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CROWD MOTION FROM THE GRANULAR STANDPOINT

SYLVAIN FAURE # AND BERTRAND MAURY #

# Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, France

Abstract. Following the approach initially proposed in Maury & Venel [30, 31], we
consider here crowd motion from the standpoint of granular media, and we investigate
how theoretical and numerical tools in non-smooth analysis can help better understand-
ing some paradoxical features. We shall be especially interested in evacuation processes,
jams, and we will detail how the granular nature of the flow helps to understand two
well-known phenomena, the so-called “Faster is Slower” effect, and “Stop-and-Go” waves.

1. Introduction

Most crowd motion models are based on the following fundamental ingredients:

(1) Individual projects: Pedestrians tend to achieve a certain objective, typically reach
a certain zone (e.g. an exit door in case of emergency evacuation);

(2) Social tendencies: Each individual adapts its behavior according to the perception
he has from its environment, in particular the location of other people. The best
example is the tendency to keep at a certain distance away from neighbors. This
“comfort” distance depends on many parameters, among which is the cultural
background [16];

(3) Physical interaction: In overcrowded situations, actual contacts (between individ-
uals, or with obstacles) may occur, and the resulting forces are likely to greatly
affect the overall behavior of the crowd. This item is sometimes disregarded, but
it will play a crucial role in the present paper.

Modeling strategies can be classified according to the manner they transform these prin-
ciples into equations.

Macroscopic vs. microscopic. Both microscopic and macroscopic approaches can
be carried out, depending on whether people are followed individually, or handled as a
global entity. The macroscopic approach consists in conceiving the crowd as a whole, with
no account of particular individuals. The associated mathematical object is a density
function, that represents the local density of pedestrian. This density is transported by
the global velocity field u:

∂ρ

∂t
+∇ · (ρu) = 0.

Designing a model amounts to set rules to define u at each instant. It can be defined in a
traffic flow spirit [23] by setting u = αU, where U is the desired velocity field (U(x) is the
velocity that a single person at x would take), and α = α(ρ) is a correction factor, that
accounts for congestion: The velocity is reduced when the local density is high. Another
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2 SYLVAIN FAURE # AND BERTRAND MAURY #

Micro Soft Hard
1st

order
Burstedde et al. [8]
Schadschneider & Seyfried [41]
Maury [27]

Maury & Venel [30, 31]
Pécol, Dal Pont, Erlicher & Argoul [38]

2nd

order
Helbing [18, 17, 19, 20]
Parisi, Gilman & Moldovan [37]
Parisi & Dorso [36]
Xi, Son & S. Lee [46]
P. Degond, C. Appert-Rolland, J.
Pettre & G. Theraulaz [12]

Granular flows [1, 35, 26]
(not implemented for crowd motions)

Table 1. Microscopic models

choice consists in adding a PDE for the velocity: Euler-like equation with a forcing term
that accounts for relaxation toward the desired velocity [2], or Darcy-like equation to
account for congestion [28, 29].

In the microscopic setting, pedestrians are described individually, and direct (social or
mechanical) interactions between any two neighboring individuals can be accounted for.
The core of the model lies in the definition of individual velocities, in a way that integrates
personal projects, social tendencies, and/or actual contacts with neighbors. This approach
makes it possible to differentiate individuals, in terms of speed, strategy, etc . . . . Although
they are not of the differential type, Cellular Automata methods [41, 8] fit in this class of
microscopic models, since they allow to handle individual strategies.

Let us also mention an intermediate approach, based on a kinetic description of the
crowds, which makes it possible to establish links between the different scales of description
[3], and an alternative description based on time-evolving measures [39].

First order vs. second order. A second alternative lies in the dynamics: first order or
second order in time ? As we shall detail further, the first microscopic models introduced
by Helbing [17] were designed within the framework of classical mechanics: Individuals
were identified to inertial objects. This leads to a second order in time equation on the
position vector. Yet, a first order in time makes sense if one considers that individuals
are able to move from rest and quasi-instantaneously achieve their desired velocity. It
also allows nonsmooth trajectories (sudden change of direction), which are ruled out by
second-order models. Besides, it reduces the number of parameters of the model, and
suppresses unrealistic oscillations that are likely to be produced by inertial crowd models.
Soft vs. hard. A third alternative concerns the way direct interactions are handled.
By direct interactions we mean actual contacts between individuals. They are likely to
happen in highly crowded situations, especially during emergency evacuations involving
panic. Like in the granular community, two options are possible: the soft sphere approach,
also called Molecular Dynamics approach (MD) in physics, consists in applying short
range forces between individuals, whereas in the Contact Dynamics approach, contacts
are treated as non-smooth events (hard handling of congestion).

Tables 1 and 2 propose a classification of models in the literature, according to these
three criteria. Except for Cellular Automata, we restricted the scope of this classification
to differential models, i.e. models that take the form of Ordinary Differential Equations
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Macro Soft Hard
1st

order
Bellomo, Bellouquid & Knopoff [3]
Hughes [23]
Garavello & Lécureux-Mercier [10]
Chalons, Goatin & Seguin [9]
Burger, Markowich & Pietschmann [7]
Piccoli & A. Tosin [39]

Maury, Roudneff-Chupin
& Santambrogio [28]

2nd

order
Bellomo & Dogbé [2]
Hoogendoorn & Bovy [21, 22]

Pressureless Euler eqs. with maxi-
mal density constraint [4, 6]
(not implemented for crowd mo-
tions)

Table 2. Macroscopic models

(microscopic) or Partial Differential Equations (macro). We refer to the recent overview of
alternative approaches proposed in Ref. [13]. Let us make a few remarks on this overview,
in order to stress the deep differences between crowd motion and car traffic modeling.

(1) While first-order macroscopic models have been implemented in many ways, a large
majority of microscopic model are of second order in time. The only first-order
micro models in the literature are not of the differential type (Cellular Automata).
The differential first order model described in Ref [27] is simply proposed as an
alternative to second order models, but not really investigated.

(2) Actual contacts between individuals are commonly handled by a soft sphere ap-
proach (a short range force is added to penalize overlapping) whereas, in the gran-
ular community, a fair balance holds between Molecular Dynamics (soft) and Con-
tact Dynamics (hard) strategies.

(3) Microscopic hard congestion second order model corresponds to standard granular
flows. At the macroscopic level, hard congestion - second order models would
correspond to the so-called Pressureless Euler equations with congestion constraint
[4, 6]. None of these approaches have been implemented in the context of crowd
motions.

The present paper is focused on the microscopic – 1rst order – hard approach that
was initially proposed in Refs. [30, 31]. We shall present how this approach can be built
as an asymptotic limit of Helbing’s model [17], by having the relaxation time go to 0,
and the stiffness go to +∞. The limit models reflect the link between crowd motion and
granular flows, which makes it particularly suitable to investigate highly packed crowds
and jamming phenomena. This approach can be coupled with sophisticated strategies to
model interaction between individual [44], including social tendencies (stay at a minimal
distance from neighbors) or optimization (adaptation of one individual’s desired velocity
to develop personal optimization strategies, accounting for the behaviour of others). Yet,
we have taken the choice to focus here on a purely greedy version of the model, disregarding
any social tendency or sophisticated strategy. This model will simply include individual
tendencies to reduce one’s personal dissatisfaction, regardless of others, and the interaction
between individual will be purely physical (i.e. actual contacts between the disks that
represent people), due to the incompatibility of individual projects. We aim at showing in
this manner that some observed effects, like Stop-and-Go waves or Faster is Slower effect,
can be explained and even quantified from a purely granular standpoint, with very few
parameters (in particular there will be no friction between individuals).
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2. A hierarchy of microscopic models

We aim here at establishing links between the different types of microscopic models,
starting from the seminal one proposed by Helbing in the early 90’ (see Ref. [17]). We
denote by

q = (q1,q2, . . . ,qN ) ∈ R
2N

the position vector, and by r1, r2, . . . rN the radii of individuals, considered as disks, and
we define U ∈ R

2N as the vector of desired (or spontaneous) velocities, i.e.

U = (U1,U2, . . . ,UN ) ∈ R
2N ,

where Ui is the desired velocity of individual i, in the selfish sense: it is the velocity that
individual i would like to have if he were alone. The behavior of i is likely to be influenced
by other people: this influence is accounted for by a correction term that is added to the
right-hand side of the equation:

q̈ =
1

τ
(U− q̇) +

1

τ
f(q).

The first term in the right-hand side reflects the tendency of individual to achieve their
desired velocity (with a relaxation time τ > 0), and the second one corresponds to inter-
actions. Considering that this equation expresses Newton’s Law for a system of particles,
this term can be interpreted as a force (it is actually expressed in N kg−1), and the notion
of social forces was indeed introduced in Ref. [17] to designate pairwise interations between
individuals. We denote by eij = (qj − qi) / |qj − qi| the unit vector from i to j, a natural
choice is

fi = −κ
∑

j 6=i

ϕ(Dij) eij , with Dij = |qj − qi| − ri − rj ,

where d 7−→ ϕ(d) is a nonnegative, nonincreasing function, that expresses the tendency of
people to stay apart from neighbors, and κ quantifies the effect of interactions. In order to
alleviate notation, we do not explicitely integrate interactions with the environment (walls
or obstacles), but they can be handled the same way (see Fig. 1). Let Dc

ij be the distance

that individuals i and j consider as comfortable, and assume that κ = U (magnitude of
the typical desired velocity), ϕ can then be defined as

ϕ(d) = exp
(
d/Dc

ij

)
.

In this setting, interaction forces between i and j significantly affect the behaviour of i as
soon as Dij drops below the critical distance Dc

ij. Note that the interindividual distance
that is considered as critical is likely to depend on the relationship between individuals,
but also on cultural aspects. We refer to Hall [16] for a thorough account of the dependance
of the critical distance (called proxemy) upon these factors.

In panic situations, interaction between individuals is likely to become less social: phys-
ical contacts happen. Accounting for these actual contacts calls for stiffer interaction
terms. A penalty-like approach is proposed in Ref. [19], where a short range repulsive
force is added to penalize overlapping between individuals (i.e. disks). The extra force is
written

f c =
∑

i 6=j

κ (ri + rj − |qj − qi|)+Gij ,

This notion of radius is somewhat sloppy unless individuals are identified to rigid disks, but it will help
in quantifying interactions.
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Figure 1. Notation for grain-grain (left) and grain-obstacle (right) interactions

where (α)+ = max(α, 0) is the positive part of α, Gij is the gradient of the distance Dij :

Gij = ∇Dij =






0, . . . , 0, −eij

︸︷︷︸

i−thposition

, 0, . . . , 0, eij
︸︷︷︸

j−thposition

, 0, . . . , 0







.

with

eij = (qj − qi) / |qj − qi| .

Note that this force automatically verifies the action-reaction law. It corresponds to a stiff
repulsion force that is triggered whenever disks i and j start to overlap.

From 2nd order to 1st order models. A 1st order model can be obtained by having
τ go to 0. From a mechanical standpoint, it consists in neglecting inertial effects, and
thereby replace Newton’s Law (2) by an instantaneous force balance.

Proposition 1. Let q 7−→ U(q) and q 7−→ f(q) be Lipschitzian mappings, and let t 7−→
qτ (t) be the unique solution to

q̈ =
1

τ
(U(q) − q̇) +

1

τ
f(q),

on [0, T ], with initial data q(0) = q0, q̇(0) = u0. Then, when τ goes to 0, qτ uniformly
converges toward t 7−→ q(t) in [0, T ], and uτ = q̇τ uniformly converges to u = q̇ on every
subinterval [η, T ], with η > 0, where q is the unique solution to the first order differential
equation

q̇ = U(q) + f(q) , q(0) = q0.

Proof. Without loss of generality, we consider the case f ≡ 0 (interaction forces are merged
here with forces accounting for individual tendencies). We introduce the function

ϕτ (t) =
1

2
|q̇τ −U(qτ )|

2.
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Its time derivative is

ϕ̇τ = (q̈τ −∇U(qτ ) · q̇τ ) · (q̇τ −U(qτ )) = −
2

τ
ϕτ − (∇U · q̇τ ) · (q̇τ −U(qτ )) .

From the definition of ϕτ , it holds that

|q̇τ | ≤
√

2ϕτ + |U | ,

which yields

(∇U · q̇τ ) · (q̇τ −U(qτ )) ≤ |∇U|
(√

2ϕτ + |U |
)√

2ϕτ

≤
1

2

(

τ |∇U|2
(√

2ϕτ + |U |
)2

+
2ϕτ

τ

)

≤ τ |∇U|2
(

2ϕτ + |U |2
)

+
ϕτ

τ
.

We finally obtain

ϕ̇τ ≤

(

2τ ‖∇U‖2∞ −
1

τ

)

ϕτ + τ ‖∇U‖2∞ ‖U‖2∞ .

For τ sufficiently small, the factor of ϕτ is smaller than −1/2τ , so that

ϕ̇τ ≤ −
1

2τ
ϕτ + C,

from which we deduce by a Gronwall argument that

0 ≤ ϕτ (t) ≤ ϕτ (0)e
−t/2τ + 2cτ(1 − e−t/2τ ).

We therefore have uniform convergence on [η, T ] of ϕτ toward 0, i.e. convergence of q̇τ

toward q̇, and uniform convergence of the trajectories t 7→ qτ (t) toward t 7→ q(t) over the
whole interval [0, T ]. Note that the convergence of velocities is uniform over the whole
interval [0, T ] in case of well-prepared data, i.e. if q̇τ (0) = u0 = U(q0) (or, equivalently,
ϕτ (0) = 0). In the latter situation, we have convergence of trajectories in W 1,∞(0, T ).

�

From soft to hard models. The next step consists in hardening the contact force
coefficient to obtain the nonsmooth evolution problem that will be studied and analysed
in the rest of the paper. We consider the first order smooth problem, where U corresponds
to the desired velocity, including possibly social (i.e. long distance) interaction terms, and
we consider that the short range interaction factor κ writes 1/ε:

q̇ε = U(q) +
1

ε

∑

i 6=j

(
ri + rj −

∣
∣qε

j − qε
i

∣
∣
)

+
Gij(q

ε). (1)

Let us first make a formal asymptotic expansion of this evolution problem. When ε goes
to 0, the stiff interaction forces tend to reduce, and asymptotically suppress, overlapping.
The limit trajectory can be expected to lie in the set of configurations that rule out
overlapping:

K =
{
q ∈ R

2N , Dij(q) = |qj − qi| − ri − rj ≥ 0 ∀i 6= j
}
.

Now, from (1), it holds that q̇ε −U(qε) can be written

q̇ε −U =
∑

i∼j

λijGij(q
ε),
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where the sum is performed over pairs of grains that overlap, and the λ′
ijs (that depend

on ε) are nonnegative. If we admit that this property is verified in the limit ε → 0, we
obtain a trajectory t 7−→ q(t) contained in K, such that U− q̇ is in the cone spanned by
the −G′

ijs such that i and j are in contact:

U− q̇ ∈ Nq =






−
∑

i 6=j

λijGij , λij ≥ 0 , Dij > 0 ⇒ λij = 0






.

As will be detailed below, this cone is the subdifferential of the indicatrix function of the
feasible set K, so that U− q ∈ Nq for all times implies that

u = PCq
(U) ,

where Cq is the cone of feasible velocities:

Cq =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij(q) · v ≥ 0
}
, Gij = ∇Dij . (2)

First order / nonsmooth / greedy model. Let us start by rewriting properly the
model that was obtained formally from the soft congestion model (1):

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q = (q1, . . . ,qN ) ∈ R
2N ,

K =
{
q ∈ R

2N , Dij(q) = |qj − qi| − ri − rj ≥ 0 ∀i 6= j
}
,

Cq =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij(q) · v ≥ 0
}
, Gij = ∇Dij ,

dq

dt
= PCq

(U(q)) ,

(3)

whereU = U(q) is the desired velocity field. This model was initially proposed in Refs. [30,
31], without any connection to the soft congestion model. It simply expresses that the
actual velocity field u = dq/dt is the feasible field that is the closest (in a least square sens)
to the desired one U. As detailed in Refs. [30, 31], it can be formulated as a differential
inclusion [31]:

dq

dt
+Nq ∋ U(q),

where Nq is the so called outward normal cone to the feasible set K. This cone can be
defined by polarity as the set of all those vectors that have a non-positive scalar product
with feasible directions:

Nq = Co
q
=
{
v ∈ R

2N , v ·w ≤ 0 ∀w ∈ Cq

}
.

In this setting, existence and uniqueness of a solution can be proven (see Ref. [31]). The
core of the proof is the so-called prox-regularity of the feasible set K. We refer to Ref. [40]
for a proper definition of this notion, and to Ref. [14] for the first definition of a similar
notion (namely sets with positive reach). It means that K, defined as the intersection
of complementaries of smooth convex sets, is not too far from being convex itself. In
particular, the projection on K is well defined in a close neighborhood, and this property
is used to build discrete solutions. This idea (called Catching Up strategy) has been
introduced by Moreau [34] in the late 70’s to handle evolution problems associated with
a moving convex set in a Hilbert space, and it has been extended more recently to non
convex (prox-regular) sets [43, 5].
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Remark 1. The convergence of the soft model (1) toward the nonsmooth one (3) can be
proven rigorously in some cases. A similar study is proposed in Ref. [32] for a general
class of evolution problems of the type

dq

dt
∈ U(q) −Nq,

where Nq is the outward normal cone to a close prox-regular set. The problem is regularized
by introducing the distance dK(·) to the set K, which leads to a standard ODE problem

dqε

dt
= U(qε)−

1

ε
∇dK(qε)2.

Thanks to the prox-regularity of K, ∇dK(·)2 is Lipschitz, so that qε is uniquely defined,
and it is shown to converge to the solution of (3). This exactly corresponds to the formal
convergence we presented, in the case where only two-body contacts occur. In the latter

situation, the sum
∑
(

ri + rj −
∣
∣
∣qε

j − qε
i

∣
∣
∣

)2

+
is dK(q)2, so that the last term in (1) is

exactly the gradient of this function. For more complicated contacts, the two quantities
are different, and the theory is not directly applicable.

These well-posedness aspects are not central in the present paper, let us simply stress
here that the feasible K is not convex, and that this non-convexity will play a central role
in the appearance of jams (see Section 3), and the study of their stability (Section 4).

We shall now favor the gradient flow framework, for which we need an additional as-
sumption on desired velocities: we assume that U derives from a potential Φ:

U = −∇Φ.

This potential can be seen as a global dissatisfaction functional that the whole crowd tends
to lower, following a steepest descent strategy. A typical choice, in case of emergency
evacuation, is based on the geodesic distance D(·) to the exit: D(x) is the length of the
shortest path from the location x to the closest exit door. Considering all individuals as
equal contributors to the global dissatisfaction, the latter can be defined as

Φ(q) =

N∑

i=1

D(qi),

which yields

U = (−∇D(q1), . . . ,−∇D(qN )) .

Note that interactions between individual can be integrated to this framework, by simply
adding to Φ some terms that depend on the D′

ijs. Under this assumption, the constrained
evolution process can be formulated as a gradient flow for the dissatisfaction functional
plus the indicatrix function of the feasible set:

Ψ(q) = Φ(q) + IK(q) =

∣
∣
∣
∣
∣
∣
∣
∣

N∑

i=1

D(qi) if q ∈ K,

+∞ if q /∈ K.

(4)

More precisely, we may define the (Fréchet) subdifferential of Ψ as the multivalued operator

q 7−→ ∂Ψ(q) =
{
v ∈ R

2N , Ψ(q) + v · h ≤ Ψ(q+ h) + o(h)
}
. (5)
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In the case of a smooth functional Ψ, this operator is single valued (∂Ψ(q) = {∇Ψ}), but
in the present case it identifies to

∂Ψ = ∇Φ+Nq,

which makes it possible to write the overall process as a generalized gradient flow:

∣
∣
∣
∣
∣
∣
∣
∣
∣

Ψ(q) =

N∑

i=1

D(qi) + IK (See (4)),

dq

dt
∈ −∂Ψ(q),

(6)

where ∂Ψ is defined by (5).

Saddle-point formulation. As stated above, the actual instantaneous velocity is the
projection of the desired velocity U = −∇Φ on the cone of feasible velocities, defined
by (2). For a given configuration q, the constraints on the velocities can be written

−Gij · u ≤ 0 ∀i ∼ j,

where i ∼ j means that i and j are in contact (i.e. Dij = 0). This can be written in matrix
form Bqu ≤ 0, where each row of Bq corresponds to an active constraint. Minimization
of |v −U| over Cq can be expressed in a saddle point manner:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u+B⋆
q
λ = U,

Bqu ≤ 0,

λ ≥ 0,

λ ·Bqu = 0,

(7)

where B⋆
q
is the transpose of Bq, i.e.

B⋆
q
λ = −

∑

i∼j

λijGij. (8)

The last line of (7) is a complementary slackness condition. Since all terms of the sum
have the same sign, each one of them is zero, i.e. λij Gij(q) · u = 0. Note that, if we
consider active constraints only (i.e. for which λij > 0), the latter identity implies that
Bqu = 0 (we keep the same notation Bq for the matrix expressing active constraints).
Since u = U−B⋆

q
λ, we obtain

BqB
⋆
q
λ = B⋆

q
U. (9)

Since Bq can be seen as a discrete version of the opposite of the divergence operator, and
B⋆

q
the discrete counterpart of the gradient operator, Eq. (9) can be interpreted formally

as a discrete Poisson problem for the “pressure field” λ. For a one-dimensional problem,
with N individuals in a thin corridor, in contact with each other, BqB

⋆
q
is indeed the

discrete Laplacian matrix [25]. Let us stress, though, that in the general case of discs in a
two dimensional domain, this matrix does not qualify as a discrete Laplacian, in particular
it does not verify the maximum principle (see next section).
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Numerical aspects. Problem (3) can be discretized in time by linearizing the constraints
[31, 45]. The idea is borrowed from granular flow simulations [26]: we denote by qn

the position vector at time tn. The next position vector is qn+1 = qn + τun+1, where
τ = tn+1 − tn > 0 is the time step. We replace the requirement Dij(q

n+1) ≥ 0 by its first
order asymptotic expansion:

Dij(q
n+1) ≈ Dij(q

n) + τGij(q
n) · un+1 ≥ 0.

The discretization scheme consists in computing the next velocity un+1 as

un+1 = arg min
v∈Cn

1

2
|v −U(qn)|2 ,

where Cn is the discrete set of feasible velocities

Cn =
{
v ∈ R

2N , Dij(q
n) + τGij(q

n) · v ≥ 0 ∀i 6= j
}

The latter is a closed convex set, that is included in Cqn (defined by the third equation
of (3)). The projection is computed by using a Uzawa algorithm on the saddle-point
formulation of this contrained minimization problem. We refer again to Ref. [31] for
details on implementation aspects, and to Ref. [45] for a proof of convergence of this
algorithm.

3. Static jams

The notion of jams is not clearly defined in a crowd motion context. It can be defined
as a situation such that velocities are almost zero during some time [24]. We shall make
here the distinction between these transitory jams and what we will call static jams, also
called blocking clusters in Ref. [36]. The latter are somewhat academic in nature, since
real jams usually break after some time. Yet, some have been reported to be very stable in
extreme situations, and we shall see that their study sheds light on the evacuation process.
From a gradient flow standpoint, jams correspond to steady solutions, i.e. configurations
q such that

0 ∈ ∂Ψ(q),

or, equivalently,

U+
∑

i∼j

λijGij(q) = 0, (10)

for some Lagrange multiplier field λ = (λij) ∈ R
Nc

+ , where Nc is the number of active
contacts. Let us illustrate such a situation by an example. Fig. 2 represents a 15-people
jam: contact network (top) and force balance (bottom). The bottom figure graphically
expresses Eq. (10). The bold arrows represent, for each individual, the desired velocity
Ui, whereas thin arrows account for contact forces. For each individual, this contribution
is 


∑

i∼j

Gij(q)





i

= −
∑

i∼j

λijeij.

From (9), it corresponds to a pressure field λ that is harmonic in some sense, since we
have

BqB
⋆
q
λ = B⋆

q
U.

The matrix BqB
⋆
q
is a Laplacian-like operator associated to the network that is dual to

the contact network (Fig. 2, top). The vertices of this dual network are the edges of the
primal one, it is represented in Fig. 2 (middle). As previously mentioned, BqB

⋆
q
is not
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Figure 2. Contact network (top), dual graph (middle), and force balance
(bottom), for a static jam

a discrete Laplacian in a standard sense. In particular, it is not a Z–matrix: whereas
diagonal entries are positive, some extra-diagonal entries may also be positive, which rules
out the maximum principle.

This example sheds light on phenomena usually referred to as arches. Consider the two
individual facing the door. The one that is the closest to the exit, i.e. disk 1, is maintained
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Figure 3. Jamming probability vs. relative door width

static by forces exerted from individuals that are on his side (3 and 4). Considering the
angle of contact (the three disks at the door are almost aligned) this calls for a contact
force with an important horizontal component, much higher than individual forces. This is
made possible by the action of other individuals that play the role of butresses (contreforts
in french), namely 5, 6, 9 and 10. The situation of disc 2 is also interesting. There is almost
no interaction with 1, its desired velocity is counteracted by side neighbors 7 and 8, which
are themselves maintained by 3 and 4, respectively. We therefore have two arches: a
3-people one next to the door, 3 − 1 − 4, and a wider one 3 − 7 − 2 − 8 − 4, both arches
being reinforced by individuals on the side (5 and 9 and the left, 6 and 10 on the right).

Such jams are obviously more likely to occur when the door is small compared to
individual sizes. To investigate this more precisely, we consider the following situation:
N = 200 individuals are disposed randomly in a square room, with slightly polydisperse
radii:

ri = r ± 5%,

All individuals head to the unique exit door, the size of which is L. Following a Monte
Carlo approach, we evaluate the probablity of a static jam to occur, for different values of
L. For each value of L/(2r) (relative width of the door with respect to the mean individual
diameter), we run 100 computations associated to randomly chosen initial data, and we
plot the estimated jamming probablility (see Fig. 3).

The figure exhibits a transition zone that corresponds to door widths for which jams
may happen, but they are not systematic. For smaller doors (relative width smaller than
2), evacuation never gets to its end, whereas above a value of 2.7, jams never happen.
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Figure 4. Notation for the two-grain toy problem

4. Stability issues

This section addresses the question of the stability of jams. We shall first propose a new
approach to assess stability of computed (or observed) jams. This semi-heuristic approach
is based on a full stability analysis of the regularized problem, for which hard contact is
relaxed and replaced by stiff forces that penalize overlapping between particles.

4.1. A two-grain toy problem. In order to describe the approach, we start with a very
simple example with only two degrees of freedom. We consider the situation represented in
Fig. 4: the particle 0 (shaded disc) is assumed to be fixed, and particle 1 tends to minimize
the distance of its center to a fixed point q∞

1 , under the non-overlapping constraint

|q1 − q0| ≥ r0 + r1.

The corresponding gradient flow writes

dq1

dt
∈ −∂Ψ0(q1) , with Ψ0(q1) = |q1 − q∞

1 | + IK(q1).

The desired velocity is U = −∇ |q1 − q∞
1 | = −e∞1. Obviously, the situation represented

on the right of Fig. 4 is a fixed point as soon as q∞1 lies on the line (q0,q1), on the left
of q1. The equilibrium writes more formally

0 ∈ −∂ (|q1 − q∞
1 | + IK(q1)) ⇐⇒ −e∞1 + λe01 = 0,

where λ ≥ 0 is the Lagrange multiplier, that is obviously equal to 1 in the present situation.
Regarding the stability of this fixed point, it is natural to expect the fixed point to be stable
as soon as q∞1 is closer to q1 than q0. The question can be investigated by introducing
the relaxed gradient flow associated to the functional

Ψε(q1) = |q1 − q∞
1 | +

1

2ε
(r0 + r1 − |q1 − q0|)

2
+ ,

where (α)+ = max(0, α) stands for the positive part of α. Whenever there is overlapping,
the gradient of Ψε is

∇Ψε = e∞1 −
1

ε
(r0 + r1 − |q1 − q0|) e01.

Therefore equilibrium for this relaxed problem writes

e∞1 −
1

ε
(r0 + r1 − |q1 − q0|) e01 = 0.
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This equilibrium is characterized by a small overlap between grains, the size of which is ε
(in order to fulfill the equilibrium equation above). The Hessian matrix is

Hε = ∇2Ψε =
1

|q1 − q∞
1 |

e⊥∞1 ⊗ e⊥∞1

−
1

ε

1

|q1 − q0|
(r0 + r1 − |q1 − q0|) e

⊥
01 ⊗ e⊥01

+
1

ε
e01 ⊗ e01

= H∞ +Hλ +
1

ε
HS.

Thanks to the equilibrium relation, the second contribution writes

Hλ = −
λ

|q1 − q0|
e⊥01 ⊗ e⊥01 with λ = 1.

Its non-positive character reflects the non-convexity of the feasible set K. Stability is
ensured as soon as the eigenvalues of Hε are positive. Since the relaxed problem tends
to the non-smooth one, stability of the non-smooth problem depends on whether the
eigenvalues of Hε remain positive and bounded away from 0. Now, since HS (the letter S
stands for stiffness) is nonnegative, for any vector v that does not lie in the kernel of HS,
we have

1

ε
(HSv, v) −→ +∞ =⇒ (Hεv, v) −→ +∞.

It is therefore sufficient to check that the bilinear form associated to H∞ +Hλ, restricted
to the kernel of HS, has positive eigenvalues. Let us denote by H⋆ the corresponding
matrix (it is actually a 1× 1 matrix in this simple example). The kernel of HS is Re⊥01, so
that

H⋆ =
1

|q1 − q∞
1 |

−
1

|q1 − q0|
.

It is indeed positive if and only if |q1 − q∞
1 | < |q1 − q0|, that is the expected stability

condition.

4.2. Stability criterium for the many-body problem. We propose a straight ex-
tension of this approach to the many-body problem, to the expense of some unavoidable
complexity in terms of notation. We now consider an N− body gradient flow for

q = (q1, . . . ,qN ) ,

corresponding to the following functional:

Ψ(q) =

N∑

i=1

|qi − q∞i|+ IK(q), (11)

where IK stands for the indicator function of the feasible set

K =
{
q ∈ R

2N , |qj − qi| − ri − rj ≥ 0 ∀ i 6= j
}
.

Although not explicitely written (to alleviate notation), we shall consider that grain-wall
interactions are also contained in K.

Remark 2. The formulation above presents a difference with the original model: whereas
the individual dissatisfaction was D(qi), we replaced in (11) this expression by |qi − q∞i|.
This modification is due to the fact that the second derivative of this dissatisfaction will be
involved in the stability study, and the new form will make it possible to explicitly compute
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the Hessian. Let us explain more explicitly the link between the two expressions, in the
case of a square room with a single exit door. In the zone that faces the door, everybody
points to the door, the dissatisfaction function is affine, and its gradient is orthogonal to
the door. In this case, we shall consider that the objective point is at infinity, so that
1/ |qi − q∞i| = 0, which simply means that the Hessian of D vanishes uniformly in this
zone. For people on the sides, the dissatisfaction D(qi) is |qi − q∞|, where q∞ is the
endpoint of the door that is the closest. Isolines of the dissatisfaction are circles in these
zones, and the curvature (that is also the non-zero eigenvalue of the Hessian matrix) is
the reciprocal of the radius, i.e. 1/ |qi − q∞i|.

The evolution problem writes

dq

dt
+ ∂IK(q) ∋ U , with U = −∇

(
N∑

i=1

|qi − q∞i|

)

. (12)

In order to express 2N -vectors and 2N × 2N matrices in a concise way, we shall use the
following convention: for any vector v ∈ R

2, any i between 1 and N , we set

vi =




0, 0, . . . , 0, vT

︸︷︷︸

i−th position

, 0, . . . , 0






T

.

Under this convention, the gradient Gij of

Dij = |qj − qi| − ri − rj

can be expressed as

Gij = ejij − eiij.

Accordingly, since Ui = −e∞i ∈ R
2, it holds

U =

N∑

i=1

−ei∞i ∈ R
2N .

A static solution q of the gradient flow (static jam) is characterized by

0 ∈ ∂Ψ(q),

which can be written

U+
∑

i∼j

λijGij = 0 ,

or, equivalently,
N∑

i=1

ei∞i −
∑

j∼i

λij(e
j
ij − eiij) = 0, (13)

where the λ′
ijs are the Lagrange multipliers, which are nonnegative and verify the com-

plementary slackness condition

λij(|qj − qi| − ri − rj) = 0.

The relaxed (or penalized) problem is the gradient flow associated to the functional

Ψε(q) =

N∑

i=1

|qi − q∞i|+
1

2ε

∑

i 6=j

(ri + rj − |qj − qi|)
2
+.
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Figure 5. Notation for the interaction between grains i and j

A static solution for this gradient flow is characterized by

∇Ψε = 0 ⇐⇒

N∑

i=1

ei∞i −
1

ε

∑

i∼j

(|qj − qi| − ri − rj)(e
j
ij − eiij) = 0, (14)

where i ∼ j means that i and j are in active contact, i.e. the two disks overlap (Dij < 0).
For ε small enough, we shall have |qj − qi| close to 0, and the penalty term in (14) identifies
to the Lagrange multiplier in (13):

λij ≈
1

ε
(|qj − qi| − ri − rj).

The Hessian matrix associated to the penalized problem can be expressed (see A), like
in the one-grain situation, as the sum of three contributions :

Hε = ∇2Ψε =
∑

i

1

|qi − q∞
i |

e⊥∞i ⊗ e⊥∞i

−
∑

i∼j

λij

|qj − qi|

(

e⊥i
ij ⊗ e⊥i

ij + e⊥j
ij ⊗ e⊥j

ij − e⊥i
ij ⊗ e⊥j

ij − e⊥j
ij ⊗ e⊥i

ij

)

+
1

ε

∑

i∼j

(

eiij ⊗ eiij + ejij ⊗ ejij − eiij ⊗ ejij − ejij ⊗ eiij

)

= H∞ +Hλ +
1

ε
HS. (15)

The first term, H∞, is the Hessian of the global dissatisfaction function. Since, in our
case, each individual tends to reach a certain objective, this function is convex, which is
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reflected by the semi-positivity of H∞. Note that it is degenerate: The rank of H∞ is less
or equal to N (some eigenvalues might vanish if the objective point is at infinity), whereas
it is a 2N × 2N matrix.

The third term HS, that is penalized by 1/ε, corresponds to a stiffness matrix. It
penalized changes in interparticle distances for particles that are already in contact. It
can be written as B⋆

q
Bq, where Bq is the matrix each line of which expresses the distance

gradient (see Eq. (8)). It is a semi-definite positive matrix. The kernel of HS contains
elementary displacement fields that do not change distances at the first order. It contains
in particular rigid motions, but it can be richer in looser situations.

The second term Hλ is the potential source of negative eigenvalues (and thereby a
source of instability), it encodes the curvatures of the non-overlapping constraints. Its
non-positive characters expresses the non convexity of the feasible set K (defined as the
intersection of the complementaries of convex sets).

The stability issue can be interpreted as a competition between these three terms (1
and 3 against 2): stiffness of the assemby and individual tendencies provide stability (i.e.
they push the global Hessian toward the positive direction), while sliding motions between
individuals in contact tend to destabilize clusters.

Remark 3. Let us stress that the crowd motion situation is more likely to create static
jams than the standard situation of grains under the action of gravity. In the latter sit-
uation, the “desired velocity” is replaced by a uniform downward force. It corresponds to
the situation of people heading to a straight line (see Remark 2), i.e. with a objective at
infinite. This does not create any positive eigenvalue, since the Hessian of the underly-
ing function is zero. On the other hand, for people pointing toward a point q∞ at finite
distance, the associated function | · − q∞| is strictly convex in some directions, thereby
increasing the overall convexity of the global functional, thus increasing the likehood of
having stable local minima.

Like in the one-grain situation, a simple stability criterium can be deduced (at least
formally) from these considerations, by having ε go to 0.

Definition 1. Let q be a static solution of (12), i.e. such that (13) holds. Let H∞, HS,
and Hλ be the symmetic matrices defined by

H∞ =
∑

i

1

|qi − q∞
i |

e⊥∞i ⊗ e⊥∞i ,

HS =
∑

i∼j

(

eiij ⊗ eiij + ejij ⊗ ejij − eiij ⊗ ejij − ejij ⊗ eiij

)

Hλ = −
∑

i∼j

λij

|qj − qi|

(

e⊥i
ij ⊗ e⊥i

ij + e⊥j
ij ⊗ e⊥j

ij − e⊥i
ij ⊗ e⊥j

ij − e⊥j
ij ⊗ e⊥i

ij

)

.

Let H⋆ be the matrix that expresses the restriction to the kernel of HS of the quadratic
form associated to H∞+Hλ. Then q is stable whenever all eigenvalues of H⋆ are positive.

Before applying this criterium to static jams let us make some remarks:

Remark 4. If the kernel of HS is “small” (i.e. of dimension 0 or 1), stability will be
straightforwardly obtained, as soon a the dissatisfaction contribution H∞ provides any
convexity in the direction of the kernel. In the case of loosely jammed configurations, the
dimension of the kernel might be larger, increasing the instability likelyhood. In this kernel,
the stability vs. instability competition occurs between H∞ (positive semi-definite) and
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Hλ (negative semi-definite). Now the eigenvalues of H∞ correspond to the dissatisfaction
curvatures: 1/ |qi − q∞

i |, where q∞
i is the objective of individual i. On the other hand, the

eigenvalues of the contributions of Hλ (one contribution for each contact) are the opposite
of the constraint curvatures, i.e 1/ |qi − qj |. Unless an individual tends to reach a point
that is inside one of his neighbor, the distance of an individual to its objective is in general
much larger than the typical size of individuals. As a consequence, the second contributions
are much larger in general. Therefore it can be expected that, if the looseness of the
configuration is sufficient (i.e. the kernel of HS contains non trivial fields), instability
should prevail in general.

Remark 5. Following the previous remark, let us add that negative eigenvalues of H⋆

quantify the instability. Unstable static jams correspond to saddle points of the global
(i.e. uncluding the constraints) dissatisfaction functional. Thus, very negative eigenvalue
correspond to very unstable jams, so that the time taken by the crowd to exit the saddle-
point and recover some fluidity will be smaller than in the case of negative eigenvalues that
are close to 0. This remark will be illustrated in the next section (see Fig. 7 and comments
thereof).

4.3. Stability study of jams. The stability criterium that has been proposed can be
applied to evalute the stability of jams that are encountered in the simulations. The
first observation that can be made is consistent with Remark 4: All static jams that are
observed in numerical computations correspond to configurations for which the dimension
of the kernel of HS is 1. In the evacuation situation we consider, this kernel corresponds to
a translational motion parallel to the wall. Fig. 8 represents such a jammed configuration.

We shall now illustrate in an example how this stability analysis sheds a light on the
way evacuation proceeds. In order to quantify and graphically represent the fluidity of
the evacuation process, we propose to focuse on a notion that we define as the mean
frustration, in the following way: For an individual i, with desired velocity Ui and actual
velocity ui, we define its instantaneous frustration as

fi = 1−
ui ·Ui

|Ui|
2 . (16)

It is a dimensionless quantity, equal to 0 when i achieves its desired velocity, and to 1 when
ui is 0, or orthogonal to the desired direction. Note that, in the case whereUi = −∇D(qi),
where D(qi) is the distance to the exit (individual dissatisfaction), it holds that |Ui| = 1,
and

d

dt
D(qi(t)) = ∇D ·

dqi

dt
= −ui ·Ui = −

ui ·Ui

|Ui|
2 = fi − 1.

Therefore the frustration fi is equal to 1 (or larger) as soon as i is not currently reducing
its dissatisfaction. We define the global mean frustration as

F =
1

Nint

∑

Iint

fi, (17)

where the sum is performed over all individuals who are still in the room. Note that,
according to the previous considerations, it holds that

F = 1 +
1

Nint

dΦ

dt
, with Φ =

∑

Iint

D(qi).

It is the curvature of the iso-dissatisfaction curve, that is a circle in this situation.
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Figure 6. Evolution of the frustration during evacuation

The global frustration F therefore quantifies at which rate the global dissatisfaction de-
creases.

We consider again the evacuation of a square room, with a unique door. The number
of individuals initially in the room is 500. Figure 6 plots the mean frustration between
times 50 and 64. The alternation of plateaus where F is close to 1, and stiff decreases to
a smaller value illustrates the Stop and Go waves phenomenon.

These plateaus corresponds to unstable jams. The vector q is in the neighborhood of a
critical point of the functional Ψ, i.e. a point at which 0 lies in the subdifferential ∂Ψ, for
which the corresponding jam is unstable according to definition 1. Indeed, at t1 = 51, the
mean frustration is 0.997 (quasi-static situation), the dimension of kerHS is 10, and the
smallest eigenvalue of H⋆ is −21.3. Similarly, at t2 = 56.1, the mean frustration is 0.990,
the dimension of kerHS is 18, and the smallest eigenvalue of H⋆ is −18.8.

In both cases, the cluster slowly destabilizes along the direction that corresponds to
the eigenvector associated to the smallest eigenvalue of H⋆. To illustrate this point, we
plotted in Fig. 7 the actual velocity field at time t1 (top), and the eigenvector of matrix H⋆

associated to its smallest eigenvalue, at the same time. The similarity between both fields
strongly suggests that the actual evolution process is indeed controlled by the Hessian
matrix in the neighborhood of the critical point.

Then the cluster abruptly crumbles (it corresponds to downward peaks in Fig.6), untill
it reaches the next quasi-flat zone of the dissatisfaction function.
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Figure 7. Velocity field (top) and first eigenvector of H⋆ (bottom)

At the end of the time interval, the frustration goes up to 1 and stabilizes: a static jam
is reached (see Fig. 8). At time t3 = 64.8, the mean frustration is exactly 1, the kernel of
HS is one-dimensional, and the associated eigenvalue is 0.07, which asserts the stability
of the jam.

5. Active breaking of static jams and “slower is faster” effect

In this exploratory section we investigate the possibility to define strategies in order to
fluidize the evacuation process, on the basis of the previous developments. Let us first
remark that the underlying control problem is quite poor, if no assumption is made on the
way one aims at controling the crowd. More precisely, considering an initial configuration,
the general problem may be formulated as follows: Find velocities u1, . . . , uN , under the
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Figure 8. Example of a 363-people stable jam

constraint that |ui| is less than a prescribed maximal velocity, such that the associated
trajectory t 7→ q(t) lies in K (no overlapping is allowed), and such that the evacuation
process is optimal in some sense. If one aims for instance at minimizing the evacuation time
of the last individual to exit, the actual problem may raise technical and mathematical
difficulties, but its practical relevance is quite limited. Indeed, it is straightforward to
heuristically build reasonably optimal strategies, by taking care of individuals one after
another, starting with those that are the closest to the door, and sometimes choosing
arbitrarily between two of them which one will exit first. Such a strategy makes sense in
some very particular contexts, like the case of perfectly obeying soldiers controled by an
almighty supervisor, but it is ruled out in general evacuation processes under panic.

In order to account for the practical impossibility to control all individuals with a full
and global knowledge of the configuration, we propose a new framework that is compatible
with the greedy character of the evolution process, and with the fact that each individual
is able to observe the crowd in its close neighborhood only. In this spirit, we assume that
any individual may only change his desired behavior by “taking on himself”, namely re-
ducing the weight of its own dissatisfaction in the global dissatisfaction function, without
knowledge of the positions of other people except for those that are in its close neighbor-
hood. The approach that is detailed below aims at recovering the effect that is commonly
referred to as “faster is slower” in the literature [19, 36]. Actually, we shall illustrate the
reverse phenomenon, by showing that a decrease of the desired speed of some individu-
als can improve the fluidity of the evacution process, i.e. increase the overall evacuation
speed.

The framework we propose here is based on a global dissatisfaction function modified by
taking on one’s self parameters βi ∈ [0, 1], a smaller βi meaning that individual i accepts
to momentarily inhibit its will to reach its goal. Consider the case were the dissatisfaction



22 SYLVAIN FAURE # AND BERTRAND MAURY #

of an individual at qi writes D(qi), that is typically the distance to the exit of qi, we
define the instantaneous dissatisfaction functional as

Φβ(q) =
N∑

i=1

βiD(qi),

and we assume that the actual velocity field is the projection of

−∇Φβ(q) = (−β1∇D(q1),−β2∇D(q2), . . . ,−βN∇D(qN ))

on the cone of feasible velocities:
dq

dt
= PCq

(−∇Φβ(q)) , (18)

which can be written
dq

dt
∈ −∂ (Φβ(q) + IK(q)) .

Strictly speaking, the gradient flow nature of the evolution process is lost, since β =
(β1, . . . , βN ) ∈ [0, 1]N may vary in time. We shall not address the full control problem
which would consist in looking for an optimal choice of β(t) in order to optimize the
evacuation. We shall rather investigate possible ways to fluidize the evacuation by pre-
scribing a closed-loop procedure to determine the instantaneous β′

is, in a way that only
depends on local information. More precisely, we seek for a procedure to determine βi
that dynamically depends upon the relative position of individual i with respect to its
close neighbors, and upon its frustration, i.e. the deviation between its desired velocity
U(qi) and its actual one ui.

In order to account for the reaction time of individuals, we consider that the coefficient
βi depends on the mean value of the individual frustration (defined by (16)) in the recent
past. More precisely, we set

βi = 1−

∫ t

0
ρ(t− s) fi(t) dt, (19)

where ρ(·) is a convolution kernel:

ρ : R
+ 7−→ R

+ , ρ(x) ≥ 0 ∀x ,

∫ +∞

0
ρ(s) ds = 1.

We shall simply choose here ρ = 1
η1[0,η], where η is a typical reaction time. Note that

βi may exit the interval [0, 1] in some situations, e.g. when some individuals are pushed
forward by people behind them, or when some others are pushed backward. But the
typical situation is fi ∈ [0, 1], which implies βi ∈ [0, 1].

In order to account for the location of individual within the jam, we activate the evolu-
tion of βi only for those who have close neighbors in their angle of vision. More precisely,
the modification of βi is only made active when there is at least another individual qj

in the angular sector of angle θv = 60 ◦ and length 3.5 × ri. Figure 9 illustrates the two
situations: The individual at qi has two neighbors in his angle of vision, and therefore
adapt his βi according to his frustration, whereas individual i′, even if frustated, will
continue pushing. Finally, we shall consider that, when a jam is broken and the crowd
resumes its motion, all individuals recover their will to walk ahead. Thus, whenever the
global frustration F (defined by (17)) drops below a threshold value Fc, the correction
previsouly described is desactivated.

The example we propose is based on the evacuation of a square room with a single
exit. All individuals point toward the unique exit door. The velocity is defined by (18),
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Figure 9. Angle of vision, with (right) and without (left) a clear horizon

the correction coefficient β′
is by (19), and the individual frustrations f ′

is by (16). We
integrate the rule that, whenever the mean frustration F (defined by (17)) is less than
Fc = 0.99, all frustrations are reset to 0. The reaction time η is 1 s. There are initially
363 individuals in the room, and the relative width of the door (with respect to the
mean individual diameter) is 1.43. From Fig. 3 in Section 3, it corresponds to a situation
where the jamming probability is 1, so that the straight gradient flow evacuation is highly
unefficient: the crowd almost instantaneously stops, trapped in a local minimum of the
dissatisfaction function.

Fig. 10 plots the evolution of the global dissatisfaction Φ, together with the mean
frustration. With this feedback loop strategy, whenever a jam is formed, all frustrations
are close to 1, and the corresponding β′

is decrease, which destabilizes the jam and resumes
the evacuation process, until a new jam is reached. Since a jam corresponds to a local
minimum of the satisfaction Φ, this destabilizations occurs at the expense of an increase
of Φ that can be observed in the figure. This increase is needed to exit the local potential
well and dynamically resume the steepest descent process. The highly oscillating curve
corresponds to the mean frustration. It oscillates in the very neighborhood of 1 when
a jam occurs, then decreases when the jam starts to destabilize. As soon as it drops
below the threshold value Fc = 0.99, all individuals recover their unrestrained desired
velocity, and the jam tumbles. This process occurs 4 times in the evacuation represented
by Fig. 10. We stress the paradoxical character of the effect that is created by the feedbak
loop strategy: A reduction of the desired velocities fluidizes the evacuation, i.e., increases
the mean velocity of the crowd (converse of the Faster is Slower effect [19, 36]).

6. Computations in realistic situation

In order to illustrate the praticality of this approach to handle real life situation, we end
this paper by an evacuation scenario in a more complex situation, namely an exhibition
area in Paris. The dissatisfaction function D(·), that is the geodesic distance to the exit,
is computed by a Fast Marching Method [42]. Isolines of the computed field D are plotted
in Fig. 11 (top). The bottom figure represents a snapshot of the crowd during evacuation.
The arrows represent the desired velocities (Ui = −∇D(qi) for an individual at qi).
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Figure 10. Global dissatisfaction Φ (and mean frustration F ) vs. time

7. Conclusion

We have attempted here to show how a purely granular and greedy crowd motion
model without any friction effects can explain complicated effects that are observed in
experimental or real life crowd flows. The core of the model relies on a simple gradient
flow principle, based on the constrained dissatisfaction function

Ψ = Φ + IK ,

where Φ expresses the sum of individual dissatisfactions, and IK forbids overlapping.
Whereas Φ is convex in general (e.g. for individuals heading to a single exit), the feasible
set K is not, so that the global function Ψ is never convex. In this setting, it may happen
that the gradient flow t 7→ q(t) is stuck in a local minimum, which leads to a static solution,
and thereby an infinite evacuation time. We showed that this phenomenon corresponds to
very special, namely hyperstatic, configurations. They systematically occur when the door
is smaller than twice the people diameter, almost never when the relative width of the
door is larger than 2.7, and occasionally when the door width lies in between. Increasing
desired velocity (frustrated people tend to push further) is likely to overstabilize these
jams, whereas a decrease of some desired velocity can help the overall crowd to exit the
attraction bassin of the local minimum, thereby resuming the evacuation process (Slower
is Faster effect), as shown in section 5.
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Figure 11. Evacuation of an exhibition area: Isovalues of Φ (top), and
velocity field (bottom)
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In situations where static jams do not occur, the crowd (represented by the vector q)
sometimes passes in the neighborhood of unstable jam configurations, that corresponds
to saddle-points for the functional Ψ. When this happens, the evacuation process is
significantly slowed down, until q escapes from this saddle-point neighborhood by slipping
along unstable directions (corresponding to negative eigenvalues of the Hessian matrix).
This allows to reproduce Stop-and-Go waves with a minimal set of assumptions, and in
particular without assuming any change in individual strategies.

Appendix A. Computation of the Hessian matrix

We detail here the computation of the Hessian matrix Hε of Ψε.

Ψε : q ∈ R
2N 7−→ Ψε(q) =

N∑

i=1

|qi − q∞i|+
1

2ε

∑

i 6=j

(|qj − qi| − ri − rj)
2
−.

The gradient of Ψε is

∇Ψε =

N∑

i=1

ei∞i −
1

ε

∑

i∼j

(ri + rj − |qj − qi|)(e
j
ij − eiij).

The basic ingredient of the computation is the following: considering two individuals at
qi and qj, and the associated unit vector

eij =
qj − qi

|qj − qi|
= ∇qj

|qj − qi| = −∇qi
|qj − qi| ,

the gradient of eij with respect to qj is the 2× 2 rank-1 matrix

∇qi
eij = e⊥ij ⊗ e⊥ij ,

and the gradient with respect to qi is the opposite.
The contribution of the dissatisfaction term to the Hessian is

∇

(
N∑

i=1

ei∞i

)

=

N∑

i=1

1

|qi − q∞
i |

e⊥∞i.

Let us now evaluate the contribution of the penalty term that accounts for the non-
overlapping constraints. For any i and j such that i ∼ j, it holds that

∇qi

(
1

ε
(|qj − qi| − ri − rj) e

i
ij

)

= +
1

ε
eiij ⊗ eiij

−
1

ε
(ri + rj − |qj − qi|)
︸ ︷︷ ︸

≈λij

1

|qi − qj|
e⊥i
ij ⊗ e⊥i

ij .

Similarly,

∇qi

(

−
1

ε
(|qj − qi| − ri − rj) e

j
ij

)

= −
1

ε
ejij ⊗ eiij +

λij

|qi − qj |
e⊥j
ij ⊗ e⊥i

ij .

Summing up all contributions, we obtain the full expression (15).
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[38] P. Pécol, S. Dal Pont, S. Erlicher and P. Argoul, Smooth/non-smooth contact modeling of human
crowds movement: Numerical aspects and application to emergency evacuations, Ann. Solid Struct.
Mech. 2 (2011) 69–85.

[39] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch.
Rational Mech. Anal. 199 (2011) 707–738.

[40] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans.
Amer. Math. Soc. 352(11) (2000) 5231–5249.

[41] A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications
for cellular automata models, Pedestrian behavior: models, data collection and applications, Ed.: H.
Timmermans, Emerald (2009) 27–44.

[42] J.A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge University Press, Cambridge,
UK, 1999).

[43] L. Thibault, Sweeping process with regular and nonregular sets, J. Differential Equations 193(1)
(2003) 1–26.

[44] J. Venel, Integrating strategies in numerical modelling of crowd motion, Pedestrian and Evacuation
Dynamics 2008, Springer (2010) 641–646.

[45] J. Venel, A numerical scheme for a class of sweeping processes, Numer. Math. 118(2) (2011) 367–400.
[46] H. Xi, Y.-L. Son and S. Lee, An integrated pedestrian behavior model based on extended decision

field theory and social force model. Simulation Conference (WSC), Proceedings of the 2010 Winter,
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Ycesan, eds. (2010) 824–836.


