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equations for long free surface gravity waves
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September 1, 2016

Abstract

A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing
dispersive waves on shallow water is proposed. From the mathematical point of view, the
SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a
differential constraint which is the mass conservation law. One major numerical challenge in
solving the SGN equations is the resolution of an elliptic problem at each time instant. It is
the most time-consuming part of the numerical method. The idea is to replace the ‘master’
lagrangian by a one-parameter family of ‘extended’ lagrangians, for which the corresponding
Euler - Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is
recovered by the ‘extended’ lagrangian in some limit (for example, when the corresponding
parameter is large). The choice of such a family of extended lagrangians is proposed and
discussed. The corresponding hyperbolic system is numerically solved by a Godunov type
method. Numerical solutions are compared with exact solution of the SGN equations. It
appears that the computational time in solving the hyperbolic system is much lower than in
the case where the elliptic operator is inverted. The new method is, in particular, applied
to study the ‘Favre waves’ which are non-stationary undular bores produced after reflection
of the fluid flow with a free surface at an immobile wall.

Keywords: dispersive equations, hyperbolicity, Godunov-type methods

1 Introduction

Dispersive systems of equations appearing in physics often admit a variational formulation. Nu-
merous physical examples can be found in the literature : water waves, quantum mechanics,
solid mechanics, capillary fluids, bubbly fluids, etc. (cf. [32], [1], [30], [8], [2], [15]). Even if the
physics is better captured by the dispersive models, the mathematical and numerical study of
such models represents a difficult problem. One example is the Serre-Green-Naghdi equations
(SGN equations) describing dispersive water waves [27], [17], [18], [29]. In particular, the inver-
sion of an elliptic operator is needed at each time step when the model is numerically solved [20],
[22]. As a consequence, this drastically increases the calculation time. An analogous approach
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was also applied in [25] for a linearised version of the SGN equations (Boussinesq equations).
Another important numerical problem is how to impose artificial non-reflecting (transparent)
conditions at the boundary of the calculation region for dispersive equations. The transparent
boundary conditions are important when one looks for waves passing through a bounded numer-
ical domain. This is always an open problem for general dispersive equations. Some progress
was recently done for scalar dispersive equations (Korteweg-de Vries et Benjamin-Bona-Mahony
equations) [3], [4]. However, in the theory of hyperbolic equations the last question is solved, at
least for homogeneous systems of equations (see [19], for example). Indeed, to avoid the wave
reflection, it is necessary just to ‘kill’ the Riemann invariants corresponding to the characteristics
which enter the domain of calculation. A natural idea is thus to replace dispersive equations by
approximate hyperbolic equations. The idea is not new and comes from the pioneering work by
Cattaneo [5] who replaced, in particular, the heat equation by a hyperbolic system of equations
with relaxation. A recent important development of such an approach to dissipative continuum
mechanics models can be found in [26] and [7]. However, such an approach can not be satisfac-
tory when the governing equation are the Euler-Lagrange equations for some ‘master’ lagrangian.
Indeed, the energy should be conserved, while it decreases when the relaxation is added. An idea
consists to consider an ‘extended’ lagrangian where some gradients or temporal derivatives of
unknowns are replaced by new variables that become true gradients or temporal derivatives only
in some limit (to be precised). Such a limit is not a viscous Cattaneo type limit, because the
energy of the system is conserved, but a ‘non-viscous’ limit allowing to ‘spread’ the energy of the
‘master’ system into additional degrees of freedom. This approach is reminiscent of the modeling
of micromorphic materials ([9], [21], [11], [12]) when it is restricted to reversible processes. The
formulation of the extended lagrangian as a function of usual macroscopic and new dual variables
is a rather intuitive procedure because the choice of the lagrangian is not unique. Also, some
obvious constraints should be satisfied when such a lagrangian is constructed. Indeed,

• At least a one-parameter family of ‘extended’ lagrangians should be properly choosen, giv-
ing in some limit (for example, when the parameter goes to infinity) the ‘master’ lagrangian.

• The Euler-Lagrange equations for the ‘extended’ lagrangian should be unconditionally hy-
perbolic. It means that the corresponding Cauchy problem is well posed. If the equations
are only conditionally hyperbolic, additional numerical problems can appear.

• In the linear approximation, the Whitham type condition [32] should be satisfied : the phase
velocities of waves corresponding to the ‘master ’ lagrangian should be interplaced between
the phase velocities corresponding to the ‘extended’ lagrangian for any wave numbers. This
condition is well known in hyperbolic equations where it is often called ‘subcharacteristic’
condition. In particular, it implies the linear stability of equilibrium solutions. Such a
condition should also be satisfied for dispersive equations. In particular, it allows us to
split the propagation wave modes and understand which one is responsible for the dispersive
properties of the limit system.

Some optimisation is thus needed to choose an ‘extended’ lagrangian satisfying these properties.
In Section 2, the SGN equations are presented. An ‘extended’ lagrangian and the correspond-

ing Euler-Lagrange equations are formulated in Section 3. A numerical method and numerical
results are given in Sections 4 and 5. Technical detail are given in Appendix.

2 The SGN equations

Consider the one-dimensional SGN equations describing dispersive non-linear long water waves in
a one layer flow over a flat bottom. The dissipative effects are neglected. Under these assumptions
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the equations read :

∂h

∂t
+
∂hu

∂x
= 0,

∂hu

∂t
+
∂hu2 + p

∂x
= 0, with p =

gh2

2
+

1

3
h2ḧ.

(1)

Here h > 0 is the total water depth and u is the average horizontal velocity. The ‘dots’ mean
the material derivatives:

ḣ =
∂h

∂t
+ u

∂h

∂x
, ḧ =

(
∂

∂t
+ u

∂

∂x

)
ḣ. (2)

The system (1) admits a variational formulation with the lagrangian (see [30],[13], [14], [15]) :

L =

∫ ∞
−∞

(
hu2

2
−W (h, ḣ)

)
dx, (3)

where the potential is

W (h, ḣ) =
gh2

2
− hḣ2

6
. (4)

To simplify the derivation of the governing equations, we will use the mass Lagrangian coordinate
q instead of the Eulerian coordinate x :

q =

∫ X

0

h0(s)ds, (5)

where X is the classical Lagrangian coordinate, and h0(X) is the initial data for the fluid depth.

Let τ =
1

h
. The lagrangian reads then:

L =

∫ ∞
−∞

L dq, L =
u2

2
− W̃ (τ, τt), (6)

with

u = xt, τ = xq, W̃ (τ, τt) =
g

2τ
− 1

6

(
∂1/τ

∂t

)2

. (7)

The governing equations in the mass Lagrangian coordinates can be written as :

τt − uq = 0, ut + pq = 0, (8)

with

p = −δW̃
δτ

= −

(
∂W̃

∂τ
− ∂

∂t

(
∂W̃

∂τt

))
=

g

2τ2
+

2

3

τ2t
τ5
− 1

3

τtt
τ4
. (9)

They admit the energy conservation law :(
u2

2
+ e

)
t

+ (pu)q = 0, (10)

with

e =
g

2τ
+

1

6

τ2t
τ4
. (11)
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3 The method of an ‘extended’ lagrangian for the SGN
equations

Let τ = xq, and u = xt. We introduce now a non-equilibrium variable η having the propriety
that in equilibrium, one has η = 1

τ . We take the extended lagrangian under the following form :

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− α(τ, η)

(η − 1
τ )2

6
. (12)

To guarantee the convergence (weak) of the solutions of the Euler-Lagrange equations for the
lagrangian (12), to the solutions of the SGN equations (8)-(9), the function α(τ, η) should be quite
large. Below, we will precise this function. Let us consider the following three one-parameter
lagrangians corresponding to different choice of α(τ, η):

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ

(η − 1
τ )2

6
, α = λ = const > 0. (13)

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ (ητ − 1)2

6
, α = λτ2, λ = const > 0. (14)

L̂ =

∫ ∞
−∞

L̂ dq, L̂ =
x2t
2

+
η2t
6
− g

2τ
− λ (ητ − 1)4

6
, α = λτ2(ητ − 1)2, λ = const > 0. (15)

In all the cases (13) - (15) the parameter λ is large.

3.1 First lagrangian α(η, τ) = λ

We consider first the extended lagrangian (13). The corresponding Euler-Lagrange equations
read : 

− ∂

∂t

(
∂L̂

∂xt

)
− ∂

∂q

(
∂L̂

∂xq

)
= 0,

∂L̂

∂η
− ∂

∂t

(
∂L̂

∂ηt

)
= 0.

(16)

Complemented with the mass conservation law which is just the compatibility condition τt−uq =
0 with τ = xq and u = xt, they can be rewritten as :

τt − uq = 0,

ut −
(
g

τ3
+

λ

τ3

(
1

τ
− 2

3
η

))
τq −

λ

3

ηq
τ2

= 0,

ηtt = λ

(
1

τ
− η
)
.

(17)

This system can be rewritten in conservative form :

τt − uq = 0,

ut +

(
g

2τ2
+

λ

3τ2

(
1

τ
− η
))

q

= 0,

ηt = w,

wt = λ

(
1

τ
− η
)
.

(18)
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The characteristic slopes are :

ξ1,2 = 0, ξ3,4 = ±

√
g

τ3
+

λ

τ3

(
1

τ
− 2

3
η

)
. (19)

This model is hyperbolic if η <
3

2

(
g

λ
+

1

τ

)
. This system is similar to the one proposed by

Liapidevskii and Gavrilova (2008) [23] where a different approach based on the averaging of
instantaneous variables was used. Due to the Noether theorem, system (18) admits the energy
conservation law :(

u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)2

6τ2

)
t

+ (pu)q = 0, p =
g

2τ2
+

λ

3τ2

(
1

τ
− η
)
.

The system (18) is only conditionally hyperbolic, so it does not fully satisfies all the constraints
mentioned in the Introduction.

3.2 Second lagrangian α(τ, η) = λτ 2

Consider now the extended lagrangian (14). The Euler-Lagrange equations imply : ut −
(
g

τ3
+
λ

3
η2
)
τq −

λ

3
(2τη − 1)ηq = 0,

ηtt = −λ (ητ − 1) τ.
(20)

This system can be rewritten in conservative form :
τt − uq = 0,

ut +

(
g

2τ2
− λ

3
(τη − 1)η

)
q

= 0,

ηt = w,
wt = −λ (ητ − 1) τ.

(21)

This system is unconditionally hyperbolic, the characteristic slopes are :

ξ1,2 = 0, ξ3,4 = ±
√

g

τ3
+
λ

3
η2 (22)

System (21) admits the energy conservation law :(
u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)2

6

)
t

+ (pu)q = 0, p =
g

2τ2
− λ

3
(τη − 1) η.

For the original Green-Naghdi model the phase velocity cp = ω/k of the linear waves linearized
at u = 0, τ = τ0 is :

c2p =
g

τ30 + k2

3τ0

(23)

For the new model, the phase velocity reads (see Appendix for details):

(
c±p
)2

=

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2 ±
√(

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2

)2
− 4 gλ

τ0k2

2
. (24)
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The phase velocity corresponding to the sign ‘minus’ (‘plus’) is called slow (rapid) phase velocity.
These phase velocities are interplaced between the phase velocities corresponding to the SGN
lagrangian (see Figures 1 and 2), so the Whitham type condition is also satisfied. On can see in
Figure 1 that the slow waves correspond to the SGN dispersion relation defined by (23) if λ is
suficiently large.

Figure 1: We represent the evolution of the slow phase velocity c−p defined by (24) as a function
of the wave number k for the SGN (dashed line) and for the new model with λ = 1 m2 s−2

(thin line) and λ = 160 m2 s−2 (thick line). The value of τ0 is 1m−1. When the parameter λ is
sufficiently large, the phase velocity is close to that of the original model defined by (23).

3.3 Third lagrangian α(τ, η) = λτ 2 (ητ − 1)2

We consider now the extended lagrangian (15). The Euler-Lagrange equations imply: ut −
( g
τ3

+ 2λ(ητ − 1)2η2
)
τq −

2λ

3
(τη − 1)2(4τη − 1)ηq = 0,

ηtt = −2λ (ητ − 1)
3
τ.

(25)

This system can again be rewritten in conservative form :
τt − uq = 0,

ut +

(
g

2τ2
− 2λ

3
(τη − 1)3η

)
q

= 0,

ηt = w,

wt = −2λ (ητ − 1)
3
τ.

(26)

This system is unconditionally hyperbolic, with the following characteristic slopes :

ξ1,2 = 0, ξ3,4 = ±
√

g

τ3
+ 2λ(ητ − 1)2η2. (27)

System (26) admits the energy conservation law :(
u2

2
+
w2

6
+

g

2τ
+ λ

(ητ − 1)4

6

)
t

+ (pu)q = 0, p =
g

2τ2
− 2λ

3
(τη − 1)

3
η.
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Figure 2: We represent the evolution of the rapid phase velocity c+p as a function of the wave
number k for the SGN equations (dashed line) and for the new model with λ = 1 m2 s−2 (thin
line) and λ = 160 m2 s−2 (thick line). The value of τ0 is 1m−1. This velocity is always higher
then that of the original model. It describes the evolution of ‘parasitic’ high-frequency waves
related to the modification of the lagrangian.

The phase velocity of linear waves does not depend on the wave number :

c2p =
g

τ3
. (28)

Since the dispersion effects are not captured in the linear approximation, the model is not able
to deal with an accurate description of the SGN equations. In the following, we will concentrate
on the numerics of the Euler-Lagrange equations (21) obtained from the lagrangian (14).

4 Numerical resolution

The lagrangian form of system (21) is :

∂Ũ

∂t
+
∂F̃

∂q
= S̃, (29)

with Ũ = (τ, u, η, w)
T

, F̃ =
(
−u, g

2τ2 − λ
3 (τη − 1)η, 0, 0

)T
and S̃ = (0, 0, w,−λτ(ητ − 1))

T
. The

Eulerian form of system (21) is :
∂U

∂t
+
∂F

∂x
= S, (30)

with U = (h, hu, hη, hw)
T

, F =
(
hu, hu2 + gh2

2 −
λ
3 ( ηh − 1)η, hηu, hwu

)T
and S =

(
0, 0, hw,−λ( ηh − 1)

)T
.

In the following, we will use the Eulerian form (30) to have a possibility to compare the numeri-
cal results with other numerical approaches. Since, the system is hyperbolic and conservative, a
classical Godunov- type method can be used followed by the Strang splitting strategy. Equation
(30) is split into a hyperbolic part :

∂U

∂t
+
∂F

∂x
= 0, (31)
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and an ODE part (the treatment of the right-hand side S):

∂U

∂t
= S. (32)

The operators associated with the discretization of (31) and (32) are denoted Hh and Hr,
respectively. The second-order Strang splitting procedure is used, solving successively (31) and
(32) with adequate time increments:

U
(1)
i = Hr

(
∆t

2

)
Un
i ,

U
(2)
i = Hr (∆t)U

(1)
i ,

Un+1
i = Hr

(
∆t

2

)
U

(2)
i .

(33)

Since Hh and Hr are of second order accuracy operators, the procedure (33) gives us a second-
order accuracy approximation of (30) [24].

4.1 Hyperbolic step

The equation (31) is solved by a conservative scheme for hyperbolic systems [24]

Un+1
i = Un

i −
∆t

∆x

(
F∗i+1/2 − F∗i−1/2

)
(34)

The numerical flux function Fi+1/2 is computed by using the Rusanov method [28]:

Fi+1/2 =
1

2

(
F(Un

i+1)− F(Un
i )− κni+1/2(Un

i+1 + Un
i )
)

(35)

The parameter κni+1/2 is obtained by using the Davis approximation [6] :

κni+1/2 = max(|ci+1|, |ci|), (36)

where ci are eigenvalues of the system (30). The usual Courant-Friedrichs-Lewy (CFL) condition
is satisfied

∆t = CFL
∆x

|cmax|
, with CFL < 1, (37)

where cmax is a maximal value of the characteristic velocities over the mesh.

4.2 ODE step

The source terms treatment is reduced to a second order ordinary differential equation with
constant coefficients which can be solved exactly. Indeed, for system (21), the relaxation system
(32) is :

∂u

∂t
= 0,

∂τ

∂t
= 0,

∂η

∂t
= w,

∂w

∂t
= λ (1− ητ) τ.

(38)
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It comes :

u(t+ dt) = u(t), τ(t+ dt) = τ(t),

η(t+ dt) =

(
η(t)− 1

τ(t)

)
cos(τ(t)

√
λdt) +

w(t)

τ(t)
√
λ
sin(τ(t)

√
λdt) +

1

τ(t)
,

w(t+ dt) =

(
−τ(t)

√
λ

(
η(t)− 1

τ(t)

)
sin(τ(t)

√
λdt) + w(t)cos(τ(t)

√
λdt)

)
.

(39)

5 Numerical results

5.1 Solitary wave solutions

Solitary wave solutions to the SGN system of the form (h(ξ), u(ξ)) where ξ = x−Dt and D is a
constant wave velocity, are :

h(ξ) = h1 + (h2 − h1)sech2
(
ξ
2

√
3(h2−h1)
h2h2

1

)
,

u(ξ) = D
(

1− h1

h(ξ)

)
,

(40)

with D2 = gh2. In the following example, we take h1 = 10 m, h2 = 12.1 m and g = 10 m/s2. We
initialise the density and the velocity with the exact solution and we impose η = h and w = 0.
The maximum of the solitary wave, moving to the right, was initially situated at x = 200 m.
One can notice that the initial data is not an exact solution to the extended system. Indeed, the
pressure in the SGN system given by p = 1

2gh
2 + 1

3h
2ḧ is not initially hydrostatic, while it is the

case in the extended system. Then the solution of the extended system evolves. In Figure 3, we
show the solution for λ = 300 m2/s2 and λ = 3000 m2/s2, for the same mesh size ∆x = 0.125 m.
For λ = 3000 m2/s2 the difference between the exact solution of the SGN equations and the
numerical solution corresponding to the ‘extended’ Lagrangian is almost invisible with the naked
eye.

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 3650  3700  3750  3800  3850  3900  3950

x (m)

Depth (m)

Figure 3: Comparison of the solitary wave solution corresponding to λ = 300 (dashed line) and
λ = 3000 (dots) with the exact solitary wave solution of the SGN equation (thin curve). The
difference between exact solution and that corresponding to λ = 3000 is almost invisible. The
mesh size ∆x = 0.125 m.
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5.2 Favre waves

We consider the experiment where a fluid layer with a free surface is impacting a wall (‘water
hammer problem with a free surface’) [10], [31]. Due to dispersion, the reflected wave is rather
a wave train of waves of different lengths and amplitudes (called also ‘Favre waves’, see Figure
4). The SGN equations can be used to model this problem until some critical impact velocity
determined in terms of the relative (with respect to the velocity of the reflected wave) Froude
number F . Above this critical value, the model is no more valid because of the wave breaking
(see details in [16]). To avoid the difficulties related to the wall boundary conditions, we consider
a symmetric impact test problem. The impact velocity u0 is related to the Froude number F by
the formula :

u0 =
√
gh0

(
F − 1 +

√
1 + 8F 2

4F

)
In Figure 5, we compare the numerical results at time t = 54 s with the results obtained by the
method [20]. The continuous blue line corresponds to the numerical solution of the SGN equations
obtained by the method [20] on a 32000 cells mesh. Our results (second order extension with
Van Leer Limiter) were obtained on different meshes (2000, 4000 and 8000 cells) (see Figure 5).
The convergence is clearly visible. A good estimation of the first wave amplitude can be obtained
with a coarser mesh. In Table 6, we show the computational time for the different mesh sizes. In

x

z

amax
am

D

amin

u0 h0

Figure 4: A sketch of Favre waves.

Figure 7, we represent the evolution of the computational time with the mesh size (normalized
with the computational time of the coarser grid). One can see that the computational time
increases much slower with the mesh refinement for the new hyperbolic approach. Moreover, the
new approach is much easier to parallelise by using the domain decomposition methods since
equations are hyperbolic. In Figure 8, the numerical results are compared with the experiments
of [31]. The results are in perfect agreement until the wave breaking occurs corresponding to the
Froude number about 1.25.

6 Conclusion

A new numerical approach based on an ‘extended’ lagrangian is proposed to solve dispersive
equations coming from the Euler-Lagrange equations. In particular, this approach transforms the
dispersive Serre-Green-Naghdi equations into hyperbolic ones. The computational time is much
lower with a new approach, and it’s now possible to think about multi-dimensional resolution
with a reasonable computational time. Higher order extension based on WENO, ADER or
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 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 120  140  160  180  200  220  240  260  280  300

x (m)

Depth

Figure 5: Comparison at time t = 54s for the Froude number Fr = 1.16 in the Favre experiment.
It corresponds to h0 = 1 m and the impact velocity u0 = 0.2

√
gh0 m/s, g = 10 m/s. The result

obtained by the method developed in [20] on a 32000 cells mesh is shown with a thin continuous
blue line. The results obtained with the second order extension of the new model are shown
for different mesh sizes : 2000 (red thick continuous line), 4000 (blue dashed line), 8000 (green
dashed-dot line). The agreement is good and the convergence is guaranteed.

Mesh size Hyperbolic model Approach [20]
2000 1.12 12.44
4000 4.65 191.84
8000 19.32 1844
16000 75.52 21200

Figure 6: Computational time (in seconds) for the hyperbolic model and for the approach [20].

11



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.5  1  1.5  2  2.5

log(N/N0)

Normalized computationnal time log(t/t0)

Figure 7: Computational time normalized by N0 = 2000. The crosses correspond to [20], the
dots correspond to the hyperbolic method. A thin line has the slope 3.8 while a thick line has a
slope 2. The computational time increases much faster for the approach [20].

other methods can be easily developed for this approach. The same approach can also be
applied to modelling fluids containing gas bubbles, because the governing equations have the
same mathematical structure [13], [14].
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A Dispersion relation

We consider the Euler-Lagrange equations for (14) :
τt − uq = 0,

ut −
(
g

τ3
+
λ

3
η2
)
τq −

λ

3
(2τη − 1)ηq = 0,

ηtt = −λ (ητ − 1) τ.

(41)

Consider the perturbation of a constant state u = 0, τ = τ0, η = η0, τ0η0 = 1 : u = εũ,
τ = τ0 + ετ̃ , η = η0 + εη̃. At first order the system reads :

τ̃t − ũq = 0,

ũt −
(
g

τ30
+
λ

3
η20

)
τ̃q −

λ

3
(2τ0η0 − 1)η̃q = 0,

η̃tt = −λ
(
η̃τ20 + τ̃

)
.

(42)

We consider monochromatic perturbations : ũ = u1e
i(kx−ωt), τ̃ = τ1e

i(kx−ωt) and η̃ = η1e
i(kx−ωt).

We get : 
ωτ1 + ku1 = 0,

ωu1 +

(
g

τ30
+

λ

3τ20

)
kτ1 +

λ

3
kη1 = 0,

ω2η1 − λ
(
η1τ

2
0 + τ1

)
= 0.

(43)
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Figure 8: Comparison between the experimental results of [31] (squares) and the numerical
results. The upper squares indicate the amplitude of the first wave, while the lower squares
show the amplitude of the trough after the first wave. The agreement is perfect until the Froude
number about 1.25. After this critical value, the model is no more valid, the wave breaking occurs
which is not described by the SGN model (see [16] for better modeling of breaking waves). The
middle straight line corresponds to the solution of the Saint-Venant equations.

It can be also written as :
Ax = 0, xT = (τ1, u1, η1), (44)

with

A =

 ω k 0

k
(
g
τ2
0

+ λ
3τ2

0

)
ω λk

3

−λ 0 ω2 − λτ20

 . (45)

The corresponding homogeneous linear system has non-trivial solution if and only if the deter-
minant of A is zero :

c4p − c2p
(
g

τ30
+

λ

3τ20
+
λτ20
k2

)
+

gλ

τ0k2
= 0. (46)

The equation has two real positive roots c2p :

c2p =

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2 ±
√(

g
τ3
0

+ λ
3τ2

0
+

λτ2
0

k2

)2
− 4 gλ

τ0k2

2
. (47)
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