This
step is inspired by the Handelman positivstellensatz [29]. Next, we introduce fresh
variables corresponding to each monomial term and turn our polynomial entailment
problem into a linear entailment problem that can be checked using solvers. This step
is called reformulation linearization technique (RLT) [54]. BEN SASSI et al. show that
the generation of linear constraints can be performed in the Bernstein polynomial ba-
sis [9,21], rather than the monomial basis to obtain a larger set of valid inequalities.
The LP approach has the main advantage that Simplex solvers can be used with ex-
act arithmetic to completely avoid numerical issues. The recent work of MARÉCHAL
et al. use this approach and generate machine checkable proofs of polynomial entail-
ments [38]. However, LP relaxations yield a “weak” proof system that requires higher
degree terms or a BnB decomposition of the domain, to prove “simple consequences”
such as−1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 |= (x2+y2 ≥ 0) [8]. Interestingly, the Handelman
relaxation and RLT are implicit in the polyhedral abstract domain for computing semi-
algebraic invariants proposed by BAGNARA et al. [6]. A related approach of diagonal
SOS (DSOS) has been proposed by ALI AHMADI and MAJUMDAR [3]. Their approach
is based on the SOS relaxation wherein instead of reducing to a SDP, they reduce to
an LP by imposing the stronger condition of diagonal dominance on the associated
matrix rather than the semi-definiteness condition that will be described subsequently
in this section. A full comparison of DSOS with SOS relaxations for program analysis
problems is currently open.

Positivstellensatz/Sum of Squares (SOS) Relaxations: The SOS relaxation [36,43] is
an incomplete but efficient way to numerically solve polynomial entailment problems.

Definition 3 (SOS Polynomial). A polynomial p ∈ R[x] is said to be SOS if there exist
polynomials hi ∈ R[x] such that for all x, p(x) =

∑
i h

2
i (x).

Although not all nonnegative polynomials are SOS, being SOS is a sufficient condition
to be nonnegative.

Example 1. Consider p : 2x41 + 2x31x2 − x21x22 + 5x42. Since p = h21 + h22, where h1 :
1√
2

(
2x21 + x1x2 − 3x22

)
and h2 : 1√

2

(
3x1x2 + x22

)
, the polynomial p is nonnegative,

i.e., p(x1, x2) ≥ 0 holds for all x1, x2 ∈ R2.
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Now consider a polynomial entailment problem of the form:

p1(x) ≥ 0 ∧ · · · ∧ pk(x) ≥ 0︸ ︷︷ ︸
ϕ

|= p(x) ≥ 0. (3)

Our goal is to write p as a combination of p1, . . . , pk in the following form:

p = σ0 + σ1 p1 + · · ·+ σk pk (4)

such that σ0, . . . , σk are SOS polynomials over x. Let K denote the semi-algebraic
set

r∧k
j=1 pj ≥ 0

z
, let R(K) denote the cone of consequences of K, i.e., R(K) =

{p(x) | ϕ |= p(x) ≥ 0} and M(K) denote all polynomials expressible in the form (4):

M(K) =
{
p(x)

∣∣∣ p = σ0 +
∑k
j=1 σj pj , σi SOS

}
.

Theorem 1 (Putinar’s Positivstellensatz). For all K, M(K) ⊆ R(K).
Conversely, if K is compact and M(K) contains a polynomial of the form s(x) =∑n

i=1 x
2
i − L for some constant L > 0, then M(K) = R(K).

Proof. We will prove the “easy” direction that M(K) ⊆ R(K). Let p ∈M(K). There
exist SOS polynomials σ0, . . . , σk such that p = σ0 +

∑k
i=1 σipi. Let x be such that

pi(x) ≥ 0 for all i ∈ [1, k]. We have that σi(x) ≥ 0 since each σi is a SOS polynomial.
Therefore, we conclude that p(x) = σ0(x) +

∑k
i=1 σi(x)pi(x) ≥ 0.

For the converse, we refer the reader to Putinar’s work [48]. ut

Thus, a polynomial entailment problem of the form (3) is relaxed to an SOS problem:

find : polynomials σ0, . . . , σk ∈ Rd[x]
s.t. p = σ0 +

∑k
i=1 σipi,

σ0, . . . , σk are SOS.
(5)

First, we choose a degree limit d > 0 (d must be an even number because all positive
polynomials have even maximum degree), and select templates σ0(c(0),x), . . . , σk(c(k),x)
with unknowns c(0), . . . , c(k). We then require that p be equal to a polynomial combi-
nation of p1, . . . , pk with “multipliers” σ0, . . . , σk as shown above. This yields a set
of linear equations involving c(0), . . . , c(k) and the coefficients of p, obtained by com-
paring both sides monomial by monomial and setting their coefficients to be the same.
Finally, we require σ0, . . . , σk to be SOS. This will be tackled through a reduction to a
semidefinite programming (SDP) problem, as will be explained subsequently.

Example 2. Consider the initial condition check for the program in Fig. 4: p1(x1, x2) ≥
0 ∧ p2(x1, x2) ≥ 0 |= p(x1, x2) ≥ 0 with pi(x1, x2) = 1 − x2i and p given in (1).
Our goal here is to find polynomials σ0, σ1, σ2 such that p = σ0 + σ1 p1 + σ2 p2. For
simplicity, let us write σ0 = c1 + c2x1 + · · · + c15x

4
2, σ1 = d1 + · · · + d15x

4
2 and
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σ2 = e1 + · · ·+ e15x
4
2. We obtain equality constraints by equating terms corresponding

to the same monomial on both sides:

c1 + d1 + e1 = 37 (comparing constant terms), . . . ,−e15 = 0 (comparing x62 ).

The SOS problem seeks to satisfy these equalities, and additionally make σ0, σ1, σ2
SOS. Solving this as an SDP problem (as will be explained below), we obtain: σ1 ≈ 11−
0.13x1+1.5x2+24x21−3x1x2+8.2x22 and σ2 ≈ 8.8+0.63x1−1.4x2+6.5x21+1.6x1x2+18x22.

SOS formulation of parametric entailment problems. Consider now a parametric entail-
ment problem of the form (ϕj |= pj(c,x) ≥ 0) for j = 1, . . . ,K involving parameters
c. Let us write ϕj : pj1(x) ≥ 0 ∧ · · · ∧ pjl(x) ≥ 0. This is reduced to a sum of
squares problem:

find : polynomials σj,0, . . . , σj,jl ∈ Rd[x], j ∈ {1, . . . ,K}
s.t. pj = σj,0 +

∑k
i=1 σj,ipji , j ∈ {1, . . . ,K} ,

σj,0, . . . , σj,jl are SOS, j ∈ {1, . . . ,K}.
(6)

The unknowns include the coefficients c involved in each pj(c,x) for the original
parametric entailment and the coefficients c(j,i) corresponding to SOS multipliers σj,i.

Next, we provide a reduction from SOS problems to a well known class of opti-
mization problems: semidefinite programs (SDPs). Any polynomial p of degree 2d (a
nonnegative polynomial is necessarily of even degree) can be written as a quadratic form
in the vector z of all monomials of degree less or equal d:

p(x) = zTQz, (7)

where z =
[
1, x1, . . . , xn, x1x2, . . . , x

d
n

]T
and Q is a constant symmetric matrix.

Example 3. Consider p(x1, x2) : 2x41 + 2x31x2 − x21x22 + 5x42. To satisfy the equality

p(x1, x2) =

 x21
x22
x1x2

T q11 q12 q13q12 q22 q23
q13 q23 q33

 x21
x22
x1x2


= q11x

4
1 + 2q13x

3
1x2 + (q33 + 2q12)x

2
1x

2
2 + 2q23x1x

3
2 + q22x

4
2,

the equalities q11 = 2, 2q13 = 2, q33 + 2q12 = −1, 2q23 = 0 and q22 = 5 must hold.
Two possible examples for the matrix Q are shown below:

Q =

2 1 1
1 5 0
1 0 −3

 , Q′ =

 2 −3 1
−3 5 0
1 0 5

 .
The polynomial p is then SOS if and only if there exists a positive semidefinite

matrix Q satisfying (7). A matrix Q is said to be positive semidefinite, denoted by Q � 0,
when for all vectors y, yTQy ≥ 0. A matrix Q is said to be positive definite, denoted by
Q � 0, when for all nonzero vectors y, yTQy > 0.
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Example 4. In Example 3, the first matrixQ is not positive semidefinite (for y : [0, 0, 1]
T ,

yTQy = −3). However, the second matrixQ′ is positive semidefinite as it can be written
Q′ = LTL with

L =
1√
2

[
2 −3 1
0 1 3

]
(then, for all y, yTQy = (Ly)T (Ly) = ‖Ly‖22 ≥ 0). This gives the SOS decomposition
of Example 1: p(x1, x2) = 1

2 (2x
2
1 + x1x2 − 3x22)

2 + 1
2 (3x1x2 + x22)

2.

As a result, SOS programming problems can be written as semidefinite optimization
problems involving matrices. Let z be a vector of monomials over x chosen so that we
may write each polynomial σi(c(i),x) as a quadratic form σi(c

(i),x) = zTCi z. Thus,
the SOS programming problems (5) and (6) can be written down as an SDP problem:

find : c, C0, . . . , Ck
s.t. aTi c+

∑k
j=0 tr(Ai,jCj) = bi, i = 1, . . . ,m,

Cj � 0, j = 0, . . . , k.

(8)

wherein the vector c encodes the parameters c(i) of (5) (or c and c(j,i) of (6)) and
the Ai,j and Cj are symmetric matrices. Note that the expression tr(XY ) equals∑n
i=1

∑n
j=1(X)i,j(Y )i,j for n× n matrices X,Y when XT = X .

Example 5. We check whether the entailment (p1(x, y) : x − y ≥ 0 |= p(x, y) :
x−y+2x2−2y2+x3+x2y−xy2−y3 ≥ 0) is true using an SOS relaxation: we look
for degree 2 SOS polynomials σ0, σ1 ∈ R[x, y] such that p = σ0+σ1 p1. In other words,
we seek coefficients c(0) : (c1, . . . , c6) and c(1) : (c7, . . . , c12) such that σ0(x, y) :
c1+c2x+c3y+c4x

2+c5xy+c6y
2 and σ1(x, y) : c7+c8x+c9y+c10x2+c11xy+c12y2

are SOS and the coefficients of p and σ0 + σ1 p1 coincide, i.e., with z : [1, x, y]T ,

comparing
coeffs of
σ0 + σ1 p1
and p

:



const. term c1 = 0,

coeff. of x c2 + c7 = 1,

coeff. of y c3 − c7 = −1,
coeff. of x2 c4 + c8 = 2,

coeff. of xy c5 − c8 + c9 = 0,

coeff. of y2 c6 − c9 = −2,
coeff. of x3 c10 = 1,

coeff. of x2y c11 − c10 = 1,

coeff. of xy2 c12 − c11 = −1,
coeff. of y3 −c12 = −1,

comparing
coefficients
of σ0 and
zTC0 z

same for σ1 and zTC1 z.

:


c1 = (C0)1,1,

c2 = (C0)1,2 + (C0)2,1,

c3 = (C0)1,3 + (C0)3,1,

c4 = (C0)2,2,

c5 = (C0)2,3 + (C0)3,2,

c6 = (C0)3,3,

(9)

Each of the m = 22 equality constraints in (9) is then encoded as in (8). For instance, the
second constraint on σ0 is encoded by the vector a12 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

and the matrices A12,0 =

[
0 −1 0
−1 0 0
0 0 0

]
and A12,1 = 0.

Thus, we have eliminated the formal variables x from the problem and reduced
it to finding matrices that satisfy some linear equality constraints, and are positive
semidefinite. In fact, moving one step further, we write a single unknown matrix C in
the block diagonal form: C = Diag(c+1 , c

−
1 , . . . , c

+
s , c
−
s , C0, C1, . . . , Ck), encoding ci

as c+i − c
−
i with c+i , c

−
i ∈ R+. This allows us to write (8) as:

find : C s.t. tr(AiC) = bi, i = 1, . . . ,m,
C � 0.

(10)
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Problems that follow this form, or equivalently (8), are called semidefinite programming
problems (SDP). They form a well known class of convex optimization problems that
generalize linear programs and can be solved numerically even for large5 problem
matrices C. Numerical solvers also allow to optimize a linear objective function of the
coefficients of C. Finally, we define the notion of strict feasibility.

Definition 4 (Strict Feasibility). The SDP in (10) is said to be strictly feasible when
there exists a solution to the problem wherein the matrix C is positive definite.

If every feasible solution C to the problem (10) is positive semidefinite but not positive
definite (in other words, the matrix has zero eigenvalues, or alternatively is rank deficient),
the problem is said to fail strictly feasibility.

Remark 1. For a strictly feasible problem, there exist solutions C such that any C̃ in
a neighborhood from C and satisfying the equality constraints tr(AiC̃) = bi is also a
solution. In contrary, problems that are not strictly feasible are also said to have an empty
(relative) interior because, for any solution C, there exist C̃ arbitrarily close from C that
satisfy the equality constraints but are not solutions. This is illustrated on Fig 5.

{M |M � 0}

{ C̃ }C

{M | tr(AiM) = bi}

{M |M � 0}

CC̃

{M | tr(AiM) = bi}

Fig. 5: The line represents the equality constraints tr(AiC) = bi and the shaded area the
matrices C � 0. The set of solutions is the intersection of the line and the shaded area.
(Left) A strictly feasible SDP problem. (Right) An empty interior problem.

4 Verified SDPs

In Section 3, we laid out a procedure for formulating invariant checking and synthesis as
a general SOS feasibility problem, which in turn is an SDP feasibility problem. There
are SDPs with rational problem data whose solutions are irrational [58]. However, under
some regularity conditions, SDP problems can theoretically be solved efficiently up to
arbitrarily small error tolerance (see e.g., [62, Ch. 8-10]). In practice, many numerical
solvers are available to solve SDP instances satisfactorily (see [5, Part III]). Currently,
the default choice for solving SDPs are specialized second order methods (i.e., using
second order derivatives) called interior point methods (IPMs)6.

5 Typically, matrices Cj can be of size n× n for n up to a few hundreds.
6 There also exist first order methods handling larger problems but with less accurate solutions.
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We discuss in Section 4.1 issues leading to inaccuracy or poor solution quality in SDP
solving via IPMs. Then in Section 4.2, we consider solutions to guarantee soundness.

4.1 Sources of Solution Inaccuracy in Solving SDPs
Before we discuss ways to ensure soundness of solutions to the invariant checking and
synthesis problem generated by SDP solvers, we first focus on a few issues that could
possibly make an SDP solution inaccurate, leading to potential unsoundness. We will
concentrate on SDP solutions obtained from general IPMs.

How do IPMs Work? The convergence of a general IPM assumes strict feasibility
(Def. 4). Using positive definite matrices as initial points, a general IPM repeatedly
solves a perturbed linearization of the Karush-Kuhn-Tucker optimality conditions for a
search direction, and moves along that search direction with a fractional step size that
maintains the positive definiteness of the iterates. (See e.g. [58,62].)

In the following, we discuss the four potential issues that can cause solution inaccu-
racy when a general IPM is used for obtaining SDP solutions: (1) inexact termination,
(2) failure of strict feasibility, (3) ill-conditioning and (4) floating-point errors.

Inexact termination. The first source of inaccuracy stems from the fact that IPMs usually
do not converge in finitely many iterations. Iterations are then stopped when some
stopping criterion is met, for instance when the equalities in (10) are ε-approximated (i.e.,
|tr(AiC)− bi| ≤ ε) or when the number of iterations becomes too big. Thus IPMs only
produce approximate solutions. Nonetheless, under strict feasibility assumption, most
common IPMs enjoy a convergence result of the following form: for any ε ∈ (0, 1), if an
appropriate initial point is chosen, then it takes at most a number of steps polynomial in
the problem size and log( 1ε ) to obtain an ε-approximate solution. (See e.g. [62, Ch. 10].)

Failure of Strict Feasibility. Strictly feasibility is a desirable property. For instance,
as seen above, it guarantees that a SDP can be solved to arbitrary accuracy by an
IPM. “Random” SDP problems are strictly feasible with probability one [20, Theorem
3.2]. However, strict feasibility can fail systematically for SDP instances arising from
applications due to the inherent problem structure. In particular, strict feasibility can fail
for entailment problems (Sect. 3.1), as shown in the following example.

Example 6. The SDP feasibility problem in Example 5 fails the strict feasibility. In-
deed, for any solution (c, C0, C1), the equality constraints imply (C0)1,1 = 0, hence7

(C0)1,2 = (C0)2,1 = (C0)1,3 = (C0)3,1 = 0 which means that C0 is rank deficient.

While the failure of the strict feasibility in small instances such as Example 6 usually
does not cause much numerical issues, significant inaccuracy can often be observed as the
number of variables and the degrees of the polynomials increase [60]. Facial reduction
techniques proposed by BORWEIN and WOLKOWICZ can be used for preprocessing
SDP instances that are not strictly feasible [11]. A more efficient version using linear
programming reduction, called partial facial reduction, was proposed by PERMENTER
and PARRILO [44].

7 If a matrix is PSD and one of its diagonal entry (e.g. the (1, 1) entry) equals 0, then the entire
row and column that contain that diagonal entry (e.g., the first row and column) equal 0.
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Ill Conditioning. The coefficients of the polynomials in the entailment problems can
influence the condition number of the linear system that is solved in IPMs, and a large
condition number can affect the convergence of IPMs. While most SDP solvers use
preconditioning to enhance the numerical stability, it is important to caution against the
possible inaccuracy caused simply by the large input coefficients, which can occur even
when preconditioning is used.

Example 7. Consider the entailment checking problem instance:

q1(x, y)︸ ︷︷ ︸
x+y

≥ 0 ∧ q2(x, y)︸ ︷︷ ︸
γ·(x2+y−1)

≥ 0 ∧ q3(x, y)︸ ︷︷ ︸
x−4y2

≥ 0 |= p(x, y) ≥ 0, (11)

where p : (x2+y2)(q1(x, y)+q2(x, y)+q3(x, y)+8) and γ is a user-specified constant.
For any γ ∈ R, (11) is true, and the corresponding SOS problem has an obvious solution
(σi : x2 + y2 for i = 1, . . . , 3) that is independent of γ. Even though theoretically the
solution set remains the same for varying γ, we see from Table 1 that a mere change in
the value of γ can affect the solution accuracy in some SDP solvers: in this example,
SDPT3 appears more robust against ill conditioning than SeDuMi. The large value of γ
worsens the conditioning of the linear system solved in each iteration of an IPM and can
lead to significant inaccuracy.

Table 1: The relative residual norm of the solutions returned by SDPT3 [59] and Se-
DuMi [56] for varying values of γ.

γ = 1 γ = 103 γ = 106 γ = 109

SDPT3 2.1× 10−8 5.4× 10−10 5.1× 10−9 2.3× 10−8

SeDuMi 5.5× 10−9 2.6× 10−9 3.3× 10−5 0.00023

Floating-Point Errors. For the sake of efficiency, IPMs are implemented using floating-
point arithmetic. Thus, the precision of the floating-point format used limits the accuracy
of the result. The most commonly used floating-point format offers a precision of about
10−16 for arithmetic operations and SDP solvers usually offer accuracies ε around
10−8 [10,63]. Higher accuracies can be reached using more precise (and expensive)
floating-point formats such as done by the SDPA-GMP solver (see [5, Ch. 24] and [41]).

4.2 Proving Soundness

Now we describe several different techniques for proving that SDP feasibility problems
(10) arising from the SOS formulation of parametric entailment problems admit solutions.
These techniques can be separated in two main approaches:

(a) Techniques that attempt to get an actual solution. They are able to solve some empty
interior problems but this is often expensive.

(b) Techniques that prove the existence of an actual solution, nearby to an approximate
one. They require strict feasibility but are much cheaper.
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After a quick review of the first approach, we detail the second one, since numerical tests
in Sect. 5 indicate that it is the most useful one for proving polynomial invariants.

Deriving Exact Solutions As already mentioned in Section 3.2, the problem (10) is
decidable. Unfortunately, even the most recent algorithms [32] are not meant to be
competitive with numerical solvers. Another approach consists in assuming the existence
of a rational solution, using a numerical solver and attempting by various means to
project its approximate solution to an exact rational solution [30,35,39,45,46]. These
methods are truly impressive as they are able to solve some empty interior problems. It
is also worth noting that since they provide an exact SOS decomposition, mechanically
checking it with a proof assistant like Isabelle/HOL or Coq is particularly simple [30,39].
Unfortunately they require heavy computations in rational arithmetic, which incurs the
risk of an exponential blow-up of the size of the denominators.

Proving Existence of a Nearby Solution We now assume that (10) is strictly feasible,
call a numerical solver that returns an approximate solution C̃ and attempt to derive
from it a proof that there exists an actual solution C (without actually computing C),
based on the following proposition, whose proof is similar to that of [37, Theorem 4].

Proposition 1. If (10) results from the SOS programming problem (5) or (6), and
C̃ ∈ Rs×s satisfies the inequality

(
s maxi∈{1,...,m} |tr(AiC̃)− bi|

)
≤ λmin(C̃) (the

smallest eigenvalue of C̃), then (10) admits an actual solution C.

This suggests the following method to prove that a SOS problem is feasible:

Step 1. Obtain an approximate solution C̃.
Step 2. Compute (an overapproximation of) ε′ := maxi∈{1,...,m} |tr(AiC̃)− bi|.
Step 3. Check that C̃ − s ε′ I � 0 (which implies s ε′ ≤ λmin(C̃)).

Step 1 is achieved using a numerical solver and Step 2 is performed using floating-
point interval arithmetic. The hard step is to provide a sound and efficient way to check
C̃ − s ε′ I � 0. We rely on a check suggested by the following theorem. Let F be a
floating-point format with unit roundoff eps and underflow unit eta. For any symmetric
floating-point matrix M ∈ Fs×s with 2(s+2)eps < 1, define α : (s+1)eps

1−(2s+2)eps tr(M)+

4(s+ 1) (2(s+ 2) + maxiMi,i) eta.

Theorem 2. ([50, Corollary 2.4]) M � 0 if there exists M̃ ∈ Fs×s such that the
following conditions hold:

– M̃ij =Mij , for any i 6= j;
– M̃ii ≤Mii − α, for any i; and
– the Cholesky algorithm implemented in floating-point arithmetic succeeds on M̃ ,

i.e., “concludes” that M̃ is positive semidefinite,

Theorem 2 is used to prove that C̃ − s ε′ I � 0, as follows:
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– compute M := C̃− s ε′ I using floating-point arithmetic with rounding toward−∞.
It follows that the error (C̃− s ε′ I)−M will be a diagonal matrix with nonnegative
entries. Hence, if M � 0 then C̃ − s ε′ I � 0, as well.

– check that M is symmetric and that 2(s+ 2)eps < 1;
– compute M̃ :=M −α I with rounding toward −∞ (the closest M̃ to M −α I , the

more likely its Cholesky decomposition is to succeed);
– compute the Cholesky decomposition of M̃ .

If the Cholesky decomposition succeeds (which happens when, e.g., λmin(C̃) ≥ s ε′+2α

[18]), then C̃ − s ε′ I � 0.

Remark 2. For the IEEE 754 [33] binary64 format with rounding to nearest8, eps =
2−53 (' 10−16) and eta = 2−1075 (' 10−323). Thus, the hypothesis 2(s+ 2)eps < 1
is always satisfied for practical values of s. Moreover, for typical values (s ≤ 1000
and elements of M of order of magnitude 1), α ≤ 10−10. This is negligible in front of
s ε′ ∼ 10−8s (10−8 being the typical default stopping tolerance), which means that the
incompleteness of this positive definiteness check is not an issue in practice.

Steps 2 and 3 can be performed in only O(s3) floating-point operations (cost of the
Cholesky decomposition) so the cost of the whole method is dominated by the call to
the numerical SDP solver in Step 1.

Remark 3. For ease of exposition, the above technique was presented on the whole
matrix C, although it is preferable to apply it on each block Cj of C.

Padding the SDP Problem. Naturally, all this requires that the least eigenvalue of the
solution returned by the numerical solver be larger than s ε′. It could seem that ε′ is
known only after numerically solving the SDP problem, since it is computed from its
result in Step 2. In fact, ε′ will be less than the stopping criterion ε of the solver, which is
known in advance. Thus instead of solving (10), we solve the slightly modified problem

find : C s.t. tr(AiC) = bi, i = 1, . . . ,m,
C − s ε I � 0,

which is an SDP (up to the change of variable C 7→ C + s ε I).

The simple criterion in Proposition 1 assumes SDP problems translated from SOS
problems. On the other hand, the tool VSDP [31,34] verifies the solutions of general
SDP problems using interval arithmetic results.

Remark 4. Mechanically checking proofs generated by the three step method of this
section is an ongoing project. To this end, Theorem 2 has been verified [49] in Coq.

5 Experiments

8 Type double in C.
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x∈
{
x ∈ Rn

∣∣∣ ∧kj=1ij(x) ≥ 0
}

while (1)
if (g(x) <= 0)
x = τ1(x)

else
x = τ2(x)

Fig. 6: Benchmarks form.

This section presents an experimental evaluation of the
methods described in Sections 3 and 4 on the examples
of ADJÉ et al. [1]. We first synthesize polynomial invari-
ants for these programs, following [1], then attempt to
formally prove their soundness. As seen in Section 2, these
formal proofs are particularly worthwhile as synthesizing
incorrect invariants is quite easy.

Considered programs are of the form in Fig. 6. An invariant p(c,x) ≥ 0 can be
provided by any solution9 of the parametric entailment problem:

i1(x) ≥ 0 ∧ · · · ∧ ik(x) ≥ 0 |= p(c,x) ≥ 0

g(x) ≤ 0 |= (p ◦ τ1)(c,x) ≥ p(c,x)
g(x) ≥ 0 |= (p ◦ τ2)(c,x) ≥ p(c,x).

(See Section 3.) Thus, any solution of the following SOS problem gives an invariant:

find : polynomials σj ∈ Rd−dij[x] (j ∈ {1, . . . , k}), σk+1, σk+2 ∈ Rd−dg [x]
s.t. p−

∑k
j=1 σjij is SOS,

(p ◦ τ1)− p+ σk+1 g is SOS,
(p ◦ τ2)− p− σk+2 g is SOS,
σ1, . . . , σk+2 are SOS,

(12)

where d is the degree of p and di1 , . . . , dik and dg are the degrees of i1, . . . , ik and g
respectively (all assumed to be less than d).

Table 2 gives the time needed to synthesize candidate invariants of degree d equal to
4, 6, 8 and 10 by solving the above SOS problem. “Example 4” in this table corresponds
to the program of Fig. 2. The candidate invariant obtained for degree d = 6 is given in
Fig. 2 and displayed in Fig. 3. The one obtained for d = 8 is also displayed in Fig. 3.
“Example 8” corresponds to Fig. 4.

Unfortunately, the problem (12) usually has an empty interior10. This means that the
candidate invariant obtained from numerical solvers does not precisely satisfy (12). In
fact, there often exist values x0 such that i1(x0) ≥ 0, . . . , ik(x0) ≥ 0 and p(x0) is a
tiny negative value. To fix that, we look for a small11 c ∈ R such that p+ c−

∑k
j=1 σjij

is SOS for SOS polynomials σj . This is done using the padding technique of Section 4.
Times in table 2 include this fixing step.

We now attempt to prove that the fixed candidate invariants p are correct by consid-
ering the following entailment checking problem

i1(x) ≥ 0 ∧ · · · ∧ ik(x) ≥ 0 |= p(x) ≥ 0

g(x) ≤ 0 ∧ p(x) ≥ 0 |= (p ◦ τ1)(x) ≥ 0

g(x) ≥ 0 ∧ p(x) ≥ 0 |= (p ◦ τ2)(x) ≥ 0.

(13)

9 To get a “small” invariant, one minimizes the radius of the ball enclosing it [1].
10 Assignments τ often admit a fixpoint x0 = τ(x0) meaning that the condition (p◦τ)−p+σ g ≥
0 boils down in x0 to σ(x0) g(x0) ≥ 0 implying σ(x0) = 0 when g(x0) < 0.

11 In practice, c < 10−3 when coefficients of p are of order of magnitude 1.
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We first evaluated methods looking for exact solutions with the implementation of
MONNIAUX and CORBINEAU [39]. Table 3 gives the results. The checking process is
split in two parts: init for the initialization property (first entailment of (13)) and ind. for
the inductiveness property (remaining entailments). As seen in the table, most of the
initialization properties are indeed proved but proofs of the inductiveness property fail
for all but the smallest example. This can be explained by the size of the corresponding
SDP problems. For the initialization property, the largest block is a matrix of size(
n+ d

2
n

)
×
(
n+ d

2
n

)
whereas for inductiveness it is of size

(
n+ d dτ

2
n

)
×
(
n+ d dτ

2
n

)
. This is too

much12 to perform heavy computations with exact rational arithmetic.
Although (12) usually has an empty interior, it is worth noting that this unfortunate

property is due to the relaxation and is not intrinsic to the problem. Indeed, the loop
body τ of the considered programs are usually strictly contractive, i.e., the image of the
invariant {x | p(x) ≥ 0} by τ is included in its interior. When τ is continuous, this means
that any polynomial p̃ close enough from p also defines an invariant {x | p̃(x) ≥ 0}.
In fact, the entailment checking problem (13) commonly leads to strictly feasible SDP
problems. Thus, the method presented in Section 4.2 can be used to efficiently prove
the soundness of a large part of the candidate invariants, as seen in Table 4. The time
needed to compute the proofs (Table 4) is comparable to the time needed to synthesize
the invariants (Table 2). Indeed, most of this time is spent running SDP solvers.

These results are confirmed by VSDP [31,34] when we provide it the SDP problems
corresponding to (13) and the strictly feasible solutions we computed using SDP solvers.
This again indicates that these numerical verification methods only induce a very small
overhead compared to the time required to run SDP solvers.

Implementation. The SOS to SDP translation described in Section 3, as well as the
validation method described in Section 4.2 have been implemented in our OCaml library
OSDP. It offers an interface to the SDP solvers Csdp [10], Mosek [40], SDPA [63]
and SDPA-GMP [41] and is available at http://cavale.enseeiht.fr/osdp/.
Results from Tables 2 and 4 have been obtained thanks to a small static analyzer
relying on the library and available, along with all benchmarks, at http://cavale.
enseeiht.fr/validatingSDP2016/. All computations were performed with
the Mosek solver on a Xeon @ 2.67GHz.

6 Conclusion

Thus far, we have reviewed the use of SOS relaxations and numerical SDP solvers to
solve polynomial problems arising in static analysis of programs. We presented some
examples and experiments showing that, although erroneous results are often obtained
from numerical solvers, rigorous proofs of soundness are possible. Moving forward, we
wish to examine the application of our approach inside theorem provers and applications
to hybrid systems, as well.

Acknowledgments: The authors would like to thank Didier Henrion, Pierre-Loı̈c Garoche
and Assalé Adjé for interesting discussions on this subject.

12 For n = 2, dτ = 3 and d = 8,
(
n+ d

2
n

)
=
(
6
2

)
= 15 whereas

(
n+ d dτ

2
n

)
=
(
14
2

)
= 91.

http://cavale.enseeiht.fr/osdp/
http://cavale.enseeiht.fr/validatingSDP2016/
http://cavale.enseeiht.fr/validatingSDP2016/
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Table 2: Time to synthesize candidate invariants for benchmarks [1]. n is the number of
variables and dτ the degree of the polynomial assignments. All times are in seconds, TO
means timeout (900s) and MO out of memory (4GB).

d = 4 d = 6 d = 8 d = 10

Example 4 (n = 2, dτ = 3) 0.25 0.95 3.31 8.85
Example 5 (n = 3, dτ = 2) 0.48 2.83 22.75 112.37
Example 6 (n = 4, dτ = 2) 2.12 64.07 TO MO
Example 7 (n = 2, dτ = 3) 0.25 0.96 3.15 10.45
Example 8 (n = 2, dτ = 2) 0.17 0.34 0.74 1.93

Table 3: Checking the candidate invariants with the implementation of MONNIAUX and
CORBINEAU [39]. All times are in seconds, NS means that no proof is found, TO means
timeout (900s) and MO out of memory (4GB).

d = 4 d = 6 d = 8 d = 10
init ind. init ind. init ind. init ind.

Example 4 (n = 2, dτ = 3) 1.43 NS 3.35 TO 19.80 MO 142.33 MO
Example 5 (n = 3, dτ = 2) 3.82 TO 142.49 MO TO MO TO MO
Example 6 (n = 4, dτ = 2) 32.20 TO TO MO — — — —
Example 7 (n = 2, dτ = 3) 1.48 NS 3.36 TO 18.36 MO 120.40 MO
Example 8 (n = 2, dτ = 2) 1.93 12.81 3.78 NS 26.29 TO 193.79 TO

Table 4: Checking the candidate invariants with the method of Section 4 (computing
strictly feasible SDP solutions and verifying them). All times are in seconds. As seen in
Section 2, counter-examples are easily found for Ex. 4, d = 4 and 6 and Ex. 7, d = 4. No
such counter-examples were found for the other unproved cases and it remains unknown
whether they are actually inductive or not.

d = 4 d = 6 d = 8 d = 10
init ind. init ind. init ind. init ind.

Example 4 (n = 2, dτ = 3) 0.05 NS 0.07 NS 0.19 3.03 0.17 NS
Example 5 (n = 3, dτ = 2) 0.08 0.33 0.23 2.20 0.74 14.55 2.50 92.15
Example 6 (n = 4, dτ = 2) 0.22 1.52 1.26 38.94 — — — —
Example 7 (n = 2, dτ = 3) 0.05 NS 0.07 0.85 0.19 3.32 0.17 NS
Example 8 (n = 2, dτ = 2) 0.05 0.13 0.07 NS 0.09 NS 0.15 NS

Table 5: Rechecking the proofs of Table 4 with VSDP [31,34] (verifying given strictly
feasible SDP solutions). All times are in seconds.

d = 4 d = 6 d = 8 d = 10
init ind. init ind. init ind. init ind.

Example 4 (n = 2, dτ = 3) 0.04 NS 0.06 NS 0.06 0.30 0.07 NS
Example 5 (n = 3, dτ = 2) 0.06 0.18 0.09 0.26 0.16 0.80 0.27 2.52
Example 6 (n = 4, dτ = 2) 0.10 0.30 0.27 1.11 — — — —
Example 7 (n = 2, dτ = 3) 0.05 NS 0.05 0.15 0.06 0.25 0.07 NS
Example 8 (n = 2, dτ = 2) 0.04 0.07 0.03 NS 0.04 NS 0.05 NS
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4. Xavier Allamigeon, Stéphane Gaubert, Eric Goubault, Sylvie Putot, and Nikolas Stott. A
scalable algebraic method to infer quadratic invariants of switched systems. In EMSOFT,
2015.

5. Miguel F. Anjos and Jean Bernard Lasserre. Introduction to semidefinite, conic and polynomial
optimization. In Handbook on semidefinite, conic and polynomial optimization. Springer,
2012.

6. Roberto Bagnara, Enric Rodrı́guez-Carbonell, and Enea Zaffanella. Generation of Basic
Semi-algebraic Invariants Using Convex Polyhedra. In SAS, 2005.

7. Sugata Basu, Richard Pollock, and Marie-Francoise Roy. Algorithms in Real Algebraic
Geometry. Springer-Verlag, 2006.

8. Mohamed Amin Ben Sassi, Sriram Sankaranarayanan, Xin Chen, and Erika Abraham. Linear
Relaxations of Polynomial Positivity for Polynomial Lyapunov Function Synthesis . IMA
Journal of Mathematical Control and Information, 2015.

9. Sergei Nanatovich Bernstein. Démonstration du théoréme de Weierstrass fondée sur le calcul
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hedral approximation of multivariate polynomials using handelman’s theorem. In VMCAI,
2016.

39. David Monniaux and Pierre Corbineau. On the generation of positivstellensatz witnesses in
degenerate cases. In ITP, 2011.

40. MOSEK ApS. The MOSEK C optimizer API manual Version 7.1 (Revision 40), 2015.
41. Maho Nakata. A numerical evaluation of highly accurate multiple-precision arithmetic version

of semidefinite programming solver: SDPA-GMP, -QD and -DD. In Computer-Aided Control
System Design, 2010.

42. Mendes Oulamara and Arnaud J. Venet. Abstract interpretation with higher-dimensional
ellipsoids and conic extrapolation. In CAV, 2015.

43. Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math.
Program., 2003.

44. Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent sdps via
approximations of the psd cone. arXiv preprint arXiv:1408.4685, 2014.

45. Helfried Peyrl and Pablo A. Parrilo. Computing sum of squares decompositions with rational
coefficients. Theor. Comput. Sci., 2008.
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