Definition of Model-based diagnosis problems with Altarica

Yannick Pencolé, Elodie Chanthery, Thierry Peynot

To cite this version:

Yannick Pencolé, Elodie Chanthery, Thierry Peynot. Definition of Model-based diagnosis problems with Altarica. 27th International Workshop on Principles of Diagnosis (DX-2016), Oct 2016, Denver, CO, United States. 8p. hal-01358693v2

HAL Id: hal-01358693

https://hal.science/hal-01358693v2

Submitted on 2 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Definition of Model-based diagnosis problems with Altarica

Yannick Pencolé¹ and Elodie Chanthery¹ and Thierry Peynot²
¹LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
e-mail: {ypencole,echanthe}@laas.fr
²Queensland University of Technology (QUT) Brisbane QLD 4001, Australia
e-mail: t.peynot@qut.edu.au

Abstract

This paper presents a framework for modeling diagnosis problems based on a formal language called Altarica. The initial purpose of the language Altarica was to define a modeling language for safety analysis. This language has been developed as a collaboration between academics and industrial partners and is used in some industrial companies. The paper shows that the expressivity of this language, mixing event-based and state-based models, is sufficient to model classical model-based diagnosis problems (logic-based and event-based) and problems that combine state-based and event-based behaviors. This modeling framework, whose semantics is fully specified, is a promising framework to design richer diagnosis problems. As example, we introduce a robotic diagnosis problem that benefits from the full expressivity of the language.

1 Introduction

The research community of Model-Based Diagnosis (MBD) gathers a set of researchers that aim at solving diagnosis problems on many types of systems. Due to the large spectrum of investigated types of systems and applications, the diagnosis problems that are usually defined and solved rely on modeling languages that are more or less specific to the investigated problem. It follows that the solution proposed by the researchers cannot be compared or at least classified in a hierarchy of model-based diagnosis problems. Some researchers do not use any kind of human-friendly language and start developing their framework from fully specified mathematical tools, like first order logics (for static diagnosis problems), automata/Petri nets (for discrete-event systems) to name a few. The direct consequence is then the difficulty to actually promote diagnostic methodologies into industry as there is a gap the theoretical modeling framework considered does not allow to be directly used in the industry (Dassault Aviation, Thales, Safran...). Our choice for the Altarica language also comes from the fact that some of our previous contributions focused on logic-based problems [Pencolé, 2014] and event-based problems [Pencolé and Cordier, 2005] that can be all modeled in Altarica, as we will explain in this paper. We indeed show here that the Altarica language is expressive enough to model a set of diagnosis problems that are usually considered as different problems as they are not solved with the same diagnostic tools. We also propose the modeling of a specific problem from the robotics field that captures all the expressivity of an Altarica specification.

The paper is organized as follows. Firstly, the Altarica language is described and especially its semantics as a constraint automaton. Section 3 then proposes a way to model faults and observations with Altarica. Section 4 illustrates classical model-based diagnosis problems and the way they can all be modeled with Altarica. Section 5 introduces an original diagnosis problem from the robotics field and shows how the full expressivity of Altarica can be used to model it. The paper finally ends with a discussion and perspectives.

2 Altarica language

Altarica is a language used to describe safety critical systems that have become a European industrial standard for Model-Based Safety Assessment. It was initially designed within a consortium of academics and industrial partners two decades ago and results in the development of tools that are either academic tools (http://altarica.labri.fr) or industrial tools like Cecilia OCAS from Dassault Aviation. This language aims at describing a system as a set of interacting components in a hierarchical way as a set of nodes and sub-nodes. We summarize here the description of the language and its semantics. Further details can be found in [Point, 2000; Point and Rauzy, 1999].

The following notations will be used in this paper. Let \(v \) denote a variable, the domain of the variable, denoted by \(\text{Dom}(v) \), is the set of values that can be assigned to the variable \(v \). A valuation of a variable \(v \) is the association of the variable \(v \) with one of its values \(\text{val} \in \text{Dom}(v) \) and is denoted \(v = \text{val} \). Let \(V \) denote a set of variables \(\text{Dom}(V) \) will denote the product:

\[
\text{Dom}(V) = \text{Dom}(v_1) \times \cdots \times \text{Dom}(v_n)
\]

where \(\{v_1, \ldots, v_n\}, n \geq 1 \) denotes the enumeration of the set \(V \) in a fixed order (like for instance the lexical order on the variable names). Any element \(e \) of \(\text{Dom}(V) \) is an \(n \)-uple of values \((\text{val}_1, \ldots, \text{val}_n) \) that also obviously represents the
set of valuations \(\{v_1 = \text{val}_1, \ldots, v_n = \text{val}_n\} \) or, in a logical form, the conjunction \(\bigwedge_{i=1}^n \neg v_i = \text{val}_i \). In the following, for the sake of notation simplicity, \(e \) will denote any of these three representations depending on the context.

2.1 Component in Altarica

A component is defined as a set of variables. There are two types of variables:

1. **State variable**: it is a variable that models the state of the component (keyword `state`).
2. **Flow variable**: it is a variable that represents a flow between the component and its environment (keyword `flow`).

The set of state variables is denoted \(V_S \) and the set of flow variables is denoted \(V_F \).

Definition 1 (State). A state \(s \) of a component is a valuation of all its state variables,

\[
s \in \text{Dom}(V_S).
\]

The state of a component is internal in the sense that the definition of a state does not take into account the valuation of the flow variables. Flow variables are seen as the interface of the component to its environment. In a given state of the component, it may be possible that one flow variable may have several valuations. At a given time, by definition, the flow and state variables have only one valuation, this set of valuations is called a configuration.

Definition 2 (Configuration). A configuration \(c \) is a valuation of all its state and flow variables,

\[
c \in \text{Dom}(V_S \cup V_F).
\]

In the following, we might denote a configuration \(c \) as a couple \((s,f)\) where \(s \in \text{Dom}(V_S) \) and \(f \in \text{Dom}(V_F) \). The relationship between flow and state variables is stated with the help of a set of assertions (keyword `assert`). An assertion is a logical condition between state and flow variables that must be true in any configuration of the component (in other words, any set of valuations of the state and flow variables that is inconsistent with at least one of the assertions is not an admissible configuration). The set of assertions is also called the invariant of the system. In a given state of the component, the environment may change and affect some flow variables of the component, so its configuration is changing; however this configuration change is constrained by the component’s assertions that always must hold. Typically, the flow variables represent the inputs and outputs of a component to its environment. If a flow variable changes (interpreted here as an input variable), as a response, the component may also change other flow variables (interpreted here as output variables) to ensure the assertions are still true.

A component is an abstracted machine whose current configuration is modified by different phenomena:

1. change of the configuration due to an environmental change (change of a flow variable).
2. change of the internal state (and therefore the configuration) due to the occurrence of an internal event.

The notion of event is part of the Altarica language and has a meaning that is similar to the one in discrete event systems.

Definition 3 (event). An event is an instantaneous phenomenon that changes the state of a component.

Events are explicitly defined below the keyword `event` in a node description and they are useful for the description of transitions (keyword `trans`). A transition is defined by a guard (or a precondition) that is a logical condition characterizing a subset of configurations. The transition is triggered only if the current configuration satisfies the precondition of the transition and if the event associated to the transition can occur. The consequence of the transitions is the immediate modification of a subset of state variables and possibly the immediate modification of the corresponding configuration to ensure the invariant of the component is satisfied.

Before recalling the semantics of an Altarica component, the abstracted syntax is presented.

Definition 4 (Altarica component). An Altarica component\(^1\) is a 5-uple \(C = (V_S, V_F, E, I, M) \) where

- \(V_S, V_F \) are two disjoint sets of variables, respectively called the set of state variables and the set of flow variables;
- \(E = E_+ \cup \{\varepsilon\} \) is the set of events where \(\varepsilon \notin E_+ \);
- \(I \) is a first-order logic formula such that the free variables of \(I \) are in \(V_S \cup V_F \);
- \(M \) is the set of macro-transitions \((g,e,a)\) such that:
 - \(g \) is a first-order logic formula, called the guard, whose free variables are in \(V_S \cup V_F \);
 - \(e \) is an event of \(E \);
 - \(a \) is an application which maps any state variable \(s \in V_S \) to a first-order logic term whose free variables are in \(V_S \cup V_F \);
- \(M \) contains the implicit transition \((\top, \varepsilon, a_{\varepsilon})\) where \(\forall v \in V_S, a_v(v) = v \).

The following example illustrates the definition.

```
node a_component
  flow
    pressure: {low,medium,high};
    switch: {on,off};
  state
    working: {yes, no};
  event
    start,stop;
  trans
    {working = no and pressure = low} |- start -> working:=yes;
    {working = yes} |- stop -> working:=no;
    assert
      if(working= no) then (pressure=low);
      if(working= yes and switch = on) then { pressure=high};
  edon
```

The flow variables are \(V_F = \{\text{pressure}, \text{switch}\} \) and the state variable is \(V_S = \{\text{working}\} \). The pressure variable represents here a physical interaction on the environment whereas the switch is a control of the component by the environment. There are two states in this component (working/not working). The state change is represented by two macro-transitions. The first macro-transition (represented as a 3-uple \((g,e,a)\) in the previous definition) states that in every configuration where the component is

\(^1\)Altarica can model events with priority and other subtleties. In this paper, we just omit these parts to avoid mathematical overload that does not have any impact on the topic discussed in this paper: priorities can indeed be included and then enrich the expressivity of the language, they have no other consequence on the matter discussed here.
working and the pressure is low (this is the guard \(g \)), the occurrence of a start event (this is the event \(e \)) will make the component to work (the application \(a \) returns the term yes when applied to variable state working). The second transition states that whatever the configuration is, the occurrence of a stop event on the working component makes it stop. Finally, the assertions model the behavior of the component regarding the flow variables. For instance, the first assertion states that when the component is not working (working=\(\text{no} \)), whatever the value of the switch is, the pressure is always low (pressure=low). With a component working and controlled by a switch \(\text{on} \) signal, the pressure is always high and if the switch is off, the pressure is medium. The formal semantics of a component behavior is described hereafter and relies on constrained automaton [Brleck and Rauzy, 1994].

Definition 5 (Constraint automaton). A constraint automaton is a 5-tuple \(A = (E,F,S,\pi,T) \) where:
- \(E = E_+ \cup \{e\} \) is a finite set of events where \(e \) is a special event that does not belong to \(E_+ \).
- \(F \) is the set of flow values.
- \(S \) is the set of automaton states.
- \(\pi: S \rightarrow 2^F \) is a mapping that associates to any state of \(S \) the set of possible flow values in this state. Moreover, it is supposed that \(\pi(s) \neq \emptyset \).
- \(T \subseteq S \times F \times E \times S \) is the set of transitions such that:
 - \((s,f,e,s') \in T \Rightarrow f \in \pi(s)\);
 - \(\forall s \in S, (s,f,e,s) \in T\).

In a constraint automaton, a state is associated to a set of possible flow values and the association between one state \(s \) and one of this flow value \(f \in \pi(s) \) constitutes a configuration \((s,f)\). The transition relation associates to one of this configuration, the occurrence of an event \(e \) and a target state \(s' \). Finally, in this definition, it is also required that the event \(e \) (which means “the non-occurrence of an event”) can be triggered in any configuration \((s,f)\) to stay in state \(s \).

Definition 6 (Semantics). The semantics of an Altarica component \(C = (V_S,V_F,E,I,M) \) is the constraint automaton \([C] = (E,F,S,\pi,T) \) defined hereafter:
- \(F = \text{Dom}(V_F) \).
- \(S \subseteq \text{Dom}(V_S) \) is the set of states \(s \) that are admissible, that is: there exists \(f \) in \(F \) such that the configuration \(c = (s,f) \) is such that the invariant \(I \) holds in \(c \):
 - \(c \models I \).
- The mapping \(\pi: S \rightarrow 2^F \) is, for any \(s \in S \),
 \[\pi(s) = \{ f \in F \mid (s,f) \models I \} \);
- \(T \subseteq S \times F \times E \times S \) is the set of transitions \([[(g,e,a)]]] \) where \((g,e,a) \in M \) is a macro-transition and where \([[(g,e,a)]]] \) is the set of 4-uples \((s,f,e,s')\) such that:
 - \(s \in S \);
 - \(f \in F \);
 - \(s, f \models I \);
 - \(s' = v_1 = \text{val}_{i_1},...,v_n = \text{val}_{i_n} \) where \(\text{val}_{i} \) is the term \(a(t_i) \) closed by the valuation \(s, f \) for all \(i \in \{1,...,n\} \).

Figure 1 presents the constraint automaton of the previous example. As the previous example does not contain any initialization, any state of Figure 1 is an initial state.

![Constraint automaton describing the semantics of the example.](image-url)
defined in [Chittaro, 1993], this sense, Altarica provides a way to model a system as a node reacts to a given set of inputs) and its behavioral parts (how a node interacts with other nodes), its functional part (how a system is observed in the Altarica model). Now, we need to define the formal semantics of this observation model.

Definition 8 (Observable valuation mask). The observable variable mask obs is a function that maps any valuation to a logical formula.

- \(\text{obs}(v = \text{val}) = (v = \text{val}) \) if \(v \) is observable;
- \(\text{obs}(v = \text{val}) = \top \) (true) if \(v \) is not observable.

This observable valuation mask can be extended to any set of valuations:

\[
\text{obs}\{(v_1 = \text{val}_1, \ldots, v_n = \text{val}_n)\} = \text{obs}(v_1 = \text{val}_1) \land \cdots \land \text{obs}(v_n = \text{val}_n).
\]

Each configuration of a node is partially observable through an observable valuation mask.

Definition 9 (Observable Part of a Configuration). The observable part of a configuration \(c \) is \(\text{obs}(c) \).

The observable mask only applies on states, configurations. Now, let formally define observable events.

Definition 10 (Observable event mask). The observable event mask \(\text{cobs} \) is a function that maps any event to an event:

- \(\text{cobs}(e) = e \) if \(e \) is observable;
- \(\text{cobs}(e) = \varepsilon \) if \(e \) is not observable.

Note that \(\text{cobs} \) also applies to \(\varepsilon \) and \(\text{cobs}(\varepsilon) = \varepsilon \). The observable event mask can also be extended to a set of synchronized events \(\langle e_1, \ldots, e_n \rangle \) as follows:

\[
\text{cobs}(\langle e_1, \ldots, e_n \rangle) = \langle \text{cobs}(e_1), \ldots, \text{cobs}(e_n) \rangle.
\]

From the definitions of mask here above, it is now possible to define the observable part of any transition \(t \in T \) of the constrained automaton associated to any type of node.

Definition 11 (Observable Part of a Transition). The observable part of a transition \(\langle s, f, e, s' \rangle \) in a constrained automaton \([C] \) associated to a node \(N \) is \(\langle \text{obs}(s), \text{obs}(f), \text{cobs}(e), \text{obs}(s') \rangle \).

Now that the way to model what is observable in an Altarica specification is fully defined, we can define the type of observations that can be stated in an Altarica diagnosis problem. An observation of the system for a given diagnosis problem should consist of:

1. observed events from \(E_O \) on one hand;
2. observable variable changes on the other.
The first type of observation is similar to the one that is modeled in a fault diagnosis problem. The second one is related to the fact that a variable is observed. Suppose that the model has an observable variable \(v \) (flow or state variable), by stating that a variable is observable we mean that, at any time, it is possible to know its value so especially at the time when the value of the variable changes.

Definition 12. An observation \(OBS \) of the system modeled by a node \(N \) is a non-empty sequence of couples \((e, c) \in \langle \mathcal{E}_0, \mathcal{L}(V_O) \rangle \) with \(V_O \) the set of observable variables and \(\mathcal{L}(V_O) \) the logical language on the valuations of \(V_O \).

An observable \(OBS \) is a non-empty sequence, as we might be able to observe something at the time the system starts operating, this first observation is actually the initialization of observable variables that is represented as \(\langle e, \bigwedge_{v \in V_O} v = \text{val}_0 \rangle \). It might also be possible that no observable variable are available, in this case, the observation is *nothing* represented as \(\langle e, \top \rangle \). The system may evolve and then generates the change of values for a set of variables \(V_O^2 \), it is represented within \(OBS \) by \(\langle e, \bigwedge_{v \in V_O} v = \text{val}_{i+1} \rangle, \langle e, \bigwedge_{v \in V_O^1} v = \text{val}_i \rangle \) and so on. During its evolution, the system might also generate an observable event \(o \) (or a synchronized event like for instance \(\langle e, e_1, e_2, e_3, \ldots \rangle \)) and some instantaneous value changes \(l \), that is represented as \(\langle o, l \rangle \). If the occurrence of the event \(o \) does affect any observable variable, it is represented as \(\langle o, \top \rangle \).

3.2 How to model faults, failures in an Altarica specification

A diagnosis problem aims at determining *what went wrong* given a set of observations. In a Model-Based diagnosis framework, the ‘what went wrong’ part is specified in the model but mostly depends on the objectives of the diagnosis that is performed on the system. We might be interested in *malfunctioning behaviors* by determining the functional modes of the components and identify the ones that are tagged as *failing modes*. We might be interested in identifying *fault events* that cause the problems. Within an Altarica specification, we actually propose the user to model any kind of these diagnostic objectives.

- **A failure** is usually defined as a phenomenon where a system does not operate properly, that is it does not proceed as expected with the given inputs. If such a system is specified as an Altarica node, the failure then occurs only if the system is in a failure state. To model these failure states, we propose to declare some state variables as failure state variables, as follows:

 \[
 \text{state var: bool: failure}
 \]

- **A fault** is usually a phenomenon that is the cause of a system’s failure. Within an Altarica specification, we propose to model it as a *fault event*, as follows:

 \[
 \text{event e: fault}
 \]

Depending on the diagnosis objectives and the underlying system, we might model only failure states (see Section 4.1 for an example) or only fault events (see Section 4.2) or even both (see Section 5). By using failure state variables, we actually implicitly specify *failure modes*. Let \(V_{FS} \subseteq V_S \) be the set of state variables that are declared as failure variable.

Definition 13 (Failure mode). A failure mode \(m \) is a set of valuations for each variable of \(V_{FS} \).

\[
 m \in \text{Dom}(V_{FS}).
\]

A state \(s \) has a failure mode \(m \) if:

\[
 s \models m.
\]

4 Definition of Model-based diagnosis problems

The purpose of this section is to illustrate the expressivity of the Altarica language by presenting within the same modeling framework, two classical model-based diagnosis problems that are usually studied independently.

4.1 Static Diagnosis Problem

This problem, commonly called the polybox problem, consists of a digital circuit (the circuit of [Davis, 1984]) made of a set of multipliers \(M_1, M_2, M_3 \) and adders \(A_1, A_2 \). The initial problem is a static problem in the sense that the observations \(OBS \) represent one timepoint and the state of the system is supposed to be permanent.

```plaintext
node multiplier
flow
x,y : RANGE : in;
p : RANGE : out;
state
ab : bool: failure;
assert not ab => (p = (x*y));
end
node adder
flow
x,y : RANGE : in;
s : RANGE : out;
state
ab : bool: failure;
assert not ab => (s = (x+y));
end
node circuit
flow
a,b,c,d,e : RANGE : in,observable;
f,g : RANGE : out,observable;
sub
A1,A2 : adder;
M1,M2,M3 : multiplier;
assert
M1.p = A1.x; M2.p = A1.y; M2.p = A2.x;
M3.p = A2.y; s=M1.x; b=M2.x; c=M1.y;
c=M3.x; d=M2.y; e=M3.y; f=A1.x; g=A2.x;
end
```

![Figure 2: Description of the circuit in Altarica.](image-url)
\(OBS_M = (\varepsilon, OBS) \) find in \([CM]\) a configuration that satisfies the observation \(OBS_M \) and extract its failure mode. In this case, a failure mode is a valuation of all the state variables so it corresponds to an initial diagnosis \(\Delta \).

4.2 Discrete Event Diagnosis Problem

The second problem that is presented here is the classical fault diagnosis problem on discrete event system illustrated by the HVAC system \([\text{Sampath et al.}, 1995]\).

```plaintext
node valve
state V: [1,4];
event stuck_closed1, stuck_closed2: fault;
    stuck_open1, stuck_open2: fault;
    open, close;
trans
V=1 | close -> V=1; V=1 | open -> V=1; V=2 |
    | open -> V=3; V=3 | close -> V=3; V=4 |
    | close -> V=3; V=3 | open -> V=1; V=1 | close -> V=1;
init V=1;
edon

node pump
state P: [1,4];
event start, stop;
    failed_on1, failed_on2, failed_off1, failed_off2: fault;
trans
P=1 | stop -> P=1; P=1 | start -> P=1; P=2 |
    | start -> P=3; P=3 | stop -> P=3; P=4 |
    | stop -> P=4; init P=1;
edon

node controller
state C: [1,4];
event open, close, start, stop: observable;
trans
C=1 | open -> C=1; C=2 | close -> C=2; C=3 |
    | stop -> C=4; C=4 | close -> C=1; init C=1;
edon

node hvac
sub v: valve; p: pump; c: controller;
sync
<open,v.open>; <close,v.close>
    <c.start,p.start>; <c.stop,p.stop>
edon
```

Figure 3: Description of the HVAC system in Altarica.

The HVAC system is modeled as a \(\text{hvac} \) node. This node is composed of three sub-nodes: a \(\text{valve} \), a \(\text{pump} \) and a \(\text{controller} \). In this example, the structural model is represented as event synchronizations only described in the \(\text{hvac} \) node. Each sub-node is modeled as a set of transitions that are triggered by events that modify the internal state of each sub-node. Here, there is no observation of any state, only the events of the controller are observable. The fault information is carried on a subset of events. The keyword \(\text{init} \) defines the initial state of each sub-node, so here it also defines the initial state of the system.

The model presented on Figure 3 is purely event-based, the underlying constrained automaton of this system is equivalent to the global model \(G \) defined in \([\text{Sampath et al.}, 1995]\). It is indeed, by construction, a pure Mealy machine without any \(\varepsilon \)-transitions since there is no flow variables, no assertions. The first diagnosis problem that can be defined on the HVAC system is: given \(OBS \) a sequence of observable events, find a subset \(F \) of fault events such that there exists in the model \(G \) a trajectory from the initial state, containing as fault events exactly the set \(F \), that satisfies \(OBS \). Back to the Altarica world, the problem is defined as follows. The sequence of observations \(OBS \) (for instance \(\langle \text{open, start, stop, close, start} \rangle \) becomes \(OBS_M \):

\[
(\langle \text{open, } \varepsilon \rangle, T), (\langle \text{start, } \varepsilon \rangle, T),
(\langle \text{stop, } e \rangle, T), (\langle \text{close, } \varepsilon \rangle, T), (\langle \text{start, } e \rangle, T).
\]

The diagnosis problem then becomes: find a subset \(F \) of events declared as \(\text{fault} \) such that there exists in the constrained automaton a trajectory from the initial configuration that satisfies \(OBS_M \), trajectory that contains, as fault events, the set \(F \) exactly. The second problem that can be defined is the one that is solved by the diagnoser approach of \([\text{Sampath et al.}, 1995]\). Instead of just computing a set of faults \(F \), the problem is defined as determining the set of couple \((x, F)\) where \(x \) is global state of the system. In the model of Altarica, it means that it is required to keep track of the current failure mode: in this particular case, a failure mode is exactly one state. To keep track of the failure mode, it suffices to add the keyword \(\text{failure} \) to any state variable of the model. Then to finally get \((x, F)\), it suffices to extract from the last configuration of the trajectory the failure mode to get \(x \).

5 State/Event-based Diagnosis Problem: a UGV diagnosis problem

In the previous section, we show that it is possible to specify with the Altarica language two classical problems:

1. the first one is \(\text{state-based} \), the observations provide a partial information about the underlying state of the system;
2. the second one is \(\text{event-based} \), the observations are a sequence of events and the purpose is to determine which fault events have occurred.

The main strength of Altarica is its ability to provide into one fully specified specification language event-based behaviors (Mealy machines) and state-based behaviors (Moore machines). Our proposal is now to take advantage of this expressivity to model \(\text{state/event-based} \) diagnosis problems and thus refine the type of information that is provided within the model. To illustrate our objective, we investigated a case study: a diagnosis problem in Robotics.

We consider a model of an unmanned ground vehicle (UGV) capable of autonomous navigation in challenging environmental conditions, such as in the presence of fog, smoke or airborne dust. In order to achieve safe autonomous navigation, the UGV needs to be equipped with a perception system capable of performing obstacle detection. This task is critical since any detection error could lead to catastrophic consequences, hence the motivation to perform diagnosis on this perception system. Figure 4 shows a high-level view of our proposed model of a perception system. In the model in Fig. 4, the sensors observe aspects of the environment from their mounting position on the UGV, providing sensor data. These sensor data, e.g. 3D points, are transformed into a common world frame by a function \(\text{RawDataToWorld} \), thanks to calibration parameters (e.g. the position and orientation of the sensor in a frame related to the vehicle) and the full localization of the vehicle in the world. Once this operation is performed, the data can be fused into a common representation, which is then interpreted. An example of this interpretation for obstacle detection is making the distinction between obstacle and free space.
environmental conditions [Peynot et al., 2009], as the UGV perception system can benefit from the complementarity between the distinct multiple sensing modalities. For example, mm-wave RADARs can see through smoke or airborne dust while LIDARs often cannot, which means returns from LIDARs are often misinterpreted as obstacles, however, LIDARs usually are much more accurate than RADARs [Castro and Peynot, 2012]. These differences of perception make the problem of fusing and interpreting data acquired by multiple sensing modalities particularly difficult [Gerardo-Castro et al., 2014], as they can generate many failures of obstacle detection. To address this challenge, the originality of our modeling example is that it includes a model of the environment mask so that different observation configurations are possible. For example, if smoke occurs, the observation mask of the sensors that are sensitive to smoke (in the previous example, the LIDAR) can be degraded and consequently the diagnosis process can take the environment mask as responsible for a degraded mode.

Figure 6 fully shows the model of one sensor of the proposed UGV model. The sensor is modeled as a sensor node. This node is composed of two sub-nodes: the observation mask mask1 of the sensor and sensor1. Each elementary node contains several behavioral modes and the mode changes by the occurrence of events. For instance, in sensor1, there are three operating modes (see Figure 5) and three events (s_ldr, e_ldr, f_sensor1) that affect the current mode of the sensor. Among these events, one is considered as a fault event (f_sensor1) that is not recoverable and the others (namely start/end of low data rate: s_ldr, e_ldr) are not considered as faults (as s_ldr is actually recoverable). This part of the model is the event-based part, it handles the way that instantaneous phenomena like s_ldr or f_sensor1 affect the internal state of the system. The state-based part of the model is composed of the flow variables and the set of assertions. It is used to model the fact that in the presence of smoke the sensor is not able to produce high quality data even if its operating mode is nominal. Indeed, the cause of the low-quality data might not be due to a problem in the sensor (a low data rate issue) but due to the presence of smoke in the environment. This is modeled by asserting that the presence of smoke in the mask leads to a low quality input of the sensor. In this example, the model contains failure modes (one diagnostic objective is to estimate the current failing mode based on which UGV reconfigurations can be automatically planned during the mission) and fault events (a second diagnostic objective is to estimate the health of the UGV for maintenance after the mission).
6 Discussion

This aim of the paper is to present a specification language that has the great advantage to have a precise semantics as a constrained automaton. Within this modeling framework, we show that it is possible to model classical diagnosis problems that are rather different in the literature and these models do not use the full expressivity power of Altarica. Moreover, we investigated a case study from the robotics field where we need to use all the expressivity power of Altarica to express a more complex diagnosis problem that is a combination of a state-based problem and an event-based problem.

This paper did not discuss the way to effectively solve diagnosis problems within Altarica. Solving such generic problems with one diagnosis engine is our perspective. There already exist tools, like ARC, that are able to perform model analysis on Altarica specifications. Among these analyses, it is in particular possible to use commands like sequences and cuts: a cut can be seen as a function that extracts from the Altarica model an abstracted set of trajectories that match a specification. It is a way to explore the model from initial configurations to final configurations and extract relevant pieces of information. This is particularly this type of methods that [Kuntz et al., 2011] use to design diagnostic rules from an Altarica specification. This type of approach attempts to compile the pieces of information that are necessary to run a diagnostic engine. What we propose here as Altarica specifications of diagnosis problems is actually more generic than what is proposed in [Kuntz et al., 2011] and cannot be compiled as simple diagnostic rules. One naive way to solve a complete diagnostic problem written in Altarica would be to update the diagnoser approach [Sampath et al., 1995] to the underlying constrained automaton of the Altarica specification. This is indeed theoretically possible if the domain of the variables are finite however, we believe that it is not the right way to go due to the space complexity issue. We think that the best way to go would be to benefit from a close integration of tools that actually perform state-based diagnosis like [Feldman et al., 2010; Pencolé, 2014; Shchekotykhin et al., 2015] with tools that perform event-based diagnosis [Lamperti and Zanella, 2002; Pencolé and Cordier, 2005; Grastien and Anbulagan, 2013]. Investigating a diagnosis problem also require the diagnosability analysis of a problem. ARC is actually a model-checker that has been specifically developed to model-check Altarica specifications so it could be used to check diagnosability questions as well as NuSMV [Bozzano et al., 2014].

References

