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Inverse problem stability of a continuous-in-time financial model ∗

Tarik Chakkour

Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, France

September 1, 2016

Abstract. In this paper, we study the inverse problem stability of the continuous-in-time model which
is designed to be used for the finances of public institutions. We discuss this study with determining the
Loan Measure from Algebraic Spending Measure in M([tI,Θmax]), and in L2([tI,Θmax]) when they are
density measures.
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1 Introduction
In the last two decades, the theory and practice of inverse problems have been developed in many

scientific domains. Consequently, it is rapidly growing, if not exploding. Moreover, document [3] shows
how much researchers contribute to this field. Many inverse problems arising in scientific domains present
numerical instability: the noise affecting the data may produce arbitrarily large errors in the solutions.
In other words, these problems are ill-posed in the sense of Hadamard. The concept of ill-posedness was
introduced by HADAMARD [6] in the field of partial differential equations. We mention the book on
the mathematics of ill-posed problems by TIKHONOV and ARSENIN [8].

We constructed in previous work [5] the continuous-in-time model which is based on using the math-
ematical tools such convolution and integration. Indeed, this model uses measures over time interval to
describe loan scheme, reimbursement scheme and interest payment scheme. The model contains some
financial quantities. For instance, the Repayment Pattern Measure γ̃ is a non-negative measure with
total mass which equals 1, the Algebraic Spending Measure σ̃ is defined such that the difference between
spendings and incomes required to satisfy the current needs between times t1 and t2 is:∫ t2

t1

σ̃, (1)

and the Loan Measure κ̃E is defined such that the amount borrowed between times t1 and t2 is:

∫ t2

t1

κ̃E . (2)

When measure γ̃ is absolutely continuous with respect to the Lebesgue measure dt. This means that
it read γ(t)dt, where t is the variable in R. The work [5] proposes the resolution of the inverse problem
over the space of square-integrable functions when density γ is equal to 1

Θγ over interval [0,Θγ ] and null
elsewhere. In paper [4], we use a mathematical framework to discuss an inverse problem of determining
the Loan Measure κ̃E from Algebraic Spending Measure σ̃ in measure space. The inverse problem is
used in [5] on simplified examples in order to show its capability to be used to forecast a financial strategy.

∗This work is jointly funded by MGDIS company (http://www.mgdis.fr/) and the LMBA (http://www.lmba-math.fr/).
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We show in this paper the general results of this inverse problem for any density γ. We show the
stability of the inverse problem. We continue to extend some results of this inverse problem in measure
space with proving its stability. We describe a more complete numerical study for the inverse problem.

The organization of the rest of this paper is as follows. Section 2 describes the inverse problem of the
model in L2([tI,Θmax]). Section 3 shows the inverse problem of the model in M([tI,Θmax]).

2 Inverse problem of the model in L2([tI, Θmax])
Denoting L2([tI,Θmax]) the space of square-integrable functions over R having their support in

[tI,Θmax] and denoting L2([0,Θγ ]) the space of square-integrable functions over R having their sup-
port in [0,Θγ ]. We state the Repayment Pattern Density γ as follows:

γ ∈ L2([0,Θγ ]), (3)

where Θγ is a positive number such that:

Θγ < Θmax − tI. (4)

We justify relation (3) because the support of convolution of two compactly supported densities κE in
[tI,Θmax −Θγ ] and γ in [0,Θγ ] is included in [tI,Θmax].

Lemma 2.1. Linear operator L acting on Loan Density κE ∈ L2([tI,Θmax −Θγ ]) defined as:

L[κE ](t) = κE(t)− (κE ? γ)(t)− α
∫ t

tI

(κE − κE ? γ)(s) ds, (5)

is compact operator from L2([tI,Θmax −Θγ ]) to L2([tI,Θmax]).

Proof. Definition (5) of operator L gives that for any two Loan Densities κE1 and κE2 the following
equality:

L[κE2 ](t)− L[κE1 ](t) = κE2(t)− κE1(t)− ((κE2 − κE1) ? γ)(t)

− α
∫ t

tI

κE2(s)− κE1(s)− ((κE2 − κE1) ? γ)(s) ds.
(6)

Taking norm L2([tI,Θmax]) and applying triangle inequality to relation (6), we obtain the following
inequality:

‖L[κE2 ]− L[κE1 ]‖L2([tI,Θmax]) ≤ ‖κE2 − κE1 − ((κE2 − κE1) ? γ)‖L2([tI,Θmax])+ | α | ×CE2
1
, (7)

where CE2
1

is defined and is increased as follows:

CE2
1

=

∥∥∥∥∥
∫ t

tI

(κE2 − κE1)(s)− ((κE2 − κE1) ? γ)(s) ds

∥∥∥∥∥
L2([tI,Θmax])

,

=

√√√√∫ Θmax

tI

(∫ t

tI

(κE2 − κE1)(s)− ((κE2 − κE1) ? γ)(s) ds
)2

dt,

=
√

Θmax − tI × ‖(κE2 − κE1)− (κE2 − κE1) ? γ)‖L1([tI,Θmax]).

(8)

We use Cauchy-Schwarz inequality to obtain:
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‖(κE2 − κE1)− (κE2 − κE1) ? γ)‖L1([tI,Θmax]) =
∫ Θmax

tI

1× | (κE2 − κE1)(s)− ((κE2 − κE1) ? γ)(s) | ds,

≤

√∫ Θmax

tI

12 ds

×

√√√√∫ Θmax

tI

(
(κE2 − κE1)(s)− ((κE2 − κE1) ? γ)(s)

)2

ds,

≤
√

Θmax − tI × ‖(κE2 − κE1)− (κE2 − κE1) ? γ)‖L2([tI,Θmax]).

(9)

Thanks to properties (8) and (9), we get:

CE2
1
≤ (Θmax − tI)× ‖(κE2 − κE1)− (κE2 − κE1) ? γ)‖L2([tI,Θmax]). (10)

From this and according to relation (7), we get:

‖L[κE2 ]− L[κE1 ]‖L2([tI,Θmax]) ≤ (1+ | α | ×(Θmax − tI))× ‖κE2 − κE1 − ((κE2 − κE1) ? γ)‖L2([tI,Θmax]).
(11)

The triangle and the Young’s Inequalities implie that:

‖κE2 − κE1 − ((κE2 − κE1) ? γ)‖L2([tI,Θmax]) ≤ ‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) + ‖((κE2 − κE1) ? γ)‖L2([tI,Θmax]),

≤ ‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) + ‖κE2 − κE1‖L2([tI,Θmax−Θγ ])

× ‖γ‖L1([0,Θγ ]),

≤ (1 + ‖γ‖L1([0,Θγ ]))× ‖κE2 − κE1‖L2([tI,Θmax−Θγ ]).

(12)

From this and according to relation (11), we get:

‖L[κE2 ]− L[κE1 ]‖L2([tI,Θmax]) ≤ (1+ | α | ×(Θmax − tI))× (1 + ‖γ‖L1([0,Θγ ]))× ‖κE2 − κE1‖L2([tI,Θmax−Θγ ]).

(13)

Consequently, linear operator L is uniformly bounded and is a Hilbert-Schmidt operator L2([tI,Θmax])
of constant (1+ | α | ×(Θmax − tI))× (1 + ‖γ‖L1([0,Θγ ])), achieving the proof of the lemma.

Lemma 2.2. Linear operator L given by relation (5) is Fredholm operator such that:

codim Im(L) = dim Ker(L) <∞. (14)

Proof. We consider L the space of continuous linear applications of L2([tI,Θmax−Θγ ]) in L2([tI,Θmax]).
We define operator K in L as an integral operator:

∀κE ∈ L2([tI,Θmax −Θγ ]),K[κE ](x) =
∫ Θmax

tI

F (x, y)κE(y) dy. (15)

We want to show that linear operator L is a difference between the identity application from space
L2([tI,Θmax −Θγ ]) to L2((tI,Θmax)) and the compact operator K given by (15) as the following form:
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L[κE ](x) = IdL2([tI,Θmax−Θγ ])→L2([tI,Θmax])[κE ](x)−K[κE ](x), (16)

where, F which defines operator K, is a function in L2([tI,Θmax − Θγ ] × [tI,Θmax]) to be determined.
In what to follows, the definition (5) of linear operator L is used in order to introduce in its second
term the indicator function 1{y≤x} to get first line (17). It allows to simplify integrals because of using
Fubini-Tonelli Theorem to permut intergals. These simplifications can be detailed as follows:

L[κE ](x) = κE(x)− (κE ? γ)(x)− α
∫ Θmax

tI

1{y≤x}(κE − κE ? γ)(y) dy,

= κE(x)− (κE ? γ)(x)−
∫ Θmax

tI

ακE(y)1{y≤x} dy +
∫ Θmax

tI

α1{y≤x}(κE ? γ)(y) dy,

= κE(x)−
∫ Θmax

tI

κE(y)γ(x− y) dy −
∫ Θmax

tI

ακE(y)1{y≤x} dy+∫ Θmax

tI

ακE(y)(
∫ Θmax

tI

1{t≤x}γ(t− y) dt) dy,

= κE(x)−
∫ Θmax

tI

κE(y)(γ(x− y) + α1{y≤x} − α
∫ Θmax

tI

1{t≤x}γ(t− y) dt) dy.

(17)

From this, we get the expression of function F :

F (x, y) = γ(x− y) + α1{y≤x} − α
∫ Θmax

tI

1{t≤x}γ(t− y) dt. (18)

In order to show that function F is square-integrable over [tI,Θmax − Θγ ] × [tI,Θmax], we will show
that three functions they are. Indeed, these functions are (x, y) → γ(x − y), (x, y) → 1{y≤x} and
(x, y)→

∫ Θmax
tI

1{t≤x}γ(t− y) dt. Othewise, since we have:

‖1{y≤x}‖2L2([tI,Θmax−Θγ ]×[tI,Θmax]) =
∫ Θmax−Θγ

tI

(∫ Θmax

tI

12
{y≤x} dy

)
dx,

=
∫ Θmax−Θγ

tI

(x− tI) dx,

= (Θmax −Θγ − tI)2

2 ,

(19)

we have (x, y) → 1{y≤x} ∈ L2([tI,Θmax − Θγ ] × [tI,Θmax]). In what to follows, we will show that
function

∫ Θmax
tI

1{t≤x}γ(t− y) dt is square-integrable over [tI,Θmax −Θγ ]× [tI,Θmax]. For that, we set
the following inequality:

∥∥∥∥∥
∫ Θmax

tI

1{t≤x}γ(t− y) dt

∥∥∥∥∥
2

L2([tI,Θmax−Θγ ]×[tI,Θmax])

=
∫ Θmax−Θγ

tI

∫ Θmax

tI

∣∣∣∣∣
∫ Θmax

tI

1{t≤x}γ(t− y) dt

∣∣∣∣∣
2

dx dy,

≤
∫ Θmax−Θγ

tI

∫ Θmax

tI

(∫ x

tI

|γ(t− y)| dt
)2

dx dy.

(20)

We use Cauchy-Schwarz inequality to obtain:

∀x ∈ [tI,Θmax −Θγ ],
(∫ x

tI

|γ(t− y)| dt
)2

≤ (x− tI)×
∫ x

tI

|γ(t− y)|2 dt. (21)
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Since density γ satisfies relation (3), there existes a constant Cγ such that relation (21) gives:

(∫ x

tI

|γ(t− y)| dt
)2

≤ (x− tI)× Cγ . (22)

According to relations (20) and (22), we get the following inequality:

∥∥∥∥∥
∫ Θmax

tI

1{t≤x}γ(t− y) dt

∥∥∥∥∥
2

L2([tI,Θmax−Θγ ]×[tI,Θmax])

≤ Cγ × (Θmax − tI)× (Θmax −Θγ − tI)2

2 , (23)

which proves that function (x, y) →
∫ Θmax
tI

1{t≤x}γ(t− y) dt is square-integrable over [tI,Θmax −Θγ ]×
[tI,Θmax]. Consequently, we get:

F ∈ L2([tI,Θmax −Θγ ]× [tI,Θmax]). (24)

It is concluded that linear operator L can be written in the form which is shown in relation (16).
We showed that operator L is Fredholm operator (see Theorem 3.45 page 206 in [7] or The Fredholm
Alternative Theorem 1.3.1 in [2] page 13). In addition, the Fredholm Alternative Theorem (Lemma 4.45
page 160 in [1]) is used to get that linear operator L has a finite codimension, a closed image and a finite
dimension of its kernel. The proof of lemma is achieved.

Lemma 2.3. Linear operator D acting on Initial Debt Repayment Density ρI
K ∈ L2([tI,Θmax]) defined

as:

D[ρI
K](t) = −α

∫ Θmax

t

ρI
K(s) ds− ρI

K(t), (25)

is compact operator from L2([tI,Θmax]) to L2([tI,Θmax]).

Proof. The triangle inequality is applied to definition (25) of operator D to get:

‖D[ρI
K]‖L2([tI,Θmax]) ≤| α | ×

∥∥∥∥∥
∫ Θmax

t

ρI
K(s) ds

∥∥∥∥∥
L2([tI,Θmax])

+ ‖ρI
K‖L2([tI,Θmax]). (26)

Since we have

∥∥∥∥∥
∫ Θmax

t

ρI
K(s) ds

∥∥∥∥∥
L2([tI,Θmax])

≤ (Θmax − tI)× ‖ρI
K‖L2([tI,Θmax]) and according to relation

(26), we have:

‖D[ρI
K]‖L2([tI,Θmax]) ≤ (| α | ×(Θmax − tI) + 1)× ‖ρI

K‖L2([tI,Θmax]). (27)

We can decompose Algebraic Spending Density σ as a sum of operators L and D:

σ(t) = L[κE ](t) +D[ρI
K](t). (28)

Lemma 2.4. The singular point of function 1−F(γ) is zero for any constant and affine density γ.
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Proof. If Repayment Pattern Density γ is a constant function given by:

γ = 1
Θγ

1[0,Θγ ], (29)

then we have:

∀ξ ∈ R?, 1−F(γ)(ξ) = 1− i

ξΘγ
(e−iξΘγ − 1). (30)

From this, we get:

∀ξ ∈ R?, 1−F(γ)(ξ) = 0⇒ ξΘγ = sin(ξΘγ) et cos(ξΘγ) = 1,
⇒ (ξΘγ)2 + 1 = 1,
⇒ ξΘγ = 0.

(31)

Since real Θγ is positive, function ξ → 1− F(γ)(ξ) is not zero function over R?. Inversely, if a real ξ is
zero, function ξ → 1 − F(γ)(ξ) is also a zero function. Indeed, the Fourier Transform of any density γ
at the origine is defined as:

F(γ)(0) =
∫ +∞

−∞
γ(t) dt. (32)

Furthermore, since density γ is with total mass which equals 1, relation (32) implies:

F(γ)(0) = 1. (33)

Now we will show that the singular point of function 1−F(γ) is zero for an affine density γ given by:

γ(t) = ( t

Θ2
γ

+ 1
2Θγ

)1[0,Θγ ]. (34)

Integrating by parts states that:

∀ξ ∈ R?, 1−F(γ)(ξ) = 1− ( 1
(ξΘγ)2 + i

2ξΘγ
)(e−iξΘγ − 1)− i

ξΘγ
e−iξΘγ . (35)

From this, we get the following system of equations:

{
(cos(ξΘγ)− 1) + 3ξΘγ

2 sin(ξΘγ) = (ξΘγ)2,

− sin(ξΘγ) + ξΘγ cos(ξΘγ) + ξΘγ
2 (cos(ξΘγ)− 1) = 0.

(36)

From this, we get the following equality:

ξΘγ

(
1 + 3(ξΘγ)2

2

)
−

(
1 + 9(ξΘγ)2

4

)
sin(ξΘγ) = 0. (37)

According to Figure 1, we state that equation (37) doesn’t have no solution on R?. Consequently, function
ξ → 1−F(γ)(ξ) is not a zero function over R?. Inversly, assuming that real ξ is zero, we get:
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Figure 1: Graph of the function ξ → ξΘγ

(
1 + 3(ξΘγ)2

2

)
−

(
1 + 9(ξΘγ)2

4

)
sin(ξΘγ) over interval

[−0.05, 0.05]. Also shown that zero is its singular point.

1−F(γ)(0) = 1−
∫ +∞

−∞
γ,

= 1− 1
Θ2
γ

∫ Θγ

0
t dt− 1

2Θγ

∫ Θγ

0
dt,

= 0.

(38)

We conclude that function 1− F(γ) is zero at the origine for density γ given by (29) or by (34). In
what to follows, we want to extend this conclusion for any affine density γ given by:

γ(t) = (c2t+ c1)1[0,Θγ ], (39)

where coefficients c1 and c2 satisfy:

c1 + c2Θγ

2 = 1
Θγ

. (40)

We obtain using the integration by parts:

∀ξ ∈ R?, 1−F(γ)(ξ) = 1− c2

(
e−iξΘγ − 1

ξ2 + iΘγe
−iξΘγ

ξ

)
− ic1(e−iξΘγ − 1)

ξ
= 0. (41)
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We obtain by separating the real and the imaginary parts of function 1 − F(γ) the following system of
equations:


1− c2

(
cos(ξΘγ)−1

ξ2 + Θγ sin(ξΘγ)
ξ

)
− c1 sin(ξΘγ)

ξ = 0,

c2

(
− sin(ξΘγ)

ξ2 + Θγ cos(ξΘγ)
ξ

)
+ c1(cos(ξΘγ)−1)

ξ = 0.
(42)

Let us check the consitency of the system of equations given by (42). Indeed, if coefficients c1 and c2
are respectively equal to 1

2Θγ and 1
Θ2
γ

, then we get relation (36). Thanks to (42), we get the following
equality:

c2Θγ

ξ
+ ξΘγ + c1ξ

c2
=
(
c2
ξ2 + Θγ(c2Θγ + c1) + c1(c2Θγ + c1)

c2

)
sin(ξΘγ). (43)

Acccording to relations (42) and (43), we get:

c2Θγ

ξ
+ ξΘγ + c1ξ

c2
=
(
c2
ξ2 + 2 + c21

c2

)
sin(ξΘγ). (44)

We will show that relation (44) is consistent. Indeed, assuming that coefficients c1 and c2 are respectively
equal to 1

2Θγ and 1
Θ2
γ

, we get relation (37). Otherwise, relation (44) gives:

sin(ξΘγ)− ξΘγ

(
c2Θ2

γ + (ξΘγ)2(1 + c1
c2Θγ )

c2Θ2
γ + (ξΘγ)2(2 + c2

1
c2

)

)
= 0. (45)

We use equality (45) and equality in (40) which is multiplied by c1
c2

in order to give:

 c2
1
c2

= −1 + 1
c2Θ2

γ
+ c2Θ2

γ

4 ,
c1

c2Θγ = 1
c2Θ2

γ
− 1

2 .
(46)

Replacing equality (46) in relation (45), we obtain the following equality:

sin(ξΘγ)− ξΘγ

(
c2Θ2

γ + (ξΘγ)2( 1
2 + 1

c2Θ2
γ

)

c2Θ2
γ + (ξΘγ)2(1 + 1

c2Θ2
γ

+ c2Θ2
γ

4 )

)
= 0. (47)

As

∀ξ ∈ R?,

∣∣∣∣∣ sin(ξΘγ)
ξΘγ

∣∣∣∣∣ ≤ 1, (48)

using inequality (48), we obtain the following inequality:

1
2 + 1

c2Θ2
γ

≤ 1 + 1
c2Θ2

γ

+
c2Θ2

γ

4 . (49)

Inequality (49) is simplified using relation (40) to give:

−2 ≤ c2Θ2
γ . (50)
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Theorem 2.5. If Repayment Pattern γ satisfies relation (3) and following relation:

∃ε > 0, 1
1−F(γ) |]−∞,−ε[∪]ε,+∞[

∈ L∞(R), (51)

where F stands for the Fourier Transform Operator. And if Initial Debt Repayment Density ρI
K is in

L2([tI,Θmax]), then for any Algebraic Spending Density σ in L2([tI,Θmax]) is satisfying the following
equality: ∫ Θmax

tI

(
σ(y)−D[ρI

K](y) + α

∫ y

tI

(σ(s)−D[ρI
K](s))eα(y−s) ds

)
dy = 0, (52)

there exists an unique Loan Density κE stable in L2([tI,Θmax −Θγ ]) which is given in terms of σ by:

κE = F−1

(F(σ −D[ρI
K] + α

∫ •
tI

(σ(s)−D[ρI
K](s)) eα(•−s) ds

)
1−F(γ)

)
, (53)

where F−1 stands for Inverse Fourier Transform, such that (28) holds.

Proof of Theorem 2.5. Besides, Lemma 3.5, in [4] showed that operator L given by relation (5) is a one-
to-one application. From this, we obtain the uniqueness of κE .

If we assume that our noise (the error between measurement σ2 and measurement σ1 ) is small in
the L2-norm, so that ‖σ2 − σ1‖L2([tI,Θmax]) ≤ δ, and we are happy with a small error in the parameter
in the L2([tI,Θmax]) sense, then there is ”no problem”. The reconstruction will be accurate in the sense
that ‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤ Cγαδ, where Cα is a real constant to be determined.

κE2 − κE1 = F−1

(F(σ2 − σ1 + α

∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

1−F(γ)

)
. (54)

Since Inverse Fourier Transform F−1 preserves norm from L2(R) to L2([tI,Θmax), we obtain from (54)

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) =

∥∥∥∥∥
F
(
σ2 − σ1 + α

∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds
)

1−F(γ)

∥∥∥∥∥
L2([tI,Θmax])

. (55)

Under the assumption (51) and the fact that Fourier Transform F preserves norm from L2([tI,Θmax])
to L2(R), we have:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤ sup
ξ∈R

{
1

| 1−F(γ)(ξ) |

}
× ‖σ2 − σ1‖L2([tI,Θmax])+

| α | ×

∥∥∥∥∥
∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds

∥∥∥∥∥
L2([tI,Θmax])

.

(56)

It follows, we want to increase quantity

∥∥∥∥∥ ∫ •tI(σ2 − σ1)(s) eα(•−s) ds

∥∥∥∥∥
L2

by a constant to be determined

times ‖σ2 − σ1‖L2([tI,Θmax])
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∥∥∥∥∥
∫ •
tI

(σ2 − σ1)(s) eα(•−s) ds

∥∥∥∥∥
L2([tI,Θmax])

=

√√√√∫ Θmax

tI

(∫ t

tI

(σ2 − σ1)(s) eα(t−s) ds

)2

dt

≤

√√√√∫ Θmax

tI

(∫ Θmax

tI

(σ2 − σ1)(s) eα(Θmax−s) ds

)2

dt

≤
√

Θmax − tI × sup
s∈[tI,Θmax]

{eα(Θmax−s)} × ‖σ2 − σ1‖L1([tI,Θmax])

≤
√

Θmax − tI × eα(Θmax−tI) × ‖σ2 − σ1‖L1([tI,Θmax]).

(57)

Since we have with using Cauchy-Schwarz inequality:

‖σ2 − σ1‖L1([tI,Θmax]) ≤
√

Θmax − tI × ‖σ2 − σ1‖L2([tI,Θmax]), (58)

and according to relations (56) and (57), we get:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤

(
sup
ξ∈R

{
1

| 1−F(γ)(ξ) |

}
+ | α | ×(Θmax − tI)× eα(Θmax−tI)

)
×

‖σ2 − σ1‖L2([tI,Θmax]).

(59)

If we set Cγα = sup
ξ∈R

{
1

| 1−F(γ)(ξ) |

}
+ | α | ×(Θmax − tI)× eα(Θmax−tI), then we get:

‖κE2 − κE1‖L2([tI,Θmax−Θγ ]) ≤ Cγα × ‖σ2 − σ1‖L2([tI,Θmax]). (60)

3 Inverse problem of the model in M([tI, Θmax])
The aim of this section is to study the inverse problem in measure space. Denoting M([tI,Θmax])

the Radon measure space which is a continuous and linear form acting on continuous functions space
Coc ([tI,Θmax]) defined over a time interval [tI,Θmax]. The usual norm on M([tI,Θmax]) is:

‖µ‖M((tI,Θmax)) = sup
ψ∈Coc ([tI,Θmax]),ψ 6=0

{
|〈µ, ψ〉|

‖ψ‖L∞([tI,Θmax])

}
, (61)

where ‖‖L∞([tI,Θmax]) is the usual norm on Coc ([tI,Θmax]) defined as:

‖ψ‖L∞([tI,Θmax]) = sup
t∈[tI,Θmax]

{
|ψ(t)|

}
. (62)

We set the Repayment Pattern Measure γ̃ such that:

γ̃ ∈M([0,Θγ ]), (63)

where Θγ is positive number satisfying relation (4). By relation (63), the support of convolution of two
compactly supported measures κ̃E in [tI,Θmax − Θγ ] and γ̃ in [0,Θγ ] is included in [tI,Θmax]. Indeed,
formally:
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Supp(κ̃E ? γ̃) ⊂ Supp(κ̃E) + Supp(γ̃). (64)

Let L1 be a linear operator defined from M([tI,Θmax −Θγ ]) to M([tI,Θmax]) acting on Loan Measure
κ̃E by

L1[κ̃E ] = κ̃E − κ̃E ? γ̃ − α
〈
κ̃E − κ̃E ? γ̃,1|[tI,t[

〉
dt. (65)

Let D1 be an operator defined in M([tI,Θmax]) acting on Initial Debt Repayment Measure ρ̃I
K by

D1[ρ̃I
K] = −α

〈
ρ̃I
K,1|[t,Θmax[

〉
dt− ρ̃I

K. (66)

Algebraic Spending Measure σ̃ is defined such that the difference between spendings and incomes required
to satisfy the current needs. Measure σ̃ is decomposed as a sum of operators L1 and D1 given by relations
(65) and (66), respectively:

σ̃ = L1[κ̃E ] +D1[ρ̃I
K]. (67)

Theorem 3.1. If Repayment Pattern Measure γ̃ is satisfying relation (63) and following relation

1
1−F(γ̃) |]−∞,−ε[∪]ε,+∞[

∈ L∞(R), (68)

for any positive real ε and if Loan Measure κ̃E inM([tI,Θmax−Θγ ]) exists for any Initial Debt Repayment
Measure ρ̃I

K and for any Algebraic Spending Measure σ̃ inM([tI,Θmax]) satisfying the following equality:

κ̃E = F−1

(F(σ̃ −D1[ρ̃I
K] + αẽα

〈
σ̃ −D1[ρ̃I

K], e−α|[tI,t[
〉)

1−F(γ̃)

)
, (69)

then, Loan Measure κ̃E is unique and stable in space M([tI,Θmax −Θγ ]).

Proof. We notice that since that the inverse Fourier transform F−1 is not surjective from M(R) to
M([tI,Θmax]), the solution κ̃E doesn’t exist for the inverse problem. Moreover, if Loan Measure κ̃E is
supposed satisfying relation (69), then it is unique due to the injectivity of operator L1. For that, we
refer the reader to Lemma 3.4.

Now we will show that the solution Loan Measure κ̃E is stable. Definition (65) of operator L1 gives
that for any two Loan Densities κ̃E1 and κ̃E2 the following equality:

κ̃E2 − κ̃E1 = F−1

(F(σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉)
1−F(γ̃)

)
. (70)

The usual Radon norm on M([tI,Θmax −Θγ ]) of quantity κ̃E2 − κ̃E1 is defined by:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) = sup
φ∈Coc ([tI,Θmax−Θγ ]),φ6=0

{
| 〈κ̃E2 − κ̃E1 , φ〉 |
‖φ‖L∞([tI,Θmax−Θγ ])

}
. (71)

We replace measure κ̃E2 − κ̃E1 given by definition (70) in relation (71) in order to obtain the following
equality:
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‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) = 1
| 1−F(γ̃) |×

sup
φ∈Coc ([tI,Θmax−Θγ ]),φ6=0

{ | 〈σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
,F(φ)〉 |

‖φ‖L∞([tI,Θmax−Θγ ])

}
.

(72)

By the Fourier Transform of function φ ∈ Coc ([tI,Θmax −Θγ ]), we get the following inequality:

| F(φ)(ξ) | =

∣∣∣∣∣
∫ Θmax−Θγ

tI

φ(x)e−ixξ dx

∣∣∣∣∣,
≤ ‖φ‖L∞([tI,Θmax−Θγ ])

∫ Θmax−Θγ

tI

|e−ixξ| dx,

≤ (Θmax −Θγ − tI)× ‖φ‖L∞([tI,Θmax−Θγ ]).

(73)

Using relations (72) and (73), we obtain:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) ≤ (Θmax −Θγ − tI)× sup
ξ∈R

{
1

| 1−F(γ̃)(ξ) |

}
×

sup
φ∈Coc ([tI,Θmax−Θγ ]),φ 6=0

{ | 〈σ̃2 − σ̃1 + αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
,F(φ)〉 |

‖F(φ)‖L∞([tI,Θmax−Θγ ])

}
.

(74)

Since we have:

|
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
| =

|
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
|

‖e−α|[tI,t[‖L∞([tI,Θmax−Θγ ])
× ‖e−α|[tI,t[‖L∞([tI,Θmax−Θγ ]),

≤ ‖σ̃2 − σ̃1‖M([tI,Θmax]) × ‖e−α|[tI,t[‖L∞([tI,Θmax−Θγ ]),

≤ ‖σ̃2 − σ̃1‖M([tI,Θmax]) × e|−α|tI ,

(75)

we obtain:

| αẽα
〈
σ̃2 − σ̃1, e−α|[tI,t[

〉
,F(φ)〉 | ≤| α | ×(Θmax − tI)× e|α|(Θmax−tI) × ‖σ̃2 − σ̃1‖M([tI,Θmax])×

‖F(φ)‖L∞([tI,Θmax−Θγ ]).
(76)

According to relations (74) and (76), we obtain the following inequality:

‖κ̃E2 − κ̃E1‖M([tI,Θmax−Θγ ]) ≤ (Θmax −Θγ − tI)× sup
ξ∈R

{
1

| 1−F(γ̃)(ξ) |

}
×

(1+ | α | ×(Θmax − tI)× e|α|(Θmax−tI))× ‖σ̃2 − σ̃1‖M([tI,Θmax]).

(77)
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