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Inverse problem stability of a continuous-in-time financial model
Tarik Chakkour

Piaf INRA, F-63000 Clermont-Ferrand, France

February 7, 2019

Abstract. In this work, we study the inverse problem stability of the continuous-in-time model which
is designed to be used for the finances of public institutions. We discuss this study with determining the
Loan Measure from Algebraic Spending Measure in Radon measure spaceM([tI,Θmax]), and in Hilbert
space L2([tI,Θmax]) when they are density measures. For this inverse problem we prove the uniqueness
theorem, obtain a procedure for constructing the solution and provide necessary and sufficient conditions
for the solvability of the inverse problem in L2([tI,Θmax]).
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1 Introduction
In the last two decades, the theory and practice of inverse problems have been developed in many

scientific domains. Consequently, it is rapidly growing, if not exploding. Moreover, document [1] shows
how much researchers contribute to this field. Many inverse problems arising in scientific domains present
numerical instability: the noise affecting the data may produce arbitrarily large errors in the solutions.
In other words, these problems are ill-posed in the sense of Hadamard. The concept of ill-posedness was
introduced by HADAMARD [11] in the field of partial differential equations. We mention the book on
the mathematics of ill-posed problems by TIKHONOV and ARSENIN [13].

We bluild in previous works [10, 6] the continuous-in-time model which is based on using the math-
ematical tools such convolution and integration. Indeed, this model uses measures over time interval to
describe loan scheme, reimbursement scheme and interest payment scheme. The model contains some
financial quantities. For instance, the Repayment Pattern Measure γ̃ is a non-negative measure with
total mass which equals 1, the Algebraic Spending Measure σ̃ is defined such that the difference between
spendings and incomes required to satisfy the current needs between times t1 and t2 is:∫ t2

t1

σ̃, (1)

and the Loan Measure κ̃E is defined such that the amount borrowed between times t1 and t2 is:

∫ t2

t1

κ̃E . (2)

When measure γ̃ is absolutely continuous with respect to the Lebesgue measure dt . This means that
it read γ(t)dt , where t is the variable in R. The work [10] proposes the resolution of the inverse problem
over the space of square-integrable functions when density γ is equal to 1

Θγ over time period [0,Θγ ] and
to 0 elsewhere. In papers [7, 5], we use a mathematical framework to discuss an inverse problem of
determining the Loan Measure κ̃E from Algebraic Spending Measure σ̃. This inverse problem is used in
[10] on simplified examples in order to show its capability to be used to forecast a financial strategy. In
[4] we investigate the properties of operators and we discuss an inverse problem in Schwartz space that
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we prove the uniqueness theorem.

This paper is concerned with continuity and compactness of some operators involved in the model.
We refer papers [8, 3, 2] that treat this topic. In the paper [8], M. D. Sen investigates the system stability
and the compactness of the operators describing the solution trajectories. M. Cecchi, M. Furi and M.
Martin study in [3] continuity and compactness of some nonlinear operators under the topology of space.
In addition, R. I. Becker has discussed in [2] the compactness of certain integral operators under the
topology in L2. In the sequel, we will show in this paper that these operators are continuous and are
not compact on L2.

We show in this paper the general results of this inverse problem for any density γ. We show the
stability of the inverse problem. We continue to extend some results of this inverse problem in measure
space with proving its stability. In other words, we describe a more complete numerical study for the
inverse problem. The main result of this paper is the existence and uniqueness of solutions for the system
modeling the financial multiyear planning. This result ensures the mathematical well-posedness under
the balanced equation assumption.

The organization of the rest of this paper is as follows. Section 2 describes the inverse problem of the
model in L2([tI,Θmax]). Section 3 shows the inverse problem of the model in M([tI,Θmax]).

2 Inverse problem of the model in L2([tI, Θmax])
Denoting L2([tI,Θmax]) the space of square-integrable functions over R having their support in

[tI,Θmax] and denoting L2([0,Θγ ]) the space of square-integrable functions over R having their sup-
port in [0,Θγ ]. We state the Repayment Pattern Density γ as follows:

γ ∈ L2([0,Θγ ]), (3)

where Θγ is a positive number such that:

Θγ < Θmax − tI. (4)

We justify relation (3) because the support of convolution of two compactly supported densities κE in
[tI,Θmax −Θγ ] and γ in [0,Θγ ] is included in [tI,Θmax].

Lemma 2.1. Linear operator L acting on Loan Density κE ∈ L2([tI,Θmax −Θγ ]) defined as:

L[κE ](t) = κE(t)− (κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s) ds, (5)

is continuous and is not compact operator on L2([tI,Θmax]). Here, the operator ? involved in (5) is the
convolution operator.

Proof. In the first place, we will show that operator L is well defined and continuous. That why, we will
show that for any density κE in L2([tI,Θmax−Θγ ]), function L[κE ] is square-integrable function over R
having its support in [tI,Θmax]. Formally, we will prove:

‖L[κE ]‖L2([tI,Θmax]) ≤ (1+ | α | ×(Θmax − tI))× (1 + ‖γ‖L1([0,Θγ ]))× ‖κE‖L2([tI,Θmax−Θγ ]). (6)

Taking norm L2([tI,Θmax]) and applying triangle inequality to definition (5) of operator L, we obtain
the following inequality:

‖L[κE ]‖L2([tI,Θmax]) ≤ ‖κE − κE ? γ‖L2([tI,Θmax])+ | α | ×CE , (7)
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where CE is defined and is increased as follows:

CE =

∥∥∥∥∥
∫ t

tI

κE(s)− κE ? γ(s) ds

∥∥∥∥∥
L2([tI,Θmax])

,

=

√√√√∫ Θmax

tI

(∫ t

tI

κE(s)− κE ? γ(s) ds
)2

dt,

≤
√

Θmax − tI × ‖κE2 − κE ? γ‖L1([tI,Θmax]).

(8)

We use Cauchy-Schwarz inequality to obtain:

‖κE − κE ? γ‖L1([tI,Θmax]) =
∫ Θmax

tI

1× | κE(s)− κE ? γ(s) | ds,

≤

√∫ Θmax

tI

12 ds

×

√√√√∫ Θmax

tI

(
κE(s)− (κE ? γ)(s)

)2

ds,

≤
√

Θmax − tI × ‖κE − κE ? γ‖L2([tI,Θmax]).

(9)

Thanks to properties (8) and (9), we get:

CE ≤ (Θmax − tI)× ‖κE − κE ? γ‖L2([tI,Θmax]). (10)

From this and according to (7), we get:

‖L[κE ]‖L2([tI,Θmax]) ≤ (1+ | α | ×(Θmax − tI))× ‖κE − κE ? γ‖L2([tI,Θmax]). (11)

The triangle and the Young’s inequalities implie that:

‖κE − κE ? γ‖L2([tI,Θmax]) ≤ ‖κE‖L2([tI,Θmax−Θγ ]) + ‖κE ? γ‖L2([tI,Θmax]),

≤ ‖κE‖L2([tI,Θmax−Θγ ]) + ‖κE‖L2([tI,Θmax−Θγ ])‖γ‖L1([0,Θγ ]),

≤ (1 + ‖γ‖L1([0,Θγ ]))× ‖κE‖L2([tI,Θmax−Θγ ]).

(12)

Inequality (12) yields with (11) to achieve the proof of inequality (6). From this, L is a continuous map
from L2([tI,Θmax − Θγ ]) to L2([tI,Θmax]). In the second place, decomposing operator L in following
form:

L[κE ] + Ṽ[κE ] = IdL2([tI,Θmax−Θγ ]→L2([tI,Θmax]), (13)

where operator Ṽ : L2([tI,Θmax −Θγ ])→ L2([tI,Θmax]) is defined by the operator:

Ṽ[κE ](t) = κE ? γ(t) + α

∫ t

tI

(κE − κE ? γ)(s) ds. (14)

The target of decomposition (13) is to show with using absurd reasoning that L is not compact. In order
to emerge a contradiction, we will show that Ṽ is compact on L2([tI,Θmax]). Indeed, with showing that
Ṽ it will be, we obtain that IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax]) is compact, which is not possible due to its no
compactness. We define the set

3



Br = {e ∈ L2([tI,Θmax −Θγ ]) : ‖e‖L2([tI,Θmax−Θγ ]) < r}, (15)

as the open ball of radius r and origine center on L∞([tI,Θmax]) and the set

B
′

r = {e ∈ Cc([tI,Θmax]) : ‖e‖L∞([tI,Θmax]) < r}, (16)

as the open ball of radius r and origine center on L∞([tI,Θmax]). Here Cc([tI,Θmax]) is a continuous
functions space defined over a time interval [tI,Θmax] with usual norm is:

‖ψ‖L∞([tI,Θmax]) = sup
t∈[tI,Θmax]

{
|ψ(t)|

}
. (17)

Denoting Br and B′
r respectively the closed balls of open balls Br and B′

r. In order to show that operator
V : L2([tI,Θmax − Θγ ]) → Cc([tI,Θmax]) defined as the considered operator Ṽ from L2([tI,Θmax − Θγ ])
to Cc([tI,Θmax]) is compact, we will show that the image of the open unit ball B1 under V

E1 = V(B1), (18)

is relatively compact in Cc([tI,Θmax]). Since bounded and equicontinuous sets of Cc([tI,Θmax]) are
relatively compacts, we verify a compactness criteria of E1 defined by (18) with using Ascoli theorem.
Indeed, showing this criteria consists in showing that E1 is a bounded subset of Cc([tI,Θmax]). First,
applying triangle inequality to operator V to obtain the following inequality:

|V[κE ](t)| ≤ |κE ? γ(t)|+ |α|

∣∣∣∣∣
∫ t

tI

(κE − κE ? γ)(s) ds

∣∣∣∣∣,
≤ |κE ? γ(t)|+ |α|

∫ t

tI

∣∣∣∣∣(κE − κE ? γ)(s)

∣∣∣∣∣ ds,
≤ |κE ? γ(t)|+ |α|‖κE − κE ? γ‖L1([tI,Θmax]).

(19)

Next, we use Cauchy-Schwarz inequality to obtain:

|κE ? γ(t)| =

∣∣∣∣∣
∫ t

tI

γ(t− s)κE(s) ds

∣∣∣∣∣,
≤
∫ Θmax

tI

∣∣∣∣∣γ(t− s)κE(s)

∣∣∣∣∣ ds,
≤

√∫ Θmax

tI

(γ(t− s))2 ds

√∫ Θmax

tI

(κE(s))2 ds.

(20)

Since densities κE and γ are supported respectively in intervals [tI,Θmax − Θγ ] and [0,Θγ ], inequality
(20) is written in following form:

|κE ? γ(t)| ≤ ‖γ‖L2([0,Θγ ])‖κE‖L2([tI,Θmax−Θγ ]). (21)

Then, relations (9), (12), (19) and (21) yield the following inequality:

‖|V[κE ]‖L∞([tI,Θmax]) ≤

(
‖γ‖L2([0,Θγ ]) + |α|

√
Θmax − tI × (1 + ‖γ‖L1([0,Θγ ]))

)
‖κE‖L2([tI,Θmax−Θγ ]).

(22)
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Since density κE is in unit ball B1 and density γ satisfies (3), inequality (22) shows that there exists a
positive constant C1 defined as:

C1 = ‖γ‖L2([0,Θγ ]) + |α|
√

Θmax − tI × (1 + ‖γ‖L1([0,Θγ ])), (23)

such that we have:

‖|V[κE ]‖L∞([tI,Θmax]) ≤ C1. (24)

Inequality (24) means that E1 is contained in closed unit ball of center 0, and radius C1, i.e. E ⊂ B
′
C1

.
Consequently, E defined by (18) is a bounded subset of Cc([tI,Θmax]). Now, we will demonstrate that
E1 defined by (18) is an equicontinuous subset of Cc([tI,Θmax]). Suppose that κE is in unit ball B1, we
will show:

∀x, y ∈ [tI,Θmax],∀ε > 0,∃η = η(ε) : |x− y| ≤ η =⇒ |V[κE ](y)− V[κE ](x)| < ε. (25)

We start by establishing that for any reals x and y in [tI,Θmax] the following inequality:

|V[κE ](y)− V[κE ](x)| ≤

∣∣∣∣∣
∫ y

x

γ(t− s)κE(s) ds

∣∣∣∣∣+ |α|

∣∣∣∣∣
∫ y

x

(κE − κE ? γ)(s) ds

∣∣∣∣∣. (26)

Applying Cauchy-Schwarz inequality to each right terms of inequality (26), we obtain:

|V[κE ](y)− V[κE ](x)| ≤
√
|y − x| ×

(√√√√∣∣∣∣∣
∫ y

x

(γ(t− s)κE(s))2 ds

∣∣∣∣∣+ |α|

√√√√∣∣∣∣∣
∫ y

x

(κE − κE ? γ)(s))2

∣∣∣∣∣ ds
)
.

(27)

Furthermore, since x and y are in interval [tI,Θmax], inequality (27) implies that:

|V[κE ](y)− V[κE ](x)| ≤
√
|y − x| ×

(√∫ Θmax

tI

(γ(t− s)κE(s))2 ds+ |α|

√∫ Θmax

tI

(κE − κE ? γ)(s))2 ds

)
,

≤
√
|y − x| ×

(
‖κE ? γ‖L2([tI,Θmax]) + |α|‖κE − κE ? γ‖L2([tI,Θmax])

)
.

(28)

From this and according to (12), we get:

|V[κE ](y)− V[κE ](x)| ≤
√
|y − x| ×

(
‖γ‖L1([0,Θγ ]) + |α|(1 + ‖γ‖L1([0,Θγ ]))

)
‖κE‖L2([tI,Θmax−Θγ ]). (29)

By hypothesis κE ∈ B1, inequality (29) implies that:

|V[κE ](y)− V[κE ](x)| <
√
|y − x| ×

(
‖γ‖L1([0,Θγ ]) + |α|(1 + ‖γ‖L1([0,Θγ ]))

)
. (30)

We say that E1 is an equicontinuous subset of Cc([tI,Θmax]), if and only if, for every ε > 0 there
exists η > 0 depending on ε such that for every x and y in [tI,Θmax] with |x − y| ≤ η implies that
|V[κE ](y)− V[κE ](x)| < ε. Given ε > 0 choosing η such that:
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η =
(

ε

‖γ‖L1([0,Θγ ]) + |α|(1 + ‖γ‖L1([0,Θγ ]))

)2

, (31)

in order to get this equicontinuity property. According to (30) and (31), we get implication defined by
relation (25). Consequently, E1 is equicontinuous subset of Cc([tI,Θmax]) allowing that V is compact
in Cc([tI,Θmax]). Since operator Ṽ = i ◦ V is the composition of two compact operators which are
the canonical injection i defined from Cc([tI,Θmax]) to L2([tI,Θmax]) and operator V, Ṽ is compact on
L2([tI,Θmax]). From this, operator L is not compact on L2([tI,Θmax]), completing the proof of the
lemma. The mapping L is what we call a Hilbert-Schmidt operator.

Lemma 2.2. Linear operator L given by relation (5) is not Fredholm operator.

Proof. Let be E and F be complex Hilbert space (infinite dimensional and separable) and let us recall
that a Fredholm operator T from E to F is bounded linear operator such that:

• T and T ∗ have finite dimensional null-spaces (or kernels);

• T has closed image (so that Im(T ) = (ker(T ∗))⊥).

Firstly, we will show that operator IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax]) is not Fredholm operator by showing
that image Im(IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])) is of infinite codimension. Indeed, this image is equal to
L2([tI,Θmax −Θγ ]):

Im(IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])) = L2([tI,Θmax −Θγ ]). (32)

From this, its complementary is defined as:

L2([tI,Θmax])\Im(IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])) = L2([tI,Θmax])\L2([tI,Θmax −Θγ ]). (33)

Since there are infinity functions which are in L2([tI,Θmax]), and are not in L2([tI,Θmax−Θγ ]), the com-
plementary of Im(IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])) in L2([tI,Θmax]) has infinite dimension. Consequently,
Im(IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])) has infinite codimension, achieving that IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])
is not Fredholm operator.

Now, we use decomposition (13) in order to show that L is not Fredholm operator with using absurd
reasoning. In order to emerge a contradiction, we use the fact that the sum of compact and Fredhom
operators is Fredholm operator. Assuming that L is Fredholm operator. From this assumption and
since we have shown in lemma 2.1 that Ṽ is compact, we obtain that IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax]) is
Fredholm operator, contradicting (33).

Lemma 2.3. Linear operator D acting on Initial Debt Repayment Density ρI
K ∈ L2([tI,Θmax]) defined

as:

D[ρI
K](t) = −α

∫ Θmax

t

ρI
K(s) ds− ρI

K(t), (34)

is continuous and is not compact operator on L2([tI,Θmax]).
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Proof. We begin by showing that operator D is well defined and continuous in L2([tI,Θmax]). The
triangle inequality is applied to operator D defined by (34) to get:

‖D[ρI
K]‖L2([tI,Θmax]) ≤| α | ×

∥∥∥∥∥
∫ Θmax

t

ρI
K(s) ds

∥∥∥∥∥
L2([tI,Θmax])

+ ‖ρI
K‖L2([tI,Θmax]). (35)

Since we have

∥∥∥∥∥
∫ Θmax

t

ρI
K(s) ds

∥∥∥∥∥
L2([tI,Θmax])

≤ (Θmax − tI)× ‖ρI
K‖L2([tI,Θmax]) and according to (35), we

have:

‖D[ρI
K]‖L2([tI,Θmax]) ≤ (| α | ×(Θmax − tI) + 1)× ‖ρI

K‖L2([tI,Θmax]). (36)

Similarly as in lemma 2.1, we will show that D is not compact on L2([tI,Θmax]). Decomposing operator
D in following form:

D[ρI
K] + W̃[ρI

K] = IdL2([tI,Θmax]), (37)

where operator W̃ : L2([tI,Θmax])→ L2([tI,Θmax]) is defined as operator acting on Initial Debt Repay-
ment Density ρI

K in form:

W̃[ρI
K](t) = α

∫ Θmax

t

ρI
K(s) ds. (38)

The aim of (37) is to use absurd reasoning in order to show that D is not compact. Next, defining operator
W : L2([tI,Θmax]) → Cc([tI,Θmax]) as the considered operator W̃ from L2([tI,Θmax]) to Cc([tI,Θmax]).
Denoting F1 by the image of open ball B1

F1 =W(B1). (39)

We will verify that F1 given by (39) satisfy the following conditions:

(i) F1 is a bounded subset of Cc([tI,Θmax]);

(ii) F1 is an equicontinuous subset of Cc([tI,Θmax]).

In order to show first condition (i), we use Cauchy-Schwarz inequality to get:

|W[ρI
K](t)| ≤ |α|

√
Θmax − tI‖ρI

K‖L2([tI,Θmax]). (40)

And thus,

‖|W‖L∞([tI,Θmax]) ≤ |α|
√

Θmax − tI, (41)

which means that part F1 is contained in closed ball of radius |α|
√

Θmax − tI and origine center i.e.
F1 ⊂ B

′

|α|
√

Θmax−tI
achieving the proof (i). In what to follows, we show second condition (ii). Using

Cauchy-Schwarz inequality to get:

|W[ρI
K](y)−W[ρI

K](x)| ≤ |α|
√
|y − x|

√√√√∣∣∣∣∣
∫ x

y

(ρI
K(s))2 ds

∣∣∣∣∣,
≤ |α|

√
|y − x|‖ρI

K‖L2([tI,Θmax]).

(42)
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For every ε > 0, we fix η > 0 as:

η =
(

ε

|α|

)2

, (43)

such that for every x and y in [tI,Θmax] with |x − y| ≤ η, we get |W[κE ](y) − W[κE ](x)| < ε using
inequality (42). Consequently, F1 is equicontinuous subset of Cc([tI,Θmax]), achieving the proof (ii).
Ascoli theorem states thatW is compact on Cc([tI,Θmax]). Furthermore, operator W̃ = i◦W is composed
of two compact operators which are the canonical injection i and operatorW, achieving that W̃ is compact
on L2([tI,Θmax]). Then, D is not compact on L2([tI,Θmax]), completing the proof of the lemma.

We can decompose the Algebraic Spending Density σ defined in relation (1) as a sum of operators L
and D:

σ(t) = L[κE ](t) +D[ρI
K](t). (44)

Lemma 2.4. The singular point of function 1−F(γ) is zero for any constant and affine density γ.

Proof. If Repayment Pattern Density γ is a constant function given by:

γ(t) = 1
Θγ

1[0,Θγ ](t), (45)

then we have:

∀ξ ∈ R∗, 1−F(γ)(ξ) = 1− i

ξΘγ
(e−iξΘγ − 1). (46)

And thus,

∀ξ ∈ R∗, 1−F(γ)(ξ) = 0⇒ ξΘγ = sin(ξΘγ) and cos(ξΘγ) = 1,
⇒ (ξΘγ)2 + 1 = 1,
⇒ ξΘγ = 0.

(47)

Since real Θγ is positive, function ξ → 1− F(γ)(ξ) is not zero function over R∗. Conversely, if a real ξ
is zero, function ξ → 1 − F(γ)(ξ) is also a zero function. Indeed, the Fourier Transform of any density
γ at the origine is defined as:

F(γ)(0) =
∫ +∞

−∞
γ(t) dt. (48)

Furthermore, since density γ is with total mass which equals 1, equality (48) implies that:

F(γ)(0) = 1. (49)

Now we will show that the singular point of function 1−F(γ) is zero for an affine density γ given by:

γ(t) =
(

t

Θ2
γ

+ 1
2Θγ

)
1[0,Θγ ](t). (50)

The integration by parts states that:
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∀ξ ∈ R∗, 1−F(γ)(ξ) = 1−
(

1
(ξΘγ)2 + i

2ξΘγ

)
(e−iξΘγ − 1)− i

ξΘγ
e−iξΘγ . (51)

From this, we get the following system of equations:

{
(cos(ξΘγ)− 1) + 3ξΘγ

2 sin(ξΘγ) = (ξΘγ)2,

− sin(ξΘγ) + ξΘγ cos(ξΘγ) + ξΘγ
2 (cos(ξΘγ)− 1) = 0.

(52)

Hence,

ξΘγ

(
1 + 3(ξΘγ)2

2

)
−

(
1 + 9(ξΘγ)2

4

)
sin(ξΘγ) = 0. (53)

Figure 1 states that equation (53) doesn’t have no solution on R∗. Consequently, function ξ → 1−F(γ)(ξ)
is not a zero function over R∗. Conversely, assuming that real ξ is zero, we get:

1−F(γ)(0) = 1−
∫ +∞

−∞
γ,

= 1− 1
Θ2
γ

∫ Θγ

0
t dt− 1

2Θγ

∫ Θγ

0
dt,

= 0.

(54)

We conclude that function 1−F(γ) is zero at the origine for density γ given by (45) (or by (50)). In
what to follows, we will extend this conclusion for any affine density γ given by:

γ(t) = (c2t+ c1)1[0,Θγ ](t), (55)

where coefficients c1 and c2 satisfy:

c1 + c2Θγ

2 = 1
Θγ

. (56)

We obtain using the integration by parts:

∀ξ ∈ R∗, 1−F(γ)(ξ) = 1− c2

(
e−iξΘγ − 1

ξ2 + iΘγe
−iξΘγ

ξ

)
− ic1(e−iξΘγ − 1)

ξ
= 0. (57)

Next, by separating the real and the imaginary parts of function 1−F(γ), we obtain the following system
of equations:


1− c2

(
cos(ξΘγ)−1

ξ2 + Θγ sin(ξΘγ)
ξ

)
− c1 sin(ξΘγ)

ξ = 0,

c2

(
− sin(ξΘγ)

ξ2 + Θγ cos(ξΘγ)
ξ

)
+ c1(cos(ξΘγ)−1)

ξ = 0.
(58)

Let us check the consistency of the system of equations given by (58). Indeed, if coefficients c1 and c2
are respectively equal to 1

2Θγ and 1
Θ2
γ

, then we get equations defined by (52). Thanks to (58), we get the
following equality:

9
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Figure 1: Graph of the function ξΘγ → ξΘγ

(
1 + 3(ξΘγ)2

2

)
−

(
1 + 9(ξΘγ)2

4

)
sin(ξΘγ) over interval

[−0.05, 0.05], showing that zero is its singular point.

c2Θγ

ξ
+ ξΘγ + c1ξ

c2
=
(
c2
ξ2 + Θγ(c2Θγ + c1) + c1(c2Θγ + c1)

c2

)
sin(ξΘγ). (59)

According to (58) and (59), we get:

c2Θγ

ξ
+ ξΘγ + c1ξ

c2
=
(
c2
ξ2 + 2 + c21

c2

)
sin(ξΘγ). (60)

We will show that equality (60) is consistent. Assuming that coefficients c1 and c2 are respectively equal
to 1

2Θγ and 1
Θ2
γ

, we get equality defined by (53). Otherwise, equality (60) gives:

sin(ξΘγ)− ξΘγ

(c2Θ2
γ + (ξΘγ)2

(
1 + c1

c2Θγ

)

c2Θ2
γ + (ξΘγ)2

(
2 + c21

c2

) )
= 0. (61)

Equalities (56) and (61) are multiplied by c1
c2

to give the following system of equations:

 c21
c2

= −1 + 1
c2Θ2

γ
+ c2Θ2

γ

4 ,
c1

c2Θγ = 1
c2Θ2

γ
− 1

2 .
(62)

10



Replacing c21
c2

and c1
c2Θγ defined by (62) in equality (61), we obtain the following equality:

sin(ξΘγ)− ξΘγ

( c2Θ2
γ + (ξΘγ)2

(
1
2 + 1

c2Θ2
γ

)

c2Θ2
γ + (ξΘγ)2

(
1 + 1

c2Θ2
γ

+ c2Θ2
γ

4

)) = 0. (63)

As

∀ξ ∈ R∗,

∣∣∣∣∣ sin(ξΘγ)
ξΘγ

∣∣∣∣∣ ≤ 1, (64)

and according to (63), we obtain the following inequality:

1
2 + 1

c2Θ2
γ

≤ 1 + 1
c2Θ2

γ

+
c2Θ2

γ

4 , (65)

which is simplified to give:

−2 ≤ c2Θ2
γ . (66)

Figure 2 shows that equation (63) doesn’t have no solution on R∗. Consequently, the proof of the lemma
is achieved.

Many inverse problems in finance involve its study with regular singularities. For instance, paper [9]
deals with inversing the differential operators on the half-line having a discontinuity in an interior. In
the paper [12], several formally determined inverse problems are considered with recovering an important
feature over singularities. For studying the inverse problem we agree that together with function 1−F(γ)
we suppose that zero is only its singularity for any density γ. This assumption gives a constructive
procedure for the validity of the following theorem.

Theorem 2.5. If Repayment Pattern γ satisfies relation (3) and following relation:

∃ε > 0, 1
1−F(γ) |]−∞,−ε[∪]ε,+∞[

∈ L∞(R), (67)

where F stands for the Fourier Transform Operator. And if Initial Debt Repayment Density ρI
K is in

L2([tI,Θmax]), then for any Algebraic Spending Density σ in L2([tI,Θmax]) satisfies the following equality:∫ Θmax

tI

(
σ(y)−D[ρI

K](y) + α

∫ y

tI

(σ(s)−D[ρI
K](s))eα(y−s) ds

)
dy = 0, (68)

there exists an unique Loan Density κE stable in L2([tI,Θmax −Θγ ]) which is given in terms of σ by:

κE = F−1

(F(σ −D[ρI
K] + α

∫ •
tI

(σ(s)−D[ρI
K](s)) eα(•−s) ds

)
1−F(γ)

)
, (69)

where F stands for the Fourier Transform of function

t→ F
(

(σ −D[ρI
K])(t) + α

∫ t

tI

(σ(s)−D[ρI
K](s)) eα(t−s) ds

)
, (70)

and F−1 its inverse such that (44) holds.

11
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Figure 2: Graph of the function (ξΘγ , c2Θ2
γ)→ sin(ξΘγ)−ξΘγ

(
c2Θ2

γ+(ξΘγ)2( 1
2 + 1

c2Θ2
γ

)

c2Θ2
γ+(ξΘγ)2(1+ 1

c2Θ2
γ

+
c2Θ2

γ
4 )

)
over interval

[−20, 20]× [−2, 20], showing that zero is its singular point.

Proof of Theorem 2.5. We recall that we have shown in Lemma 3.5 in [7] that operator L given by rela-
tion (5) is a one-to-one application. From this, we obtain the uniqueness of κE .

If we assume that our noise (the error between measurement σI2 and measurement σI1) is small in the
L2-norm, so that ‖σI2 − σI1‖L2([tI,Θmax]) ≤ δ, and we are happy with a small error in the parameter in
the L2([tI,Θmax]) sense, then there is no problem. The reconstruction will be accurate in the sense that
‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤ Cγαδ, where Cγα is a real constant to be determined.

κE2 − κE1 = F−1

(F(σ2 − σ1 + α

∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

1−F(γ)

)
. (71)

Noticing that the Repayment Pattern Density γ involved in this model satisfies:

∫ Θγ

0
γ = 1. (72)

This equality means that F(γ)(ξ) converges to 1 when ξ goes to 0. Consequently, function ξ → 1
1−F(γ)(ξ)

does not accept the upper bound. In other words, because of zero is only the singularity point of this

12



function. We will show in some examples of density γ that the upper bound is not reached. Setting
density, i.e γ = 1

Θγ 1[0,Θγ ], we get:

∣∣∣∣∣ 1
1−F(γ)(ξ)

∣∣∣∣∣ = |ξΘγ |√
(ξΘγ − sin(ξΘγ))2 + (cos(ξΘγ)− 1)2

. (73)

Let us plot on R∗+ the function given by equality (73). This function is presented in Figure 3 showing
that it does not attain the supremum on R∗. For the same reason, we have:

1
| 1−F(γ)(ξ) | /∈ L2(R∗). (74)

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

9

10

ξθ

|ξθ|
(ξθ

−
si
n(ξ

θ))
2 +

(co
s(ξ

θ)−
1)2

)

Figure 3: Graph of function ξΘγ → |ξΘγ |√
(ξΘγ−sin(ξΘγ))2+(cos(ξΘγ)−1)2 on R∗+ showing that the upper bound

is not reached.

Now, we will show that density γ satisfies relation (74). For instance, if density γ is an affine function
on its support [0,Θγ ], i.e. γ(t) = t1[0,

√
2](t), we have:

∥∥∥∥∥ 1
| 1−F(γ)(ξ) |

∥∥∥∥∥
2

L2(R)

= 1(
(1 + 1

ξ2 )− ( cos(
√

2ξ)
ξ2 +

√
2 sin(

√
2ξ)

ξ )
)2

+
(

sin(
√

2ξ)
ξ2 −

√
2 cos(

√
2ξ)

ξ

)2 . (75)

Matlab provides that the integral of targeted density is divergent as follows:

1 fun = @( x ) 1 ./ ( ( (1 . +1 ./ ( x . ˆ 2 ) )− ( cos ( s q r t (2 ) . ∗ x ) . / ( x . ˆ 2 ) + s q r t (2 ) . ∗ s i n ( s q r t (2 ) . ∗ x ) . /
x ) ) . ˆ2 +( s i n ( s q r t (2 ) . ∗ x ) . / ( x . ˆ 2 ) −

2 s q r t (2 ) . ∗ cos ( s q r t (2 ) . ∗ x ) . / x ) . ˆ 2 ) ;
3 q = i n t e g r a l ( fun ,− In f , I n f )

In these situations, we can not treat this inverse problem by bounding the term 1
|1−F(γ)(ξ)| with respect

13



to norm L2(R) or L∞(R). For that, the density change is necessary in order to set up numerical stability
problem. Assuming that there is a function φ ∈ L2([tI,Θmax]) satisfying F(φ)(0) = 0 such that:

∣∣∣∣∣ F(φ)(ξ)
1−F(γ)(ξ)

∣∣∣∣∣ ∈ L2(R). (76)

From this, there exists a constant C ′ such that:

∥∥∥∥∥
∣∣∣∣∣ F(φ)(ξ)
1−F(γ)(ξ)

∣∣∣∣∣
∥∥∥∥∥
L2(R)

≤ C ′. (77)

Since Inverse Fourier Transform F−1 preserves norm from L2(R) to L2([tI,Θmax]), we obtain from (71)
the following equality:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) =

∥∥∥∥∥
F
(
σ2 − σ1 + α

∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

F(φ) × F(φ)
1−F(γ)

∥∥∥∥∥
L2(R)

. (78)

From this, we obtain:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤

∥∥∥∥∥
F
(
σ2 − σ1 + α

∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

F(φ)

∥∥∥∥∥
L∞(R)

∥∥∥∥∥ F(φ)
1−F(γ)

∥∥∥∥∥
L2(R)

,

≤ C ′
∥∥∥∥∥
F(σ2 − σ1) + αF

(∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

F(φ)

∥∥∥∥∥
L∞(R)

.

(79)

Defining densities σI1 and σI2 as:

σ1 = σI1 ? φ, σ2 = σI2 ? φ. (80)

In which these densities σI1 and σI2 satisfy the following equality:

∫ Θmax

tI

(∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

)
dt = 0. (81)

In the sequel, we use this definition (80) to get:

∥∥∥∥∥
F
(∫ t

tI

(σ2 − σ1)(s) eα(t−s) ds

)
F(φ)

∥∥∥∥∥
L∞(R)

=

∥∥∥∥∥
F
(∫ t

tI

((σI2 − σI1) ? φ)(s) eα(t−s) ds

)
F(φ)

∥∥∥∥∥
L∞(R)

,

=

∥∥∥∥∥
F
(∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

)
F(φ)

∥∥∥∥∥
L∞(R)

.

(82)
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On other hand, we have:

∣∣∣∣∣F
(∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

)
(ξ)

∣∣∣∣∣
≤

∥∥∥∥∥
∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

∥∥∥∥∥
L1([tI,Θmax])

,

≤ sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}

∥∥∥∥∥
∫ Θmax

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)
ds

∥∥∥∥∥
L1([tI,Θmax])

,

≤ sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}

∥∥∥∥∥
∫ Θmax

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)e+iξyφ(y)e−iξy dy
)
ds

∥∥∥∥∥
L1([tI,Θmax])

,

≤ sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}
∫ Θmax

tI

∣∣∣∣∣
∫ Θmax

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)e+iξyφ(y)e−iξy dy
)
ds

∣∣∣∣∣ dt,
≤ (Θmax − tI) sup

s∈[tI,Θmax]
{e|α|(Θmax−s)}

∣∣∣∣∣
∫ Θmax

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)e+iξyφ(y)e−iξy dy
)
ds

∣∣∣∣∣,
≤ (Θmax − tI) sup

s∈[tI,Θmax]
{e|α|(Θmax−s)}‖|(σI2 − σI1)e+iξy|‖L∞([tI,Θmax])

∣∣∣∣∣
∫ Θmax

tI

(∫ Θmax

tI

φ(y)e−iξy dy
)
ds

∣∣∣∣∣,
≤ (Θmax − tI) sup

s∈[tI,Θmax]
{e|α|(Θmax−s)}‖|(σI2 − σI1)e+iξy|‖L∞([tI,Θmax])

∫ Θmax

tI

∣∣∣∣∣
∫ Θmax

tI

φ(y)e−iξy dy

∣∣∣∣∣ ds,
≤ (Θmax − tI)2 sup

s∈[tI,Θmax]
{e|α|(Θmax−s)}‖|(σI2 − σI1)e+iξy|‖L∞([tI,Θmax])

∣∣∣∣∣
∫ Θmax

tI

φ(y)e−iξy dy

∣∣∣∣∣,
≤ (Θmax − tI)2 sup

s∈[tI,Θmax]
{e|α|(Θmax−s)}|F(φ)(ξ)|‖σI2 − σI1‖L∞([tI,Θmax]).

(83)

Finally, equality (83) gives:

∣∣∣∣∣
F

(∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

)
(ξ)

F(φ)(ξ)

∣∣∣∣∣ ≤ (Θmax − tI)2 sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}

‖σI2 − σI1‖L∞([tI,Θmax]).

(84)

In order to obtain a consistent stability, we impose on density σI2 − σI1 the following inequality:

‖σI2 − σI1‖L∞([tI,Θmax]) ≤ ‖σI2 − σI1‖L2([tI,Θmax]). (85)

According to equalities (84) and (85), we get:

∥∥∥∥∥
F
(∫ t

tI

(∫ Θmax

tI

(σI2 − σI1)(s− y)φ(y) dy
)

eα(t−s) ds

)
F(φ)

∥∥∥∥∥
L∞(R)

≤ (Θmax − tI)2 sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}

‖σI2 − σI1‖L2([tI,Θmax]).

(86)

Using definition (80) of densities σI2 et σI1 coupled with convolution operator to get:
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∥∥∥∥∥F(σ2 − σ1)
F(φ)

∥∥∥∥∥
L∞(R)

≤ ‖F(σI2 − σI1)‖L∞(R),

≤ ‖σI2 − σI1‖L1([tI,Θmax]).

(87)

Using Cauchy-Schwarz inequality:

‖σI2 − σI1‖L1([tI,Θmax]) ≤
√

Θmax − tI × ‖σI2 − σI1‖L2([tI,Θmax]). (88)

Consequently, we get:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤ C ′
(√

Θmax − tI + |α|(Θmax − tI)2e|α|(Θmax−tI)

)
‖σI2 − σI1‖L2([tI,Θmax]).

(89)

3 Inverse problem of the model in M([tI, Θmax])
The aim of this section is to study the inverse problem in measure space. Denoting M([tI,Θmax])

the Radon measure space which is a continuous and linear form acting on continuous functions space
Cc([tI,Θmax]) defined over a time interval [tI,Θmax]. The usual norm on M([tI,Θmax]) is:

‖µ‖M((tI,Θmax)) = sup
ψ∈Cc([tI,Θmax]),ψ 6=0

{
|〈µ, ψ〉|

‖ψ‖L∞([tI,Θmax])

}
, (90)

where ‖‖L∞([tI,Θmax]) is the usual norm on Cc([tI,Θmax]) defined by (17). We set the Repayment Pattern
Measure γ̃ such that:

γ̃ ∈M([0,Θγ ]), (91)

where Θγ is positive number satisfying relation (4). By relation (91), the support of convolution of two
compactly supported measures κ̃E in [tI,Θmax − Θγ ] and γ̃ in [0,Θγ ] is included in [tI,Θmax]. Indeed,
formally:

Supp(κ̃E ? γ̃) ⊂ Supp(κ̃E) + Supp(γ̃). (92)

Let L1 be a linear operator defined from M([tI,Θmax −Θγ ]) to M([tI,Θmax]) acting on Loan Measure
κ̃E by

L1[κ̃E ] = κ̃E − κ̃E ? γ̃ − α
〈
κ̃E − κ̃E ? γ̃,1|[tI,t[

〉
dt. (93)

Let D1 be an operator defined in M([tI,Θmax]) acting on Initial Debt Repayment Measure ρ̃I
K by

D1[ρ̃I
K] = −α

〈
ρ̃I
K,1|[t,Θmax[

〉
dt− ρ̃I

K. (94)

Algebraic Spending Measure σ̃ is defined such that the difference between spendings and incomes required
to satisfy the current needs. Measure σ̃ is decomposed as a sum of operators L1 and D1 given by relations
(93) and (94), respectively:

σ̃ = L1[κ̃E ] +D1[ρ̃I
K]. (95)
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Theorem 3.1. If Repayment Pattern Measure γ̃ is satisfying relation (91) and following relation

1
1−F(γ̃) |]−∞,−ε[∪]ε,+∞[

∈ L∞(R), (96)

for any positive real ε and if Loan Measure κ̃E exists inM([tI,Θmax−Θγ ]) for any Initial Debt Repayment
Measure ρ̃I

K and for any Algebraic Spending Measure σ̃ inM([tI,Θmax]) satisfying the following equality:

κ̃E = F−1

(F(σ̃ −D1[ρ̃I
K] + αẽα

〈
σ̃ −D1[ρ̃I

K], e−α|[tI,t[
〉)

1−F(γ̃)

)
, (97)

where
〈
., .
〉

stands for the duality bracket of measure spaceM([tI,Θmax]) with space of functions contain-
ing piecewise continuous functions. Then, Loan Measure κ̃E is unique and stable in M([tI,Θmax−Θγ ]).

Proof. Notice that since the inverse Fourier transform F−1 is not surjective fromM(R) toM([tI,Θmax]),
the solution κ̃E doesn’t exist for the inverse problem. Moreover, if Loan Measure κ̃E is supposed satis-
fying relation (97), then it is unique due to the injectivity of operator L1 (see Lemma 3.4 in [7]).

Now we will show that solution Loan Measure κ̃E is stable. Definition (93) of operator L1 gives that
for any two Loan Densities κ̃E1 and κ̃E2 the following equality:

κ̃E2 − κ̃E1 = F−1

(F(σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉)
1−F(γ̃)

)
. (98)

The usual Radon norm on M([tI,Θmax −Θγ ]) of κ̃E2 − κ̃E1 is defined by:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) = sup
φ∈Cc([tI,Θmax−Θγ ]),φ6=0

{
| 〈κ̃E2 − κ̃E1 , φ〉 |
‖φ‖L∞([tI,Θmax−Θγ ])

}
. (99)

Replacing measure κ̃E2 − κ̃E1 given by (98) in right equality (99) yield the following equality:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) = | F(φ) |
| 1−F(γ̃) |

sup
ψ∈Cc([tI,Θmax−Θγ ]),ψ 6=0

{ | 〈F(σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
),F(ψ)〉 |

| F(φ) | ×‖ψ‖L∞([tI,Θmax−Θγ ])

}
.

(100)

Since function ψ having support in [tI,Θmax −Θγ ], there exists a constant C such as:

| F(ψ) |
‖ψ‖L∞([tI,Θmax−Θγ ])

≤ C. (101)

According to equalities (100) and (101), we obtain the following inequality:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) ≤ C
| F(φ) |
| 1−F(γ̃) |

sup
ψ∈Cc([tI,Θmax−Θγ ]),ψ 6=0

{∣∣∣∣∣F(σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
)

F(φ)

∣∣∣}. (102)
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Similary to the Theorem 2.5, we make the same assumptions in order to establish the stability to new
modified Algebraic Spending Measures σ̃I1 and σ̃I2 (see definition (80)). As we have set up in equality
(86), we obtain in the same way:

∣∣∣∣∣F(σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
)

F(φ)

∣∣∣ ≤ (Θmax − tI)2 sup
s∈[tI,Θmax]

{e|α|(Θmax−s)}

‖σ̃I2 − σ̃I1‖M([tI,Θmax]).

(103)

Consequently,

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) ≤ C × C ′ × (Θmax − tI)2e|α|(Θmax−tI)‖σ̃I2 − σ̃I1‖M([tI,Θmax]), (104)

where C ′ is defined as (77).
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