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Introduction

The systematic studies of penalizations started in 2003 with the works of Roynette, Vallois and Yor, essentially on Brownian motion; see for instance [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by normalized exponential weights[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF], or [START_REF] Roynette | Penalising Brownian paths[END_REF] for a monograph on this subject. Since then, many authors have generalized their results to other processes. When dealing with weights involving local times (L t , t ≥ 0), we may refer in particular to Debs [START_REF] Debs | Penalisation of the standard random walk by a function of the one-sided maximum, of the local time, or of the duration of the excursions[END_REF] for random walks, Najnudel, Roynette and Yor [START_REF] Najnudel | A global view of Brownian penalisations[END_REF] for Markov chains and Bessel processes, Yano, Yano and Yor [START_REF] Yano | Penalising symmetric stable Lévy paths[END_REF] for stable processes, or Salminen and Vallois [START_REF] Salminen | On subexponentiality of the Lévy measure of the diffusion inverse local time; with applications to penalizations[END_REF] and Profeta [START_REF] Profeta | Penalizing null recurrent diffusions[END_REF] for linear diffusions. In most of these papers, the authors focus on penalizations with a natural clock, letting the time t go to infinity in quantities such as P[F s f (L t )] P[f (L t )] where f is a positive integrable function and (F s ) is a bounded adapted process. This in turn requires some assumptions on the considered processes, see for instance Salminen and Vallois [START_REF] Salminen | On subexponentiality of the Lévy measure of the diffusion inverse local time; with applications to penalizations[END_REF], where the authors introduce a large family of diffusions for which local time penalization results apply.

In this paper, we shall rather study local time penalizations with different clocks, i.e.

we shall study the limit of quantities such as

P[F s f (L τ )] P[f (L τ )]
as τ tends to infinity in a certain sense along a parametrized family of random times. Examples of such results already appear in the literature, essentially when dealing with processes conditioned to avoid 0, i.e. with the function f (u) = 1 {u=0} . We refer to Knight [START_REF] Knight | Brownian local times and taboo processes[END_REF] for Brownian motions, Chaumont and Doney [START_REF] Chaumont | On Lévy processes conditioned to stay positive[END_REF] and Doney [START_REF] Chaumont | On Lévy processes conditioned to stay positive[END_REF] for Lévy processes, and Yano and Yano [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF] for diffusions. Note in particular that, in general, different choices of τ lead to different limits, hence different penalized processes.
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We consider here a generalized one-dimensional diffusion X (in the sense of Watanabe [START_REF] Watanabe | On time inversion of one-dimensional diffusion processes[END_REF]) defined on an interval I whose left boundary is 0, with scale function s(x) = x and speed measure m(dx). We assume that the function m : [0, +∞) → [0, +∞] is non-decreasing, right-continuous, null at 0 and such that

m is     
strictly increasing on [0, ℓ ′ ), flat and finite on [ℓ ′ , ℓ), infinite on [ℓ, +∞) (1.1) where 0 < ℓ ′ ≤ ℓ ≤ +∞. The choice of the right boundary point of I will depend on m; see [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF]Section 2] for the boundary classification; see also Section 7. As for the left boundary point, we assume that 0 is regular-reflecting for X. This implies in particular that X admits a local time at 0, which we shall denote (L t , t ≥ 0), normalized so that P x ∞ 0 e -qt dL t = r q (x, 0) r q (0, 0) ,

where r q (x, y) denotes the resolvent density of X with respect to m(dy). Let φ q and ψ q be the two classical eigenfunctions associated to X via the integral equations, for x ∈ [0, ℓ):

φ q (x) =1 + q x 0 dy (0,y] φ q (z)m(dz), (1.3) 
ψ q (x) =x + q x 0 dy (0,y] φ q (z)m(dz). (1.4) 
Set

H(q) = lim x↑ℓ ψ q (x) φ q (x) . (1.5)
Denoting by m(∞) the limit lim x→+∞ m(x), we have lim q↓0 H(q) = ℓ and lim

q↓0 qH(q) = 1 m(∞) =: π 0 . (1.6) 
With these notations, the resolvent density of X is given by

r q (x, y) = r q (y, x) = H(q)φ q (x) φ q (y) - ψ q (y) H(q) , 0 ≤ x ≤ y, x, y ∈ I ′ , (1.7) 
where I ′ is defined in [13, Section 2] (see also Section 7), We finally define, following [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF],

h q (x) =r q (0, 0)r q (0, x), (1.8)

h 0 (x) = lim q↓0 h q (x) = x -π 0 x 0 m(y)dy, (1.9) 
and we call h 0 the normalized zero resolvent.

Let us outline the main results of the paper. For simplicity, we assume ℓ ′ = ℓ = ∞ and we take up the following three cases:

the boundary ∞ m(∞) (1,∞) xm(dx) (i) type-1-natural = ∞ = ∞ (ii) type-2-natural < ∞ = ∞ (iii) entrance < ∞ < ∞
The Brownian motion reflected at 0 is an example of case (i), where π 0 = 0 and h 0 (x) = x.

Some other examples will be given in Section 7. Let us now present our main results of the local time penalizations with various clocks.

1 • ) Let e q denote an exponential random variable with parameter q which is independent of the diffusion considered. We may adopt {e q : q > 0} as a clock since e q → ∞ in law as q ↓ 0.

Theorem 1.1. Let f ∈ L 1 + and x ≥ 0. For any bounded stopping time T and any bounded adapted process (F t ),

H(q)P x F T f (L eq ); T < e q -→ q↓0 P x [F T N h 0 ,f T ] and H(q)P x F T f (L eq ) -→ q↓0 P x [F T M h 0 ,f T ] (1.10)
where the P x -supermartingale N h 0 ,f and the P x -martingale M h 0 ,f are defined by

N h 0 ,f t = h 0 (X t )f (L t ) + +∞ 0 f (L t + u)du, t ≥ 0 (1.11)
and

M h 0 ,f t = N h 0 ,f t + π 0 t 0 f (L u )du, t ≥ 0.
(1.12) 2 • ) For a ∈ I, let T a = inf{t ≥ 0 : X t = a} denote the first hitting time of a by X. We may adopt {T a : a ≥ 0} as a clock since T a → ∞ a.s. as a → ∞.

Theorem 1.2. Assume that ∞ is natural. Let f ∈ L 1 + and x ≥ 0. For any bounded stopping time T and any bounded adapted process (F t ),

aP x [F T f (L Ta ); T < T a ] -→ a↑+∞ P x [F T M s,f T ] and aP x [F T f (L Ta )] -→ a↑+∞ P x [F T M s,f T ] (1.13)
where M s,f is the P x -martingale defined by

M s,f t = X t f (L t ) + +∞ 0 f (L t + u)du, t ≥ 0. (1.14) 3 
• ) For a ≥ 0, let (L a t , t ≥ 0) denote the local time of X at level a, and define its right-continuous inverse:

η a u = inf{t ≥ 0, L a t > u}. (1.15)
We may adopt as a clock {η a u : a ≥ 0} for a fixed u > 0, since η a u → ∞ in law as a → ∞.

Theorem 1.3. Assume that ∞ is either type-1-natural or type-2-natural. Let f ∈ L 1 + , x ≥ 0 and u > 0. For any bounded stopping time T and any bounded adapted process (F t ),

aP x F T f (L η a u ); T < η a u -→ a↑+∞ P x [F T M s,f T ] and aP x F T f (L η a u ) -→ a↑+∞ P x [F T M s,f T ] (1.16)
where M s,f is the P x -martingale defined above.

We may also adopt as a clock {η a u : u ≥ 0} for a fixed a > 0, since η a u → ∞ a.s. as u → ∞. 

P x [F T M β,α T ] (1.17)
where M β,α is the P x -martingale defined by

M β,α t = 1 + β(X t ∧ a) 1 + βa exp -βL t + β 1 + βa L a t , t ≥ 0. (1.18)
This paper is organized as follows. The local time penalizations are studied with an independent exponential clock in Section 2, then with a hitting time clock in Section 3 and finally with inverse local time clocks in Section 4. In Section 5, we study universal σ-finite measures. In Section 6, we characterize the limit measure for an exponential weight. The final section, Section 7, is an appendix on our boundary classification.

Local time penalization with an exponential clock

Let L 1 + denote the set of non-negative functions f on [0, ∞) such that ∞ 0 f (u)du < ∞. Lemma 2.1. Let f ∈ L 1 + , q > 0 and x ∈ I. Then P x [f (L eq )] = 1 H(q) h q (x)f (0) + r q (x, 0) r q (0, 0) ∞ 0 e -u/H(q) f (u)du . (2.1)
Proof. Using the excursion theory, we have

P 0 ∞ 0 f (L t )qe -qt dt =P 0 u ηu η u- f (u)qe -qt dt (2.2) =P 0 u f (u)e -qη u- T 0 (p(u)) 0 qe -qt dt (2.3) =P 0 ∞ 0 f (u)e -qηu du n 1 -e -qT 0 (2.4) = ∞ 0 f (u)e -u/H(q) du • 1 H(q) , (2.5) 
where we write p for the excursion point process and set η u = s≤u T 0 (p(s)), the inverse local time at 0. We now obtain

P x [f (L e q )] =P x ∞ 0 f (L t )qe -qt dt (2.6) =P x T 0 0 f (L t )qe -qt dt + P x e -qT 0 P 0 ∞ 0 f (L t )qe -qt dt (2.7) =f (0) 1 - r q (x, 0) r q (0, 0) + r q (x, 0) r q (0, 0) • ∞ 0 f (u)e -u/H(q) du • 1 H(q) . (2.8) 
This yields (2.1).

We have the following remarkable formulae.

Theorem 2.2. Let f ∈ L 1 + and x ∈ I. Then the following assertions hold:

(i) If ℓ < ∞, i.e., 0 is transient, then

P x [f (L ∞ )] = 1 ℓ xf (0) + 1 - x ℓ ∞ 0 e -u/ℓ f (u)du . (2.9) 
(ii) If π 0 > 0, i.e., 0 is positive recurrent, then

P x ∞ 0 f (L t )dt = 1 π 0 h 0 (x)f (0) + ∞ 0 f (u)du . (2.10)
Proof. (i) Suppose f is bounded. Denote g = sup{t : X t = 0}. Then, at every sample point, we have f (L (1/q)e 1 ) = f (L g ) = f (L ∞ ) for q > 0 small enough. Hence we obtain P x [f (L eq )] = P x [f (L (1/q)e 1 )] → P x [f (L ∞ )] as q ↓ 0 by the dominated convergence theorem. It is obvious that the right hand side of (2.1) converges to that of (2.9). Hence we obtain (2.9).

For the general case, we have the formula (2.9) for f ∧ n and from this, letting n → ∞, we obtain (2.9) for f . (ii) We may rewrite (2.1) as

P x ∞ 0 f (L t )e -qt dt = 1 qH(q) h q (x)f (0) + r q (x, 0) r q (0, 0) ∞ 0 e -u/H(q) f (u)du . (2.11)
Letting q ↓ 0, we obtain

P x ∞ 0 f (L t )e -qt dt → P x ∞ 0 f (L t )
dt by the monotone convergence theorem, and hence we obtain (2.10).

Let F 0 t = σ(X s : s ≤ t) and F t = F 0 t+ . Note that e q is independent of F ∞ := σ( t F t ). Lemma 2.3. Let f ∈ L 1 + and x ∈ I. For q > 0, set N q t = H(q)P x f (L eq )1 {t<eq} |F t , M q t = H(q)P x f (L eq )|F t (2.

12)

and

N h 0 ,f t =h 0 (X t )f (L t ) + 1 - X t ℓ ∞ 0 e -u/ℓ f (L t + u)du, (2.13) 
M h 0 ,f t =N h 0 ,f t + A h 0 ,f t , (2.14) 
A h 0 ,f t =π 0 t 0 f (L u )du. ( 2 

.15)

Then the following assertions hold:

(i) N q t → N h 0 ,f t and M q t → M h 0 ,f t , P x -a.s. as q ↓ 0; (ii) (N h 0 ,f t ) is a P x -supermartingale.
Proof. In what follows in this section we sometimes write N t , M t and A t simply for

N h 0 ,f t , M h 0 ,f t and A h 0 ,f t , respectively. (i) Since f (a + •) ∈ L 1
+ , we have, applying the Markov property, N q t =H(q)e -qt P Xt [f (a + L eq )] a=Lt (2.16)

=e -qt h q (X t )f (L t ) + r q (X t , 0) r q (0, 0) ∞ 0 e -u/H(q) f (L t + u)du . (2.17) It is now clear that N q t → N t , P x -a.s. Since A q t :=M q t -N q t (2.18) =H(q)P x [f (L eq )1 {eq≤t} |F t ] (2.19) =qH(q) t 0 f (L u )e -qu du, (2.20) 
we obtain A q t → A t and M q t → M t , P x -a.s. (ii) Since for s ≤ t we have 1 {t<eq} ≤ 1 {s<eq} , we easily see that (N q t ) is a P xsupermartingale. For s ≤ t, we apply Fatou's lemma to obtain

P x [N t |F s ] ≤ lim inf q↓0 P x [N q t |F s ] ≤ lim inf q↓0 N q s = N s , (2.21) 
which shows that (N t ) is a P x -supermartingale.

Theorem 2.4. Let f ∈ L 1 + and x ∈ I. Then, for any finite stopping time T , it holds that

N q T -→ q↓0 N h 0 ,f T in L 1 (P x ). (2.22)
Consequently, for any bounded adapted process (F t ), it holds that

lim q↓0 H(q)P x [F T f (L e q ); T < e q ] = P x [F T N h 0 ,f T ]. (2.23)
Proof. Observe first by Fatou's lemma that

P x [N T ] ≤ lim inf n→∞ P x [N T ∧n ] ≤ P x [N 0 ] < ∞. (2.24)
Let us compute N q T . We have

N q T =e -qT h q (X T )f (L t ) + e -qT r q (X T , 0) r q (0, 0) ∞ 0 e -u/H(q) f (L T + u)du (2.25) =(I) q + (II) q .
(2.26)

We write similarly

N T =h 0 (X T )f (L T ) + 1 - X T ℓ ∞ 0 e -u/ℓ f (L T + u)du (2.27) =(I) + (II).
(2.28) Since (II) q ≤ ∞ 0 f (u)du, we may apply the dominated convergence theorem to obtain (II) q → (II) in L 1 (P x ).

If π 0 = 0, then we have (I

) q ≤ X T f (L T ) = h 0 (X T )f (L T ) ≤ N T . If π 0 > 0 and ℓ ′ is regular-reflecting, then we have h 0 (x) ≥ cx with c = h 0 (ℓ ′ )/ℓ ′ > 0, since h 0 (x) is concave. We now have (I) q ≤ X T f (L T ) ≤ c -1 h 0 (X T )f (L T ) ≤ c -1 N T . In both cases, since P x [N T ] ≤ P x [N 0 ] < ∞,
we may apply the dominated convergence theorem to obtain (I) q → (I) in L 1 (P x ).

If π 0 > 0 and ℓ ′ is either entrance or natural, we have (I) q ≤ X T f (L T ). Since we see by (ii) of Lemma 3.2 that

P x [X T f (L T )] ≤ P x [N s,f T ] ≤ P x [N s,f 0 ] = xf (0) + 1 - x ℓ ∞ 0 e -u/ℓ f (u)du < ∞, (2.29)
we may apply the dominated convergence theorem to obtain (I) q → (I) in L 1 (P x ).

Therefore we have obtained the former assertion.

For the latter assertion, we have

H(q)P x [F T f (L eq ); T < e q ] = P x [F T N q T ] -→ q↓0 P x [F T N T ].
(2.30) Theorem 2.5. Let f ∈ L 1 + and x ∈ I. Let T be a finite stopping time such that

P x T 0 f (L u )du < ∞. (2.31)
Then it holds that

M q T → M h 0 ,f T in L 1 (P x ). (2.32)
Consequently, for any bounded adapted process (F t ), it holds that

lim q↓0 H(q)P x [F T f (L e q )] = P x [F T M h 0 ,f T ]. (2.33)
Proof. By (2.31), we have

T 0 f (L u )e -qu du → T 0 f (L u )du in L 1 (P x ). This shows that A q T → A T in L 1 (P x ), which implies M q T → M T in L 1 (P x )
. The latter assertion is obvious.

Theorem 2.6. The condition (2.31) is satisfied whenever T is a bounded stopping time.

For any f ∈ L 1 + , it holds that

M h 0 ,f t = h 0 (X t )f (L t ) + 1 - X t ℓ ∞ 0 e -u/ℓ f (L t + u)du + π 0 t 0 f (L u )du (2.34) is a P x -martingale. Consequently, the identity N h 0 ,f t = M h 0 ,f t -A h 0 ,f
t may be regarded as the Doob-Meyer decomposition of the supermartingale (N h 0 ,f t ).

Proof. Since

q 2 ∞ 0 P x t 0 f (L u )du e -qt dt = P x ∞ 0 f (L u )qe -qu du = P x f (L eq ) < ∞ (2.35)
and since t → P x t 0 f (L u )du is increasing, we see that P x t 0 f (L u )du < ∞ for all t ≥ 0. In other words, the assumption (2.31) is satisfied when T is a bounded stopping time. This shows that (M t ) is a P x -martingale. Remark 2.7. If ℓ ′ is type-1-natural, then the identity (2.34) becomes

M h 0 ,f t = X t f (L t ) + ∞ 0 f (L t + u)du, (2.36) 
which is nothing else but the Azema-Yor martingale. In this sense we may regard the identity (2.34) as a generalization of the Azema-Yor martingale. Another generalization will be given in Theorem 3.5.

Remark 2.8. If we take f (u) = 1 {u=0} , we have

M h 0 ,f t = h 0 (X t )1 {T 0 >t} + π 0 (T 0 ∧ t).
(2.37)

In particular, from the identity

P x [M h 0 ,f 0 ] = P x [M h 0 ,f t ], we obtain h 0 (x) = P x [h 0 (X t ); T 0 > t] + π 0 P x [T 0 ∧ t], (2.38) 
which verifies the first assertion of Theorem 6.4 of [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF].

Local time penalization with a hitting time clock

In this section we assume that ℓ(= ℓ ′ ) is either entrance or natural. Since any point in [0, ℓ) is accessible but ℓ is not, we have

P x (T a → ∞ as a ↑ ℓ) = 1. (3.1) Lemma 3.1. Let f ∈ L 1 + and x ∈ I.
Then, for any a ∈ I with x < a,

P x [f (L Ta )] = 1 a xf (0) + 1 - x a ∞ 0 e -u/a f (u)du . (3.2)
Proof. Let P a x denote the law of X •∧Ta under P x . Then we have

P x [f (L Ta )] = P a x [f (L ∞ )]. (3.3)
Since {X, P a x } is a diffusion process on [0, a] where a is a regular-absorbing boundary, we may use (i) of Theorem 2.2 and obtain (3.2). Lemma 3.2. Let f ∈ L 1 + and x ∈ I. For any a ∈ I with x < a, set

N a t = aP x f (L Ta )1 {t<Ta} |F t , M a t = aP x [f (L Ta )|F t ] (3.4)
and

M s,f t =X t f (L t ) + 1 - X t ℓ ∞ 0 e -u/ℓ f (L t + u)du. (3.5) 
Then the following assertions hold:

(i) N a t → M s,f t and M a t → M s,f t , P x -a.s. as a ↑ ℓ; (ii) (M s,f t ) is a P x -supermartingale and is a local P x -martingale.

Proof. In what follows in this section we sometimes write M t simply for M s,f t .

(i) Since f (b + •) ∈ L 1 + , we have, by Lemma 3.1, N a t =a P Xt [f (b + L Ta )]| b=Lt 1 {t<Ta} (3.6) = X t f (L t ) + 1 - X t a ∞ 0 e -u/a f (L t + u)du 1 {t<Ta} . (3.7) Since T a → ∞ as a ↑ ℓ, we have N a t → M t , P x -a.s. Set A a t = M a t -N a t = af (L Ta )1 {Ta≤t} . (3.8)
Since A a t → 0, P x -a.s., we have M a t → M t , P x -a.s. (ii) In the same way as (ii) of Lemma 2.3, we can see that (M t ) is a P x -supermartingale.

It is obvious that (M a t ) is a P x -martingale. Let {a n } be a sequence of I such that a n ↑ ℓ. If we take σ n = inf{t : X t > a n }, we have A a σn∧t = af (L Ta )1 {Ta≤σn∧t} = 0 for any a > a n , so that we have M a σn∧t → M σn∧t in L 1 (P x ) as a ↑ ℓ. This shows that (M t ) is a local P x -martingale. Theorem 3.3. Let f ∈ L 1 + and x ∈ I. Then, for any finite stopping time T , it holds that

N a T -→ a↑ℓ M s,f T in L 1 (P x ). (3.9)
Consequently, for any bounded adapted process (F t ), it holds that

aP x [F T f (L Ta ); T < T a ] -→ a↑ℓ P x [F T M s,f T ]. (3.10)
Proof. We have

N a T =X T f (L T )1 {T <Ta} + 1 - X T a ∞ 0 e -u/a f (L T + u)du1 {T <Ta} , (3.11) 
M T =X T f (L T ) + 1 - X T ℓ ∞ 0 e -u/ℓ f (L T + u)du. (3.12)
Since N a T ≤ M T and since

P x [M T ] ≤ lim inf n→∞ P x [M T ∧n ] ≤ P x [M 0 ] < ∞, (3.13) 
we may apply the dominated convergence theorem to obtain (3.9). The remaining assertion is obvious.

Lemma 3.4. Suppose that ℓ is natural. Then

aP x (T a ≤ t) -→ a↑ℓ 0 for all t ≥ 0. (3.14) 
Proof. If ℓ < ∞, i.e., ℓ is type-3-natural, then (3.14) is obvious.

Suppose ℓ = ∞. Then we have

aP x (T a ≤ t) ≤ ae t P x [e -Ta ] = e t φ 1 (x) • a φ 1 (a) . (3.15) Since ℓ = ∞ is natural, we have φ 1 (a) = 1 + a 0 dx (0,x] φ 1 (y)dm(y) ≥ a 0 dx (0,x] dm(y) -→ a↑ℓ ∞ (3.16)
and, for a > 1,

φ ′ 1 (a) ≥ (0,a] dm(x) x 0 φ ′ 1 (y)dy ≥ φ ′ 1 (1) (1,a] dm(x) x 1 dy -→ a↑ℓ ∞.
(3.17) Thus, by the l'Hôpital rule, we obtain a/φ 1 (a) → 0 as a ↑ ℓ = ∞. Therefore we obtain (3.14).

Theorem 3.5. Suppose that ℓ is natural. Then, for any f ∈ L 1 + and for any bounded stopping time T , it holds that

M a T -→ a↑ℓ M s,f T in L 1 (P x ). (3.18)
Consequently, for any bounded adapted process (F t ), it holds that

aP x [F T f (L Ta )] -→ a↑ℓ P x F T M s,f T . (3.19)
It also holds that

M s,f t = X t f (L t ) + 1 - X t ℓ ∞ 0 e -u/ℓ f (L t + u)du (3.20) is a P x -martingale.
Proof. Suppose that f ∈ L 1 + is bounded. Since A a T → 0, P x -a.s. and since

P x [A a T ] ≤ a f ∞ P x (T a ≤ T ) -→ a↑ℓ 0, (3.21) 
we see that A a T → 0 in L 1 (P x ). Hence we obtain (3.18) and (3.19) in this special case. We now see that

P x [M s,f t ] = P x [M s,f 0 ], i.e., P x X t f (L t ) + 1 - X t ℓ ∞ 0 e -u/ℓ f (L t + u)du =xf (0) + 1 - x ℓ ∞ 0 e -u/ℓ f (u)du (3.22)
holds for all t ≥ 0 and all bounded f ∈ L 1 + . By considering f ∧ n, taking n → ∞ and applying the monotone convergence theorem, we can drop the boundedness assumption and obtain (3.22) for all t ≥ 0 and all f ∈ L 1 + . By (ii) of Lemma 3.2, we see, for any f ∈ L 1 + , that (M s,f t ) is a P x -supermartingale with constant expectation, which turns out to be a P x -martingale.

Let f ∈ L 1 + . Since (M s,f t ) is a P x -martingale, we may apply the optional stopping theorem to see that

P x [A a T ] =P x [X Ta f (L Ta ); T a ≤ T ] (3.23) ≤P x [M Ta ; T a ≤ T ] (3.24) =P x [M T ; T a ≤ T ] -→ a↑ℓ 0. ( 3 

.25)

Since A a T → 0, P x -a.s., we see that A a T → 0 in L 1 (P x ). Hence we obtain (3.18) and (3.19) in a general case. Remark 3.6. Suppose ℓ is entrance. We claim that (M t ) is not a true P x -martingale if f (0) > 0. Suppose (M t ) were a P x -martingale. On one hand we would have

P x [M t∧T 0 ] = M 0 = xf (0) + ∞ 0 f (u)du. (3.26)
On the other hand, we see that P x [M t∧T 0 ] is equal to

P x [M t ; t < T 0 ] + P x [M T 0 ; t ≥ T 0 ] = P x [X t ; t < T 0 ]f (0) + ∞ 0 f (u)du. (3.27)
Hence we would have P x [X t ; t < T 0 ] = x, which would contradict the fact that the scale function s(x) = x is not P x -invariant (see Theorem 6.5 of [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF]).

Local time penalization with inverse local time clocks

4.1 Limit as a tends to infinity with u being fixed Suppose ℓ ′ (= ℓ = ∞) is either entrance, type-1-natural or type-2-natural. We thus have, for any x ∈ I and any u > 0,

P x (η a u < ∞) = 1 and η a u -→ a→∞ ∞ in law under P x ; (4.1) 
in fact, we have

P x [e -qη a u ] → 1 as q ↓ 0, 0 as a → ∞, (4.2) 
since we have r q (a, a) -→ q↓0 ∞, φ q (a) -→ a→∞ ∞ and

P x [e -qη a u ] = P x [e -qTa ]P a [e -qη a u ] = φ q (x) φ q (a) exp - u r q (a, a) . (4.3) 
For ν ≥ 0, we denote by I ν (x) the modified Bessel function of the first kind, which may be represented as a series expansion formula (see e.g. [START_REF] Lebedev | Special functions and their applications[END_REF], eq. (5.7.1) on page 108) by

I ν (x) = ∞ n=0 (x/2) ν+2n n!Γ(ν + n + 1) , x > 0. (4.4)
We recall the asymptotic formulae (see e.g. [START_REF] Lebedev | Special functions and their applications[END_REF], Section 5.16): For any u > 0 and f ∈ L 1 + ,

I ν (x) ∼ x↓0 (x/2) ν Γ(1 + ν) , I ν (x) ∼ x→∞ e x √ 2πx . ( 4 
P a [f (L η a u )] =e -u/a f (0) + ∞ 0 f (y)ρ a u (y)dy, (4.7) 
where

ρ a u (y) = e -(u+y)/a u/y a I 1 2 √ uy a . (4.8) 
Proof. Let p a (v) denote the point process of excursions away from a and n a its excursion measure. Since L increases only on the intervals (η a v-, η a v ), we have

L η a u = v≤u: p a (v)∈{T 0 <∞} (L η a v -L η a v-) = v≤u: p a (v)∈{T 0 <∞} L Ta (p a (v)). (4.9)
Since n a (T 0 < T a ) = 1/a < ∞, the sum of (4.9) is a finite sum, and so we see that {(L η a u ) u≥0 , P a } is a compound Poisson process with Lévy measure n a (L Ta ∈ ds; T 0 < T a ). Let λ 0 a = inf{v : p 0 (v) ∈ {T a < ∞}}. Then we have P 0 (L Ta > s) = P 0 (T a > η 0 s ) = P 0 (λ 0 a > s) = e -sn 0 (Ta<∞) = e -s/a . (4.12)

Thus we obtain (4.6).

Let {S n } be a process with i.i.d. increments P(S n -S n-1 > s) = e -s/a such that S 0 = 0 and let N be a Poisson variable with mean u/a which is independent of {S n }. Then we have L η a u law = S N , and hence

P a [f (L η a u )] =P(N = 0)f (0) + ∞ n=1 P(N = n)P[f (S n )] (4.13) =e -u/a f (0) + ∞ n=1 e -u/a (u/a) n n! ∞ 0 f (y) (y/a) n-1 (n -1)! e -y/a dy a . (4.14)
Thus, using (4.4), we obtain (4.7).

Lemma 4.2. For u > 0, x, a ∈ I and f ∈ L 1 + , it holds that Proof. When a ≤ x, we have

P x [f (L η a u )] = x ∧ a a P a [f (L η a u )] + 1 - x a + P a [f (e 1/a + L η a u )] (4.15) = x ∧ a a P a [f (L η a u )] + 1 a 1 - x a + ∞ 0 f (y) ρ a u (y)dy, ( 4 
P x [f (L η a u )] = P x [f (L Ta + L η a u • θ Ta )] = P a [f (L η a u )]
, which proves identity (4.15). Suppose x < a. Using Lemma 3.1, we have

P x [f (L η a u )] =P x f L Ta + L η a u • θ Ta (4.18) = x a P a [f (L η a u )] + 1 a 1 - x a P a ∞ 0 e -v/a f (v + L η a u )dv , (4.19) 
which coincides with (4.15). Using the same notation as that of the proof of Lemma 4.1, we obtain By (4.5), there exists a constant C such that

P a [f (e 1/a + L η a u )] = ∞ n=0 P(N = n)P[f (S n+1 )] ( 4 
I ν (x) ≤ Cx ν for 0 < x ≤ 1, I ν (x) ≤ Ce x for x ≥ 1. (4.22)
Lemma 4.3. For any u > 0, a > 0 and y > 0, it holds that

ρ a u (y) ≤ 2Cu a 2 , ρ a u (y) ≤ C. ( 4 

.23)

For any fixed u > 0 and y > 0, it holds that 

ρ a u (y) -→ a→∞ 1. ( 4 
N a,u t =aP x f (L η a u )1 {t<η a u } | F t , (4.28) M a,u t =aP x f (L η a u ) | F t . ( 4 

.29)

Then it holds that N a,u t → M s,f t and M a,u t → M s,f t in probability with respect to P x as a → ∞, where M s,f t has been defined in (3.5).

Proof.

In what follows in this section we sometimes write M t simply for M s,f t . (i) By the strong Markov property and by Lemma 4.2, we have, for a > X t ,

N a,u t = a P Xt [f (b + L η a u-c )] b=Lt c=L a t 1 {t<η a u } = (I) a + (II) a , (4.30) 
where

(I) a =X t e -u-c a f (b) + ∞ 0 f (b + y)ρ a u-c (y)dy b=Lt c=L a t 1 {t<η a u } , (4.31) 
(II) a = 1 - X t a ∞ 0 f (b + y) ρ a u-c (y)dy b=Lt c=L a t 1 {t<η a u } . (4.32) 
Letting a → ∞, we deduce from Lemma 4.3 that in probability with respect to P x

(I) a -→ a→∞ X t f (L t ), (4.33) 
(II) a -→ a→∞ ∞ 0 f (L t + y)dy. (4.34) 
We thus obtain N a,u t → M s,f t in probability with respect to P x . Set

A a,u t = M a,u t -N a,u t = af (L η a u )1 {η a u ≤t} . (4.35) 
Since A a,u t → 0, we obtain M a,u t → M s,f t in probability with respect to P x .

Theorem 4.5. Let f ∈ L 1 + , x ∈ I and u > 0. Then, for any finite stopping time T , it holds that

N a,u T -→ a→∞ M s,f T in L 1 (P x ).
(4.36)

Consequently, for any bounded adapted process (F t ), it holds that

aP x [F T f (L η a u ); T < η a u ] -→ a→∞ P x [F T M s,f T ]. (4.37) 
Proof. By the proof of Lemma 4.4 and by Lemma 4.3, we obtain, for a > 1,

N a,u t ≤X t f (L t ) + 2Cu a + C ∞ 0 f (L t + y)dy (4.38) ≤M s,f t +(2Cu + C) ∞ 0 f (y)dy, (4.39) 
where the last quantity is integrable with respect to P x . Thus we obtain the desired result by the dominated convergence theorem.

Theorem 4.6. Suppose that ℓ ′ (= ℓ = ∞) is either type-1-natural or type-2-natural. Let f ∈ L 1 + , x ∈ I and u > 0. Then, for any bounded stopping time T , it holds that

M a,u T -→ a→∞ M s,f T in L 1 (P x ). (4.40) 
Consequently, for any bounded adapted process (F t ), it holds that

aP x F T f (L η a u ) -→ a→∞ P x F T M s,f T . (4.41) 
Proof. Since (M s,f t ) is a P x -martingale, we may apply the optional stopping theorem to see that

P x [A a,u T ] =P x X η a u f (L η a u ); η a u ≤ T (4.42) ≤P x M η a u ; η a u ≤ T (4.43) =P x [M T ; η a u ≤ T ] -→ a→∞ 0. (4.44) 
Since A a,u T → 0, P x -a.s., we see that A a,u T → 0 in L 1 (P x ). Hence we obtain (4.40) and (4.41).

Limit as u tends to infinity with a being fixed

Suppose ℓ ′ (= ℓ = ∞) is either entrance, type-1-natural or type-2-natural. We thus have, for any x, a ∈ I,

P x (η a u < ∞) = 1 and η a u -→ u→∞ ∞ P x -a.s. (4.45)
In fact, η a u increases to a limit η a ∞ which must be infinite P x -a.s. by (4.3). For the clock τ = η a u in u > 0, we only consider the weights f (L η a u ) for f (u) = e -βu and f (u) = 1 {u=0} .

Lemma 4.7. Let x, a ∈ I, β > 0 and t > 0. For u > 0, set It also holds that (M β,a t ) is a P x -martingale.

N u,β,a t = e βu 1+βa P x e -βL η a u 1 {t<η a u } F t , M u,
Proof. Let us first prove that P x [e cL a t ] < ∞ for all c > 0 and t > 0. Following the same argument as in the proof of Lemma 2.1, we obtain P a exp cL a eq = 1 r q (a, a)

∞ 0 e cu e -u/rq(a,a) du.

(4.54)

Since r q (a, a) → 0 as q → ∞, we may take q > 0 large enough so that r q (a, a) < 1/c. This shows that P a exp cL a eq < ∞. By the monotonicity, we see that P x [e cL a t ] < ∞ for all t > 0.

The fact that L a t admits exponential moments implies that M β,a t ∈ L 1 (P x ) for all t > 0. Thus, by the dominated convergence theorem, we see that N u,β,a t -→ u→∞ M β,a t in L 1 (P x ) for all t > 0.

We second note that, for q > 0, P x (η a u ≤ t) ≤ e qt P x [e -qη a u ] ≤ e qt P a [e -qη a u ] = e qt e -u/rq(a,a) . (4.55)

We may take q > 0 large enough so that r q (a, a) < (1 + βa)/β. Then we obtain

P x [A u,β,a t ] ≤ e βu 1+βa P x (η a u ≤ t) ≤ e qt exp - 1 r q (a, a) - β 1 + βa u -→ u→∞ 0. (4.56)
Thus we obtain A u,β,a t -→ u→∞ 0 in L 1 (P x ) for all t > 0, which implies M u,β,a t -→ u→∞ M β,a t in L 1 (P x ) for all t > 0.

Theorem 4.9. Let x, a ∈ I. For u > 0 and t > 0, set

N u,∞,a t =e u/a P x (t < η a u < T 0 | F t ) (4.57) M u,∞,a t =e u/a P x (η a u < T 0 | F t ) (4.58) M ∞,a t = X t ∧ a a e L a t /a 1 {t<T 0 } . (4.59) 
Then it holds that 

N u,∞,a t -→ u→∞ M ∞,a t and M u,∞,a t -→ u→∞ M ∞,
:= M u,∞,a t -N u,∞,a t = e u/a 1 {η a u <T 0 } 1 {η a u ≤t} . ( 4 

.63)

The remainder of the proof is the same as that of Theorem 4.8.

Universal σ-finite measures

In this section we find universal σ-finite measures for the local time penalizations.

for all non-negative predictable processes (F u ). We also have the last exit decomposition formula:

P x [F t ; T 0 ≤ t] = t 0 P x [dL u ] P (u) x,0 • n [t-u] [F t ] (5.9)
for all non-negative F t -measurable functionals (F t ), where we denote

n [t] (•) = n(• ∩ {t < T 0 }). (5.10) 
For h = h 0 or h = s, let P h x denote the law of h-transform:

P h x (A; t < ζ) = 1 h(x) P 0 x [1 A h(X t )] (x > 0), (5.11) 
P h 0 (A; t < ζ) =n[1 A h(X t )]
(5.12)

for A ∈ F t . Note that, when h = h 0 or h = s, the coordinate process under P h x never hits zero; see [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF]Theorems 7.6 and 7.3]. We now define

P h x = ∞ 0 P x [dL u ] P (u)
x,0 • P h 0 + h(x)P h x .

(5.13) Theorem 5.2. Suppose 0 is recurrent. Let f ∈ L 1 + and x ∈ I. Let t be a constant time and let F t be a bounded F t -measurable functional. Then

lim q↓0 H(q)P x [F t f (L eq ); t < e q ] = P h 0 x [F t f (L ζ ); t < ζ]. (5.14) 
Proof. By Theorem 3.3, it suffices to show

P h 0 x [F t f (L ζ ); t < ζ] = P x [F t N h 0 ,f t ].
(5.15) Denote g = sup{t < ζ : X t = 0}, where sup ∅ = 0. On the set {0 = g ≤ t < ζ}, we have

P h 0 x [F t f (L ζ ); 0 = g ≤ t < ζ] =h 0 (x)P h 0 x [F t f (L t ); t < ζ] (5.16) =P x [F t f (L t )h 0 (X t ); t < T 0 ].
(5.17)

On the set {0 < g ≤ t < ζ}, we have

P h 0 x [F t f (L ζ ); 0 < g ≤ t < ζ] = t 0 P x [dL u ] P (u) x,0 • P h 0 [F t f (L t ); t < ζ] (5.18) = t 0 P x [dL u ] P (u) x,0 • n [F t f (L t )h 0 (X t )] (5.19) =P x [F t f (L t )h 0 (X t ); T 0 ≤ t].
(5.20)

On the set {t < g < ζ}, we have The proof is parallel to that of Theorem 5.2, where we use Theorem 3.5 instead of Theorem 3.3. So we omit it.

P h 0 x [F t f (L ζ ); T 0 ≤ t < g] = ∞ t P x [dL u ]P (u) x,0 [F t f (L u )] (5.21) =P x F t ∞ t f (L u )dL u (5.22) =P x F t ∞ Lt f (u)du . ( 5 

Exponential weights

Let us investigate the example where we take f (x) = e -cx , c > 0.

(6.1)

For h = h 0 or s, the supermartingale N t = N h,f t is given as

N t = h c (X t )e -cLt (6.2) 
where

h c (x) = h(x) + 1 -x ℓ c + 1 ℓ . (6.3) 
Since (N t ) is a supermartingale, we may define the subprobability measure Q h,c x by

Q h,c x (A; t < ζ) = P x h c (X t ) h c (x) e -cLt ; A for A ∈ F t and t ≥ 0. (6.4)
Then the process {X, (Q h,c x ) x∈I } is a diffusion on I. The corresponding speed measure and the scale function are given as

m h,c (x) = (0,x] h c (y) 2 dm(y), s h,c (x) = x 0 dy h c (y) 2 .
(6.5) Denote φ h,c q = h c (0) • φ q + cψ q h c , ρ h,c q = h c (0) • ρ q h c . (6.6)

Then we see that ϕ = φ h,c q (resp. ρ h,c q ) is a positive increasing (resp. decreasing) solution to the differential equation

D m h,c D s h,c - π 0 h c ϕ = qϕ (6.7)
which satisfies the boundary condition f (0) = 1 and D s h,c φ h,c q (0) = 0, (

where we have used

h c (0) = 1 c + 1 ℓ , (h c ) ′ (0) = c c + 1 ℓ .
(6.9) Theorem 6.1. The resolvent operator for the diffusion {X, (Q h,c x ) x∈I } is given as

Q h,c
x ∞ 0 e -qt f (X t )dt = I r h,c q (x, y)f (y)dm h,c (y), q > 0, (6.10) where r h,c q (x, y) = r h,c q (y, x) = H(q) h c (0) 2 (cH(q) + 1) φ h,c q (x)ρ h,c q (y), x, y ∈ I, x ≤ y. (6.11)

Consequently, 0 for {X, (Q h,c x ) x∈I } is regular-reflecting.

Proof. Let ϕ c (x) = ϕ(x)h c (x). Then we have • R q ϕ c (0) H(q) . (6.16)

Since P x [e -qT 0 ]R q ϕ c (0) = R q ϕ c (x) -R 0 q ϕ c (x), we obtain

Q h,c
x ∞ 0 e -qt ϕ(X t )dt = 1 h c (x) 1 cH(q) + 1 R q ϕ c (x) + cH(q) cH(q) + 1 R 0 q ϕ c (x) . (6.17)

From this we obtain (6.11).

Remark 6.2. The boundary classification at ℓ ′ is the same as that for the h-transform of the stopped process; see Theorems 7.3 and 7.6 of [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF].

(ii) Let us study the case b(x) = cνx ν-1 with c > 0 and ν > 0, i.e.,

Lf = 1 2 f ′′ -cνx ν-1 f ′ on C c ((0, ∞)), (7.2) 
which we may call the power drift. If ν = 1, then it is a Brownian motion with constant negative drift. If ν = 2, then it is an Ornstein-Uhlenbeck process. In this case s ′ = e cx ν , s = 

. 5 ) 4 . 1 . 0 ( 1

 54101 Lemma Let a ∈ (0, ∞). Then the process {(L η a u ) u≥0 , P a } is a compound Poisson process with Laplace transformP a e -βL η a u = exp -u ∞ e -βs )1 a 2 e -s/a ds = e -uβ 1+βa . (4.6)

(4. 10 )

 10 By the strong Markov property of n a , we have n a (L Ta > s; T 0 < T a ) = n a (T 0 < ∞)P 0 (L Ta > s) = 1 a P 0 (L Ta > s).(4.11) 

  (4.4), we obtain (4.16).

P x ∞ 0 ee 0 e+ 1 H

 001 -qt ϕ c (X t )e -cLt dt (-qt ϕ c (X t )dt + P x [e -qT 0 ]P 0 ∞ -qt ϕ c (X t )e -cLt dt (6.13)=R 0 q ϕ c (x) + P x [e -qT 0 ]P 0 u e -cu-qη(u-) T 0 (p(u)) 0 e -qt ϕ c (p(u) t )dt (6.14) =R 0 q ϕ c (x) + P x [e -qT 0 ]P 0 ∞ 0 e -cu-qη(u) du n T 0 0 e -qt ϕ c (X t )dt (6.15) =R 0 q ϕ c (x) + P x [e -qT 0 ] • 1 c

4 ) 2 ∞ 1 {s 1 x 1 ee 1 e cy ν dy = x 1 (e cy ν ) ′ y 1 = e cy ν y 1-ν cν x 1 + ν -1 cν x 1 e≥ 1 cν ∞ 1 x 1 -ν dx -c ′ ∞ 1 e≥ 1 cν ∞ 1 y 1 -≤ 1 cν ∞ 1 y 1 -

 42111111111111111 In particular, we have m(∞) < ∞. Note thatJ := 1 (x)s(1)}dm(x) =∞ cy ν dy e -cx ν dx (7-cx ν dx e cy ν dy.(7.6) We shall prove that∞ is type-2-natural if 0 < ν ≤ 2, entrance if 2 < ν < ∞.(7.7)If 1 ≤ ν ≤ 2, thenx cy ν y -ν dy (7.9)≥e cx ν x 1-ν cν c ′ (7.10)for some constant c ′ > 0. Hence we haveJ -cx ν dx = ∞. ν dx ≥e -cy ν y 1-ν cν and J ν dy = ∞. (7.14) If ν > 2, then∞ y e -cx ν dx ≤ e -cy ν y 1-ν cν and J ν dy < ∞.(7.15) 

  Suppose ℓ ′ is either entrance, type-1-natural or type-2-natural. Let f ∈ L 1 + and x ∈ I. Let t be a constant time and let F t be a bounded F t -measurable functional. Then lim

	.23)
	Therefore we obtain (5.15).
	Theorem 5.3.

a↑ℓ aP x [F t f (L Ta ); t < T a ] = P s x [F t f (L ζ ); t < ζ].

(5.24)

The transient case

Theorem 5.1. Suppose ℓ < ∞, i.e., 0 is transient. Let f ∈ L 1 + and x ∈ I. Let t be a constant time and let F t be a bounded F t -measurable functional. Then

(5.1)

If, in particular, ℓ is type-3-natural, then

Proof. By Theorems 2.4 and 2.5, we see that (5.1) is equivalent to

where

On the other hand, we use (i) of Theorem 2.2 and obtain

Thus we obtain (5.3).

Using Theorems 3.3 and 3.5 instead of Theorems 2.4 and 2.5, we can obtain (5.2) in the same way as above.

The recurrent case

Let P (u)

x,y denote the law of the bridge with duration u starting from x and ending at y. Following [START_REF] Fitzsimmons | Markovian bridges: construction, Palm interpretation, and splicing[END_REF], this measure can be characterized by

where p u (x, y) denotes the transition density of the process X with respect to m(dy). We write symbolically

We have the conditioning formula:

x,0 [F u ] (5.8)

Appendix: the boundary classification

The following tables explain the boundary classification which we take from [START_REF] Yano | On h-transforms of one-dimensional diffusions stopped upon hitting zero[END_REF] and the recurrence property of the corresponding diffusion to each class:

Let us give some examples. Let X be a diffusion on [0, ∞) where 0 is the reflecting boundary and whose local generator on (0, ∞) is given by