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MULTIVARIATE GAUSSIAN EXTENDED QUADRATURE METHOD
OF MOMENTS FOR TURBULENT DISPERSE MULTIPHASE FLOW

C. CHALONS†, R. O. FOX‡§ , F. LAURENT§¶, M. MASSOT§¶, AND A. VIÉ§

Abstract. The present contribution introduces a fourth-order moment formalism for particle
trajectory crossing (PTC) in the framework of multiscale modeling of disperse multiphase flow.
In our previous work, the ability to treat PTC was examined with direct-numerical simulations
(DNS) using either quadrature reconstruction based on a sum of Dirac delta functions denoted as
Quadrature-Based Moment Methods (QBMM) in order to capture large scale trajectory crossing,
or by using low order hydrodynamics closures in the Levermore hierarchy denoted as Kinetic-Based
Moment Methods (KBMM) in order to capture small scale trajectory crossing. Whereas KBMM
leads to well-posed PDEs and has a hard time capturing large scale trajectory crossing for particles
with enough inertia, QBMM based on a discrete reconstruction suffers from singularity formation
and requires too many moments in order to capture the effect of PTC at both small scale and
large scale both to small-scale turbulence as well as free transport coupled to drag in an Eulerian
mesoscale framework. The challenge addressed in this work is thus twofold: first, to propose a new
generation of method at the interface between QBMM and KBMM with less singular behavior and
the associated proper mathematical properties, which is able to capture both small scale and large
scale trajectory crossing, and second to limit the number of moments used for applicability in 2-D
and 3-D configurations without losing too much accuracy in the representation of spatial fluxes.
In order to illustrate its numerical properties, the proposed Gaussian extended quadrature method
of moments (Gaussian-EQMOM) is applied to solve 1-D and 2-D kinetic equations representing
finite-Stokes-number particles in a known turbulent fluid flow.

Key words. kinetic equation, multiphase flow, quadrature-based moment methods, kinetic-
based moment methods, particle trajectory crossing, hyperbolic conservation laws

AMS subject classifications. 76T10, 76N15, 35L65, 65D32, 65M08, 76M12, 82C40.

1. Introduction. The physics of inertial particles in a carrier fluid (e.g., flu-
idized beds, sprays, alumina particles in rocket boosters) can be described by a num-
ber density function (NDF) satisfying a kinetic equation. Solving such a kinetic
equation relies on either a sample of discrete numerical parcels through a Lagrangian
Monte-Carlo approach or on a moment approach resulting in a Eulerian system of
conservation laws on velocity moments. For the latter, the main difficulty for par-
ticles with high Knudsen numbers (i.e., weakly collisional flows) where the velocity
distribution can be very far from equilibrium, is the closure of the free-transport term
in the kinetic equation.

In the field of high-Knudsen rarefied gases, Grad [14] introduced a perturbation of
the equilibrium distribution using Hermite polynomials whose coefficients are found
by transporting additional moments, whereas Levermore introduced a naturally well-
posed hierarchy of hyperbolic systems of conservation equations [21]. More recently,
Struchtrup and Torrilhon [34] derived a regularization of the Grad 13-moment system;
however, such systems lose the hyperbolic character of the original kinetic equation
(see for instance [35]). To address this issue, methods based on a realizable presumed
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NDF have been suggested. Torrilhon [36] used a Pearson-IV distribution as a basis
NDF, which extends the hyperbolic region of the 13-moment method, but still is not
globally hyperbolic. A class of hyperbolic methods was suggested by Levermore and
Morokoff using entropy maximization (EM) [21]. For moments up to second order,
i.e., multivariate Gaussian distributions, the algorithm is fast and easy to implement,
and has been used in rarefied gases [23, 25] as well as in particulate flows [37, 31,
32, 30]. For higher-order moments and multi-dimensional systems, McDonald and co-
workers [26, 24] propose CFD strategies based on EM, yielding a high level of accuracy
but with the drawback of an expensive inversion algorithm; besides, as investigated
in [15], the structure of the moment space leads to some difficulties. This class of
methods is referred to as the class of Kinetic-Based Moment Methods.

Another way to proceed is to use Quadrature-Based Moment Methods (QBMM)
where the higher-order moments required for closure are evaluated from the lower-
order transported moments using multi-dimensional quadratures. In our previous
work, we developed multivariate quadratures in the form of a sum of Dirac delta
functions in velocity phase space (see [40, 17] and the references therein). Such an
approximation also allows for a well-behaved kinetic numerical scheme in the spirit of
[6, 22, 7] inspired from [2] where the fluxes in a cell-centered finite-volume formulation
are directly evaluated from the knowledge of the quadrature abscissas and weights
with guaranteed realizability conditions. Such a quadrature approach has been shown
to capture particle trajectory crossing (PTC) in direct-numerical simulations (DNS)
where the distribution in the exact kinetic equation remains at all times in the form of
a sum of Dirac delta functions [17, 18, 12, 40, 38], but lead to weakly hyperbolic system
of conservation equation and can develop artificial singularities when the number of
crossing goes beyond the number of Dirac delta function allowed as well as difficulties
at the boundary of the moment space [4].

In a turbulent fluid, the effect of the turbulence on the particles through transport
and drag leads to dispersion in velocity phase space due to the large number of
PTC occurring over a wide range of length and time scales. Nevertheless, classical
large scale PTC still occurs for large enough Stokes numbers because the small-scale
dispersion is not strong enough to “randomize” the particle velocities resulting from
free transport and drag is not strong enough to prevent such large scale trajectory
crossing. However, capturing both small scale leading to velocity dispersion as well as
large scale PTC requires a large number of quadrature nodes using a delta-function
representation. Moreover, such QBMM result in entropic weakly hyperbolic systems
of conservation laws and to the formation of δ-shock singularities, the mathematical
structure of which is studied in [4]. The purpose of the present contribution is to
introduce an extended quadrature-based reconstruction of the NDF for the closure
of the free-transport term in the kinetic equation and drag, in between QBMM and
KBMM methods, which also allows us to naturally account for velocity dispersion and
large scale trajectory crossing. The proposed continuous representation of the NDF
allows us both to limit the number of unknowns in multi-dimensional configurations,
and to regularize the resulting system of conservation equations, while still being able
to capture large scale PTC and velocity dispersion.

One-dimensional (1-D) multivariate Gaussian moment methods were introduced
in [3, 20] as Multi-Gaussian KBMM. A generalization of these methods is proposed
in [41] and called the extended quadrature method of moments (EQMOM). Here we
analyze what we refer to as Gaussian-EQMOM, extend it to 2- and 3-D phase space,
and apply it to the solution of the kinetic equation describing inertial particles in
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a continuous fluid phase. The remainder of the work is organized as follows. In §2
a brief introduction to 1-D Gaussian-EQMOM is provided. In §3, we provide an
in-depth description of the application to 1-D kinetic equations and the mathemat-
ical properties of two-node Gaussian-EQMOM. In §4, we describe the extension of
Gaussian-EQMOM to a 2-D phase space using the conditional quadrature method
of moments (CQMOM). In §5 we describe the application of Gaussian-ECQMOM to
2-D kinetic equations. Example applications are provided in §6. Finally, conclusions
are drawn in §7.

2. One-dimensional Gaussian-EQMOM. Consider an NDF f(v) defined for
v ∈ S where S ⊆ R is a closed support. Let us assume that the first 2N + 1 integer
moments of f , defined by

Mk :=

∫
S
f(v)vk dv for k ∈ {0, 1, . . . , 2N}, (2.1)

are finite and known. The objective of Multi-Gaussian KBMM [3], which we refer
here as EQMOM [41] is to provide a continuous approximation fa > 0 defined such
that

Mk = Ma
k :=

∫
S
fa(v)vk dv for k ∈ {0, 1, . . . , 2N}. (2.2)

More precisely, fa will be assumed to have the form:

fa(v) =

N∑
α=1

ραδσ(v, vα) (2.3)

where the given kernel density function (KDF) δσ(v, vα) “tends” to a Dirac delta
function δvα(v) when σ tends to zero and the N weights ρα, the N abscissas vα and
the “spread” parameter σ > 0 are determined from the first 2N + 1 integer moments
of fa by (2.2). Let us remark that, for a given type of KDF, it is not always possible
to find such parameters. However, if the moment vector is not on the boundary of
the moment space, one can always find a set of parameters such that (2.2) holds for
k < 2N and Ma

2N is as close as possible of M2N . In the following, we briefly describe
Gaussian-EQMOM for S = R and the associated algorithm for computing fa from
the moment set {M0, . . . ,M2N}.

2.1. Definition of Gaussian-EQMOM. In Gaussian-EQMOM, δσ(v, vα) is
chosen as a Gaussian PDF of variance σ and centered at vα. The approximate NDF
is then

fG(v) :=

N∑
α=1

ρα

σ
√

2π
exp

(
− (v − vα)

2

2σ2

)
(2.4)

and its moments are denoted MG
k . In the case σ = 0, f is a weighted sum of n ≤ N

delta functions (i.e., an n-point distribution on a finite support). This case can be
treated with an adaptive algorithm, described in [40], using the Chebyshev algorithm
[39]. Thus, our focus in this work is on cases with σ > 0, which occur when f is a
continuous NDF.

Using the following definitions:

µk :=
1√
2π

∫
R
ske−s

2/2 ds, M∗k :=

N∑
α=1

ραv
k
α, (2.5)
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(note that µk = 0 if k is odd, otherwise µk ≥ 1), the nonnegative integer moments of
fG can be written as

MG
k =

k∑
k1=0

(
k

k1

)
σk−k1µk−k1M

∗
k1 , (2.6)

which is a lower-triangular linear system of the form MG = A(σ)M∗ where A has unit
eigenvalues. Given σ and the moment vector MG, (2.6) can thus be inverted to find
the moment vector M∗. This observation leads to the following moment-inversion
algorithm.

2.2. Moment-inversion algorithm for Gaussian-EQMOM. Given the mo-
ment set {M0, . . . ,M2N}, the moment-inversion algorithm for Gaussian-EQMOM uses
the following iterative procedure:
Starting from σ = 0,

1. compute {M∗0 , . . . ,M∗2N−1} from (2.6) by setting MG
k = Mk.

2. Use the Wheeler algorithm [40] to compute {ρ1, . . . , ρN} and {v1, . . . , vN}.
3. Compute M∗2N from (2.5).
4. Use (2.6) to compute MG

2N , compare with M2N .
5. If MG

2N < M2N , increase σ and repeat from step 1 until MG
2N = M2N .

In practice, this algorithm will converge if the moment set {M∗0 , . . . ,M∗2N−1} is re-
alizable for the given value of σ used in step 1. Thus, if the moment set becomes
unrealizable (which can be determined from the adaptive Wheeler algorithm [40]
in step 2), then the iterations are aborted and the largest value of σ giving realiz-
able moments is used (i.e., the value from the previous iteration). By construction,
this moment-inversion algorithm will yield MG

k = Mk for k ∈ {0, . . . , 2N − 1} and
MG

2N ≤M2N where the equality holds when the iterations are not aborted. In §3, we
consider the case with N = 2 where an explicit formula is found for σ, and thus only
steps 1 and 2 are required to compute the quadrature parameters.

2.3. Evaluating integrals with Gaussian-EQMOM. In the kinetic equation
describing multiphase flows, there are typically terms for collisions or breakage. In
the moment transport equations, these terms lead to unclosed integrals of the form

〈B〉 =

∫
R
B(v)f(v) dv, 〈C〉 =

∫
R2

C(v1, v2)f(v1)f(v2) dv1dv2 (2.7)

where B and C are the breakage and collision kernels, respectively. Using the Gaussian-
EQMOM representation for f , these integrals can be rewritten as

〈B〉 =

N∑
α=1

ρα
1√
π

∫
R
B(
√

2σs+ vα)e−s
2

ds,

〈C〉 =

N∑
α,β=1

ραρβ
1

π

∫
R2

C(
√

2σs1 + vα,
√

2σs2 + vβ)e−(s21+s22) ds1ds2.

(2.8)
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The remaining integrals in (2.8) can then be approximated using an M -node Gauss-
Hermite quadrature:

〈B〉 =

N∑
α=1

M∑
i=1

ραwiB(
√

2σsi + vα),

〈C〉 =

N∑
α,β=1

M∑
i,j=1

ραρβwiwjC(
√

2σsi + vα,
√

2σsj + vβ)

(2.9)

where wi, si are the corresponding Gauss-Hermite weights and abscissas [13]. It is
important to note that M can be chosen independently from N , and thus that the
accuracy of the quadrature approximation of (2.8) by (2.9) does not depend on the
number of moments. The dual-quadrature form of fG [19] is defined by

fG(v) =

N∑
α=1

M∑
i=1

ραiδ(v −
√

2σsi − vα). (2.10)

where ραi = ραwi.

The reader can note that the Gaussian KDF used in (2.4) could be replaced by
any other normalized, symmetric function of s = (v − vα)/σ. The moment-inversion
algorithm in §2.2 would remain unchanged, but it would be necessary to find the
M -node Gaussian quadrature corresponding to the chosen KDF in order to efficiently
evaluate the integrals in §2.3. Alternatively, [5] uses a two-node B-spline quadrature
with a compact support S ⊂ R for which the integral can be evaluated analytically.
The B-spline quadrature can be extended to N nodes using the methods described
above.

3. Application of 1-D two-node Gaussian-EQMOM to kinetic equa-
tions. We first introduce the two-node Gaussian-EQMOM for the NDF f(t, x, v) in
1-D phase/real space for the kinetic equation:

∂tf + v∂xf + ∂v(Af) = 0, t > 0, x ∈ R, v ∈ R, (3.1)

with initial condition f(0, x, v) = f0(x, v). The accelerationA is a real-valued function
of v. The exact solution for free transport (when A = 0) is given by f(t, x, v) =
f(0, x − vt, v) = f0(x − vt, v). In this work, we seek an approximation of f(t, x, v)
in the form of a two-node Gaussian-EQMOM with weights ρ1(t, x) > 0, ρ2(t, x) > 0,
velocity abscissas v1(t, x), v2(t, x) and standard deviation σ(t, x) ≥ 0. These five
parameters are determined from the 1-D moment transport equations.

3.1. 1-D moment transport equations. Defining the ith-order moment:

Mi(t, x) =

∫
R
f(t, x, v)vi dv, i = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (3.1) after multiplication
by vi and integration over v:

∂tMi + ∂xMi+1 = Ai, i ≥ 0,
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where the (unclosed)1 moment acceleration term is

Ai =

∫
R
iA(v)f(t, x, v)vi−1 dv. (3.2)

For simplicity, we will focus our attention on the five-moment model and its abstract
form:

∂tM0 + ∂xM1 = 0,

∂tM1 + ∂xM2 = A1,

∂tM2 + ∂xM3 = A2,

∂tM3 + ∂xM4 = A3,

∂tM4 + ∂xM5 = A4.

=⇒ ∂tM + ∂xF(M) = A, (3.3)

with M = (M0, . . . ,M4)t, F(M) = (M1, . . . ,M4,M5)t and A = (0,A1, . . . ,A4)t.
This model is closed provided that M5 and A are defined as functions of M. Here
we propose to define these functions using two-node Gaussian-EQMOM.

3.2. Two-node Gaussian-EQMOM. The function fG has exact moments
MG
i of orders i = 0, ..., 5 given by (2.6). The moment closure for (3.3) then nat-

urally consists in setting M5 = MG
5 where the five unknowns ρ1, ρ2, v1, v2 and σ

are found by solving the nonlinear system Mi = MG
i , i = 0, . . . , 4; which is clearly

equivalent to solving the system

M0 = ρ1 + ρ2,

M1 = ρ1v1 + ρ2v2,

M2 − σ2M0 = ρ1v
2
1 + ρ2v

2
2 ,

M3 − 3σ2M1 = ρ1v
3
1 + ρ2v

3
2 ,

M4 − 6σ2M2 + 3σ4M0 = ρ1v
4
1 + ρ2v

4
2 .

(3.4)

It remains to prove that this system is well-posed in the following proposition.

Proposition 3.1 (Two-Node Gaussian-EQMOM).
For M = (M0,M1,M2,M3,M4)t such that M0 > 0, define

e =
M0M2 −M2

1

M2
0

, q =
(M3M

2
0 −M3

1 )− 3M1(M0M2 −M2
1 )

M3
0

,

and

η =
−3M4

1 +M4M
3
0 − 4M2

0M1M3 + 6M0M
2
1M2

M4
0

.

System (3.4) is well-defined on the phase space Ω given by

Ω =

{
M, M0 > 0, e > 0, η > e2 +

q2

e
, and η ≤ 3e2 if q = 0

}
.

1The acceleration terms will be closed if A is affine: A(t, x, v) = −a(t, x)v+ b(t, x), in which case
the moment acceleration term can be written as Ak = k(−aMk + bMk−1). In gas-particle flows, this
limit corresponds to Stokes drag in a stationary fluid.
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Setting U = (ρ1, ρ2, ρ1v1, ρ2v2, σ)t, the function U = U(M) is one-to-one and onto
when v1 6= v2, and for all v1 and v2 provided that we set ρ1 = ρ2 in the case v1 = v2.
Moreover, σ2 is given by the unique real root in (0, e] of the third-order polynomial

P(σ0) = 2σ3
0 + (η − 3e2)σ0 + q2,

σ0 = σ2 − e.

Proof. By setting ρ1 = ρ1
M0

, ρ2 = ρ2
M0

, v1 = v1 − M1

M0
, v2 = v2 − M1

M0
, solving (3.4)

is equivalent to solving

1 = ρ1 + ρ2,

0 = ρ1v1 + ρ2v2,

e− σ2 = ρ1v
2
1 + ρ2v

2
2,

q = ρ1v
3
1 + ρ2v

3
2,

η − 6σ2e+ 3σ4 = ρ1v
4
1 + ρ2v

4
2,

with e = (M0M2 −M2
1 )/M2

0 , q = ((M3M
2
0 −M3

1 ) − 3M1(M0M2 −M2
1 ))/M3

0 , η =
(−3M4

1 +M4M
3
0 −4M2

0M1M3 +6M0M
2
1M2)/M4

0 . Dropping the overlines for the sake
of clarity, it is then a matter of uniquely solving the following nonlinear system in
(ρ1, ρ2, v1, v2, σ

2):

ρ1 + ρ2 = 1,

ρ1v1 + ρ2v2 = 0,

ρ1v
2
1 + ρ2v

2
2 = e− σ2,

ρ1v
3
1 + ρ2v

3
2 = q,

ρ1v
4
1 + ρ2v

4
2 = η − 6σ2e+ 3σ4.

(3.5)

For any given value of σ such that e > σ2 (or e ≥ σ2 if q = 0), it is proved in [8] that
the first four equations allow us to find (ρ1, ρ2, v1, v2). We will then focus on the last
equation to find σ2.

In the case q = 0, the second and fourth equations yield ρ1v1(v2
1 − v2

2) = 0, and
ρ2v2(v2

1 − v2
2) = 0, which gives v := v1 = −v2. We then get ρ1 = ρ2 = 1/2 and

σ2 = e − v2, 2v4 = 3e2 − η. Recall that our objective is now to uniquely determine
v and σ > 0 such that σ2 ≤ e. A necessary and sufficient condition is then clearly
η ∈ (e2, 3e2). Note that the case η = e2 would lead to σ = 0, meaning that the
Gaussian functions degenerate into two Dirac delta functions that correspond to the
usual quadrature. The case η = 3e2 gives v = 0 and both Gaussian functions coincide.

In the case q 6= 0, from (3.5), we observe by using the usual algebra of quadrature
methods and by setting σ0 = v1v2 and σ1 = −(v1 + v2), that

e− σ2 + σ0 = 0,

q + σ1(e− σ2) = 0,

η − 6σ2(e− σ2) + 3σ4 + σ1q + σ0(e− σ2) = 0.

The last equation then gives that σ0 = σ2 − e is a root of the third-order polynomial
P(σ0) = 2σ3

0 + (η − 3e2)σ0 + q2. Note that one must have σ0 ∈ (−e, 0) to fulfill
the condition e > σ2 and to be able to reconstruct σ > 0 from σ0. First, since
limσ0→−∞ P = −∞, P(0) > 0 and P ′′(σ0) = 12σ0, there exists a unique root σ0 < 0
of P. It then follows that σ0 > −e if and only if P(−e) < 0, that is if and only if
η > e2 + q2/e. This concludes the proof.
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3.3. Calculation of σ2. The three roots of P(σ0) can be found analytically (one
is real, and two are complex conjugates). The real root yields

σ2 = e

(
1− c3 +

c1
c3

)
(3.6)

where

c1 =
1

6

( η
e2
− 3
)
, c2 =

q2

4e3
and c3 =

[(
c31 + c22

)1/2
+ c2

]1/3
.

Because e, q and η depend only on the moments and not on the weights and abscissas,
σ2 can be computed directly and thus the right-hand side of (3.5) is known.

In transition zones between nondegenerate cases with v1 6= v2 and the degenerate
case with v1 = v2, the two-node Gaussian-EQMOM based on (3.6) can generate
quadrature points with high velocity but negligible density. As the CFL condition is
based on the maximum velocity, this behavior will drastically reduce the time step.
To avoid the generation of high velocities, a regularization procedure is employed.
This kind of strategy is often used for moment systems close to singular distributions,
see for instance [16, 33]. The difference between the mean velocity of each Gaussian
is given by ∆u = |u2 − u1| = q/(e− σ2), and thus is an increasing function of σ2. If
σ2 = 0, the velocity difference will be bounded [4]. Regularization consists of using a
limiter on σ2 to control the maximum velocity difference:

σ2 =

σ
2 from (3.6) if ∆u < ∆ulim

e− |q|
l

if ∆u ≥ ∆ulim

(3.7)

where

l = ∆ulim + (∆umax −∆ulim) tanh

(
∆u−∆ulim

∆umax −∆ulim

)
. (3.8)

The user-defined parameters ∆ulim and ∆umax > ∆ulim control the velocity differ-
ence starting from which we begin to limit σ and the maximum velocity difference,
respectively. In practice, these parameters should be close to the local fluid-phase
velocity. The difference between ∆ulim and ∆umax permits a smooth transition be-
tween regularized and non-regularized zones. Note that in the regularized zones only
the fourth-order moment is not satisfied (i.e., MG

4 < M4).
For M0 > 0, the two-node Gaussian-EQMOM algorithm consists of the following

three steps:
1. Given moments M in Ω, compute e, q and η.
2. Compute σ2 from (3.7).
3. Solve (3.5) according to [8] to find ρ1, ρ2, v1, v2 (i.e., variables without the

overlines). In the case where σ2 = e, set ρ2 = v2 = 0 and ρ1 = M0, v1 = M1/M0.
For M0 = 0, set ρ1 = ρ2 = 0 and (without loss of generality) σ = v1 = v2 = 0.

3.4. Effect of the σ2 limiter on the flux. When using a five-moment method,
the moment space can be described through a set of normalized moments defined by
Junk [16]. Then, introducing the three central moments e, q, η defined in Proposi-
tion 3.1 and a fourth one, occurring in the flux:

s =
M5

M0
− 5

M4M1

M2
0

+ 10
M3M

2
1

M3
0

− 10
M2M

3
1

M4
0

+ 4
M5

1

M5
0

,
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the normalized moments, corresponding to the normalized NDF f∗(w) =
√
e

M0
f
(√

ew + M1

M0

)
,

are (1, 0, 1, q∗, η∗, s∗) with q∗ = q
e3/2

, η∗ = η
e2 and s∗ = s

e5/2
. In order to observe the

effect of the σ2 limiter on the flux, the normalized flux s∗ is plotted in Figure 3.4, with
and without the use of a limiter. As observed for the closure with entropy maximiza-
tion [26], without any limiter, the flux diverges quickly towards negative or positive
infinity as the line q∗ = 0 with η∗ > 3 is approached. However, with the limiter, the
flux is smooth and does not diverge.

Fig. 3.1. Normalized flux s∗ without (left) and with (right) the limiter on σ2.

3.5. Mathematical properties of moment system with two-node Gaussian-
EQMOM. The following theorem addresses an important mathematical property of
system (3.3), which is its hyperbolicity. This property was shown in the near thermo-
dynamic equilibrium limit, characterized by v1 ≈ v2, by Cheng and Rossmanith [5].
Here, the general case is addressed in the following theorem.

Theorem 3.2 (Hyperbolicity). Assuming that the vector M = (M0,M1,M2,M3,M4)t

lives in the space Ω defined in Proposition 3.1, system (3.3) with the two-node Gaussian-
EQMOM closure is hyperbolic.

Proof. It is shown in Proposition 3.1 that one can define U = (ρ1, ρ2, ρ1v1, ρ2v2, σ
2)t,

the vector of the reconstruction variables, using the two-node Gaussian-EQMOM clo-

sure. Moreover, σ is not equal to zero since P(−e) = e
(
e2 + q2

e − η
)
< 0 with the

notation of Proposition 3.1.
The Jacobian matrix of system (3.3) is

J =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
α β γ δ ε


where (α, β, γ, δ, ε) =

DM5

DU
.

(
DM

DU

)−1

. After some tedious algebra, one obtains

ε = −2s1 + v̄,

δ = −s2
1 − 4s0 − 2v2 + 10σ2,

γ = −3s0s1 − s1v2 + 2s0v̄ + 6σ2(2s1 − v̄),

β = −2s0v2 − 3s2
0 + 3σ2(s2

1 + 2v2 + 4s0)− 15σ4,

α = s2
0v̄ + σ2(3s0s1 + s1v2 − 2s0v̄)− 3σ4(2s1 − v̄)
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where s0, s1, v̄ and v2 are defined by

s0 = v1v2, s1 = −(v1 + v2), v̄ =
ρ1v1 + ρ2v2

ρ1 + ρ2
and v2 =

ρ1v
2
1 + ρ2v

2
2

ρ1 + ρ2
.

The corresponding characteristic polynomial is

P (X) = −X5 + εX4 + δ X3 + γ X2 + β X + α.

We then want to prove that this polynomial has five distinct roots.

In the case v1 = v2 (= v̄), using the change of variables X = Y + v̄ leads to

P (Y+v̄) = −Y 5+10σ2Y 3−15σ4Y = −Y
[
Y 2 −

(
5 +
√

10
)
σ2
] [
Y 2 −

(
5−
√

10
)
σ2
]
,

and hence there are five distinct roots when σ 6= 0.

In the case v1 6= v2, using the change of variables X = v̄+
v2 − v1

ρ1 + ρ2
Z and defining

Σ =
ρ1 + ρ2

v2 − v1
σ, leads to

P

(
v̄ +

v2 − v1

ρ1 + ρ2
Z

)
= −

(
v2 − v1

ρ1 + ρ2

)5

Q(Z)

with

Q(Z) = Z5+2(ρ2−ρ1)Z4+
[
ρ2

1 − 4ρ1ρ2 + ρ2
2 − 10 Σ2

]
Z3−2(ρ2−ρ1)

[
ρ1ρ2 + 6Σ2

]
Z2

+
[
ρ2

1ρ
2
2 − 3(ρ2

1 − 4ρ1ρ2 + ρ2
2)Σ2 + 15Σ4

]
Z + 2(ρ2 − ρ1)

[
ρ1ρ2 + 3Σ2

]
Σ2.

To prove that Q(Z) has five distinct real roots, we use Sturm’s theorem, which yields
the number of distinct real roots in a given interval.

Let us define the Sturm sequence of polynomials: P0 = Q, P1 = Q′ and, for any
n ∈ {0, 1, 2, 3}, −Pn+2 is the remainder of the Euclidean division of Pn+1 by Pn. With
the use of the formal calculation software Maxima, one can compute this sequence
and remark that the coefficient of the highest-order term of each Pn is positive for
n ∈ {0, 1, 2, 3, 4, 5}, since they are positive coefficient polynomial functions of ρ1, ρ2

and Σ2.

Let m(ξ) denote the number of sign changes (ignoring zeroes) in the sequence
{P0(ξ), P1(ξ), . . . , P5(ξ)}. For b large enough, one has m(b) = 0 since each Pn tends
to +∞ as ξ → +∞. Likewise, for a small enough, one has m(a) = 5. Sturm’s theorem
then shows that Q has five real distinct roots in [a, b]. This concludes the proof.

3.6. Kinetic-based flux. In our numerical implementation to solve (3.3), the
spatial fluxes F(M) are computed using a kinetic-based definition:

Fi(t, x) =

∫ ∞
0

f(t, x, v)vi+1 dv +

∫ 0

−∞
f(t, x, v)vi+1 dv, i = 0, . . . , 4; (3.9)

where the decomposition into positive and negative directions is used to define the
flux function as proposed in [2]. The numerical representation of the flux function is a
critical point in moment transport methods [38] because only realizable moment sets



MULTIVARIATE GAUSSIAN-EQMOM 11

can be successfully inverted. Formally, we close (3.9) using the two-node Gaussian-
EQMOM:

Fi(t, x) =

2∑
α=1

ρα
[
〈vi+1〉+α + 〈vi+1〉−α

]
, i = 0, . . . , 4; (3.10)

where

〈vi〉+α :=
1√
π

∫ ∞
−vα√

2σ

(vα +
√

2σs)ie−s
2

ds,

〈vi〉−α :=
1√
π

∫ ∞
vα√
2σ

(vα −
√

2σs)ie−s
2

ds,

(3.11)

can be computed analytically. To design a first-order scheme, this decomposition is
sufficient as it corresponds to an upwind scheme at the kinetic level. In this case,
the transport scheme is shown to be realizable with the following CFL-like condi-
tion: ∆t

∆x maxα(|vα|+ 1.8σ
√

2) ≤ 1 (see Appendix A). For a quasi-high-order scheme
[38], the spatial fluxes can be found from (3.10) by employing a high-order spatial
reconstruction for ρα and a first-order reconstruction for the abscissas vα and σ. In
summary, the numerical fluxes are computed as follows:

1. Given moments M, compute ρ1, ρ2, v1, v2, and σ using the two-node Gaussian-
EQMOM algorithm in §3.2.

2. Compute kinetic-based fluxes from (3.10) using (3.11).
3. Compute finite-volume numerical moment fluxes as described in [38].

The case where σ = 0 (i.e., f is composed of two delta functions) is handled by the
adaptive Wheeler algorithm [40].

4. Extension of Gaussian-EQMOM to 2-D phase space. Consider a 2-D
phase space with NDF f(v) for v = (u, v)t and define the bivariate moments

Mi,j :=

∫
R2

f(v)uivj dv, i, j = 0, . . . ,K; K ∈ N. (4.1)

Assuming that these moments exist, in the following we propose a bivariate extension
of Gaussian-EQMOM using ideas from CQMOM [40].

4.1. Definition of 2-D Gaussian-ECQMOM. For clarity, we limit our dis-
cussion here to two-node quadrature in each direction of phase space (i.e. a total of
four nodes). Nevertheless, the same methodology can be used to develop the formulas
for more nodes. For the four-node quadrature, we define an approximate bivariate
NDF by

fG
12(v) :=

2∑
α=1

ραg(u;uα, σ1)

 2∑
β=1

ραβg(v − V (u); vαβ , σ2α)

 (4.2)

where the Gaussian KDF is

g(u;µ, σ) :=
1

σ
√

2π
exp

(
− (u− µ)2

2σ2

)
. (4.3)

The form in (4.2) is based on v conditioned on u. An analogous form fG
21(v) with u

conditioned on v is found by permuting u and v. For clarity, we describe the properties
of Gaussian extended CQMOM (or Gaussian-ECQMOM) for fG

12.
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The function V (u) in (4.2) replaces the phase-space rotation introduced in [9] and
is defined to have the following properties:

2∑
α=1

ρα

∫
R
V (u)g(u;uα, σ1) du = M0,1 (4.4)

and

2∑
α=1

ρα

∫
R
uV (u)g(u;uα, σ1) du = M1,1. (4.5)

Here, we set2 V (u) = a0 + a1u where

a0 =
M2,0M0,1 −M1,0M1,1

M0,0M2,0 −M2
1,0

= µv − µua1 (4.6)

and

a1 =
M0,0M1,1 −M1,0M0,1

M0,0M2,0 −M2
1,0

=
ρσv
σu

(4.7)

with µu = M1,0/M0,0, σ2
u = (M2,0/M0,0)−µ2

u, µv = M0,1/M0,0, σ2
v = (M0,2/M0,0)−µ2

v

and ρ = [(M1,1/M0,0) − µuµv]/(σuσv) is the correlation coefficient. Note that V (u)
is well defined if the variance in the first direction σ2

u is nonzero. In fact V (u) is
the conditional expected value of v given u for a bivariate Gaussian distribution. To
simplify the notation, we introduce the following definition:

〈uiV j〉α :=

∫
R
uiV (u)jg(u;uα, σ1) du. (4.8)

This integral involves Gaussian integer moments up to order i+ j, which are known
functions of uα and σ1.

The integer moments of (4.2) are

MG
i,j =

2∑
α=1

ρα

∫
R
uig(u;uα, σ1)

 2∑
β=1

ραβ

∫
R
vjg(v − V (u); vαβ , σ2α) dv

 du (4.9)

or, by defining v = y + V (u), as

MG
i,j =

2∑
α=1

ρα

∫
R
uig(u;uα, σ1)

 2∑
β=1

ραβ

∫
R

[y + V (u)]jg(y; vαβ , σ2α) dy

 du. (4.10)

2A more general choice that uses all of the moments is V (u) =
∑4
n=0 anu

n with an found from
the linear system

4∑
n=0

[
2∑

α=1

ρα

∫
R
ui+ng(u;uα, σ1) du

]
an = Mi,1 for i ∈ {0, 1, 2, 3, 4}.

This choice is valid if σ1 > 0, but care must be taken if the coefficient matrix becomes poorly
conditioned. Note that the quantity on the left-hand side in the square brackets is MG

i+n,0, i.e.,
the univariate integer moments from two-node Gaussian-EQMOM. Thus the coefficient matrix is a
Hankel matrix.



MULTIVARIATE GAUSSIAN-EQMOM 13

For integer j, a binomial expansion leads to

MG
i,j =

2∑
α=1

ρα

j∑
j1=0

(
j

j1

)
〈uiV j−j1〉αµj1α (4.11)

where we have introduced the conditional moment of (v − V )j given u = uα defined
by

µjα :=

2∑
β=1

ραβ

∫
R
yjg(y; vαβ , σ2α) dy. (4.12)

It follows immediately from the properties of the Gaussian distribution and the def-
inition of ραβ that µ0

α = 1 and µ1
α = 0.3 The form of (4.11) leads to the following

moment-inversion algorithm.

4.2. Moment-inversion algorithm for 2-D Gaussian-ECQMOM. The first
step uses the univariate moments Mi,0 with the algorithm in §2.2 for 1-D Gaussian-
EQMOM to find {ρ1, ρ2, u1, u2, σ1}. There are two possible cases: (1) a nondegenerate
case with u1 6= u2, (2) a degenerate case with u1 = u2. The degenerate case occurs
when the univariate moments Mi,0 are Gaussian.

4.2.1. Nondegenerate case. In order to determine the parameters vαβ and
σ2α, we must solve (4.11) to find µjα for j = 2, 3, 4. This requires six equations, which
we define by taking i = 0, 1 and j = 2, 3, 4. It is straightforward to show that the
conditional moments can be found from three 2×2 linear systems, which can be solved
sequentially:

2∑
α=1

ραµ
2
α = M0,2 −

2∑
α=1

ρα〈V 2〉α,

2∑
α=1

ραuαµ
2
α = M1,2 −

2∑
α=1

ρα〈uV 2〉α;

(4.13)

2∑
α=1

ραµ
3
α = M0,3 − 3

2∑
α=1

ρα〈V 〉αµ2
α −

2∑
α=1

ρα〈V 3〉α,

2∑
α=1

ραuαµ
3
α = M1,3 − 3

2∑
α=1

ρα〈uV 〉αµ2
α −

2∑
α=1

ρα〈uV 3〉α;

(4.14)

2∑
α=1

ραµ
4
α = M0,4 − 4

2∑
α=1

ρα〈V 〉αµ3
α − 6

2∑
α=1

ρα〈V 2〉αµ2
α −

2∑
α=1

ρα〈V 4〉α,

2∑
α=1

ραuαµ
4
α = M1,4 − 4

2∑
α=1

ρα〈uV 〉αµ3
α − 6

2∑
α=1

ρα〈uV 2〉αµ2
α −

2∑
α=1

ρα〈uV 4〉α.

(4.15)
The final step is to use the algorithm in §2.2 for 1-D Gaussian-EQMOM with the mo-
ment set {1, 0, µ2

α, µ
3
α, µ

4
α} to find the quadrature parameters {ρα1, ρα2, vα1, vα2, σ2α}

for α ∈ {1, 2}.

3µ0α = 1 is the unique solution to (4.11) with i = 0, 1 and j = 0. Likewise, µ1α = 0 is the solution
for i = 0, 1 and j = 1. The latter makes use of the properties of V (u) in (4.4) and (4.5).
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4.2.2. Degenerate case. For the degenerate case, we define a 2-node Gaussian-
ECQMOM by

fG
12(v) = M0,0g(u;µu, σu)

(
2∑

α=1

ραg(v − V (u); vα, σ2)

)
(4.16)

that can further degenerate4 to a bivariate Gaussian with a full covariance matrix
when ρ2 = 0. The moments for this case are

MG
i,j = M0,0

j∑
j1=0

(
j

j1

)
〈uiV j−j1〉µj1 (4.17)

where

〈uiV j〉 :=

∫
R
uiV (u)jg(u;µu, σu) du (4.18)

with 〈V 〉 = M0,1/M0,0 = µv and 〈uV 〉 = M1,1/M0,0. The conditional moments are
defined by

µj :=

2∑
α=1

ρα

∫
R
yjg(y; vα, σ2) dy. (4.19)

By definition, µ0 = 1 and µ1 = 0. To complete the quadrature, we find µ2, µ3 and µ4

from (4.17) using i = 0 and j = 2, 3, 4:

µ2 =
M0,2

M0,0
− 〈V 2〉 (4.20)

µ3 =
M0,3

M0,0
− 〈V 3〉 − 3〈V 〉µ2 (4.21)

µ4 =
M0,4

M0,0
− 〈V 4〉 − 6〈V 2〉µ2 − 4〈V 〉µ3 (4.22)

where the moments 〈V j〉 are known. The final step is to use the algorithm in §2.2 for
1-D Gaussian-EQMOM with the moment set {1, 0, µ2, µ3, µ4} to find the quadrature
parameters {ρ1, ρ2, v1, v2, σ2}.

For the nondegenerate case, the moment-inversion algorithm described above is
able to recover 13 of the 16 extended optimal moments5 [10] defined by

M0,0 M0,1 M0,2 M0,3 M0,4

M1,0 M1,1 M1,2 M1,3 M1,4

M2,0 M2,1

M3,0 M3,1

M4,0 M4,1

 .
The reader can note that the formulas developed in this section for four-node Gaussian-
ECQMOM can be extended to N ×N nodes in a relatively straightforward manner.

4If the bivariate moment set is (anisotropic) Gaussian, then the quadrature will degenerate to
the exact distribution with w1 = 1, v1 = 0 and σ2

2 = (1− ρ2)σ2
v .

5If we define V (u) =
∑4
n=0 anu

n, then all 16 moments can be recovered.
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4.3. Evaluating integrals with 2-D Gaussian-ECQMOM. In 2-D phase
space, the evaluation of integrals using Gaussian-ECQMOM is very similar to §2.3.
Consider again the unclosed integral

〈B〉 =

∫
R2

B(v)f(v) dv. (4.23)

Using the 2-D Gaussian-ECQMOM representation fG12, this integral can be rewritten
as

〈B〉 =

2∑
α,β=1

ραραβ
π

∫
R2

B(
√

2σ1s1 + uα,
√

2σ2αs2 + V (
√

2σ1s1 + uα) + vαβ)e−s2 ds

(4.24)
where s = (s1, s2)t. The remaining integrals in (4.24) can then be approximated using
an M -node Gauss-Hermite quadrature:

〈B〉 =

2∑
α,β=1

ραραβ

M∑
i,j=1

wiwjB(
√

2σ1si+uα,
√

2σ2αsj+V (
√

2σ1si+uα)+vαβ) (4.25)

where wi and si are the Gauss-Hermite weights and abscissas [13]. The extension of
(4.24) to a 3-D (or higher) phase space is analogous to (4.25). The dual-quadrature
representation is thus

fG12(v) =

2∑
α,β=1

M∑
i,j=1

ραβijδ(u−
√

2σ1si − uα)δ(v −
√

2σ2αsj − V (u)− vαβ) (4.26)

where ραβij = ραραβwiwj .
A second, and equally valid, evaluation of the integrals in (4.23) can be found

using fG21. In general, if there exist P permutations of the CQMOM conditioning
variables (e.g., P = 2 in 2-D and P = 6 in 3-D), then each of them can be used to
evaluate the integrals. The arithmetic average value of the P permutations would
represent the best overall estimate [40].

5. Application of four-node Gaussian-ECQMOM to kinetic equations.
Consider a 2-D velocity phase space with NDF f(t, x, v) for x = (x, y)t and v = (u, v)t

that satisfies the kinetic equation

∂tf + v · ∂xf + ∂v · (Af) = 0, t > 0, x ∈ R2, v ∈ R2, (5.1)

with initial condition f(0, x, v) = f0(x, v). The acceleration A = (Ax,Ay)t is a
real-valued function of v. With a 2-D velocity phase space, we approximate the
solution to f using a Gaussian-ECQMOM for the bivariate moments. In this work,
we will consider only the minimal Gaussian-ECQMOM that uses four nodes in the
2-D velocity phase space. Nonetheless, the extension to more than four nodes would
be analogous to the algorithm presented here.

5.1. 2-D moment transport equations. Defining the bivariate moments

Mi,j(t, x) =

∫
R2

f(t, x, v)uivj dv, i, j = 0, . . . ,K; K ∈ N;

the associated governing equations are easily obtained from (5.1):

∂tMi,j + ∂xMi+1,j + ∂yMi,j+1 = Ai,j , i, j ≥ 0;
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where the (unclosed)6 moment acceleration term is defined by

Ai,j = −
∫
R2

iAx(v)f(t, x, v)ui−1vj dv −
∫
R2

jAy(v)f(t, x, v)uivj−1 dv. (5.2)

We will consider in this work a 16-moment model:

∂tM0,0 + ∂xM1,0 + ∂yM0,1 = 0,

∂tM1,0 + ∂xM2,0 + ∂yM1,1 = A1,0,

∂tM0,1 + ∂xM1,1 + ∂yM0,2 = A0,1,

∂tM2,0 + ∂xM3,0 + ∂yM2,1 = A2,0,

∂tM1,1 + ∂xM2,1 + ∂yM1,2 = A1,1,

∂tM0,2 + ∂xM1,2 + ∂yM0,3 = A0,2,

∂tM3,0 + ∂xM4,0 + ∂yM3,1 = A3,0,

∂tM2,1 + ∂xM3,1 + ∂yM2,2 = A2,1,

∂tM1,2 + ∂xM2,2 + ∂yM1,3 = A1,2,

∂tM0,3 + ∂xM1,3 + ∂yM0,4 = A0,3,

∂tM4,0 + ∂xM5,0 + ∂yM4,1 = A4,0,

∂tM3,1 + ∂xM4,1 + ∂yM3,2 = A3,1,

∂tM1,3 + ∂xM2,3 + ∂yM1,4 = A1,3,

∂tM0,4 + ∂xM1,4 + ∂yM0,5 = A0,4,

∂tM4,1 + ∂xM5,1 + ∂yM4,2 = A4,1,

∂tM1,4 + ∂xM2,4 + ∂yM1,5 = A1,4,

(5.3)

which requires a closure for the fourth-order moment M2,2, the four fifth-order mo-
ments M5,0,M3,2,M2,3,M0,5, the four sixth-order moments M5,1,M4,2,M2,4,M1,5,
and the acceleration terms. We propose to define these closures by reconstructing
f with four-node Gaussian-ECQMOM. If unclosed, the acceleration term A can be
evaluated using the dual-quadrature forms of fG12 and fG21, and taking the arithmetic
average. In our numerical examples, Stokes drag is used so that A is closed in terms
of the transported moments, and operator splitting is used for the fluxes and the
acceleration.

5.2. Mathematical properties of 2-D moment system with four-node
Gaussian-ECQMOM . Because we use a dimensional splitting to solve (5.3), let
us consider the transport part of the system in the x-direction for the moments used
in the Gaussian-ECQMOM reconstruction conditioned on the u velocity:

∂tM + ∂xF(M) = 0 (5.4)

with

M = (M0,0,M1,0,M2,0,M3,0,M4,0,M0,1,M1,1,M0,2,M1,2,M0,3,M1,3,M0,4,M1,4)t

and

F(M) = (M1,0,M2,0,M3,0,M4,0,M5,0,M1,1,M2,1,M1,2,M2,2,M1,3,M2,3,M1,4,M2,4)t.

Let us remark that the moments M2,1, M3,1 and M4,1 are not considered here since
their equations are redundant with those of (5.4). Moreover, for the sake of simplicity,
we use the reconstruction with V (u) = 0 in (4.2) to prove the hyperbolicity of system
(5.4).

Theorem 5.1 (Hyperbolicity). Assuming that the moment-inversion algorithm
for 2-D Gaussian-ECQMOM with V (u) = 0 for the vector M is nondegenerate, system
(5.4) with this closure is hyperbolic.

6The acceleration terms will be closed if A is a linear function of the form (au, av)t, in which
case the moment acceleration term can be written as Ai,j = −a(i + j)Mi,j . In gas-particle flows,
this limit corresponds to Stokes drag in a stationary fluid.
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Proof. The Jacobian matrix J2D of the flux is block triangular:

J2D =


J 0 0 0 0
X1 A 0 0 0
X2 0 A 0 0
X3 0 0 A 0
X4 0 0 0 A


where J is the 5× 5 Jacobian matrix given in Theorem 3.2, corresponding to the 1-D
system. The Xi are 2× 5 matrices and A is a 2× 2 matrix given by

A =

(
0 1
ν ξ

)
with

(ν, ξ) =
DM2,1

D(M0,1,M1,1)
=

DM2,2

D(M0,2,M1,2)
=

DM2,3

D(M0,3,M1,3)
=

DM2,4

D(M0,4,M1,4)

given by ν = −u1u2 + σ2
1 and ξ = u1 + u2.

From Theorem 3.2, the matrix J is diagonalizable with five distinct eigenvalues.
Matrix A is also diagonalizable with the following two eigenvalues:

λ± =
u1 + u2

2
±
√

(u2 − u1)2

4
+ σ2

1 .

Moreover, neither of these eigenvalues is an eigenvalue of J . It follows from the
block-diagonal structure of the submatrix, found by eliminating the first five rows
and columns of J2D, that J2D is diagonalizable. This concludes the proof.

5.3. Kinetic-based flux. The moment transport system (5.3) has the form

∂tM + ∂x · F(M) = A

with flux vector F = (Fx,Fy)t for the 16-moment vector M. In our numerical im-
plementation, the components of the fluxes for moment Mi,j are computed using a
kinetic-based definition:

Fx;i,j =

∫
R

(∫ ∞
0

f(t, x, v)ui+1vj du

)
dv +

∫
R

(∫ 0

−∞
f(t, x, v)ui+1vj du

)
dv, (5.5)

Fy;i,j =

∫
R

(∫ ∞
0

f(t, x, v)uivj+1 dv

)
du+

∫
R

(∫ 0

−∞
f(t, x, v)uivj+1 dv

)
du. (5.6)

Here, we describe how Fx;i,j is computed by conditioning on the u component of veloc-
ity. The treatment of Fy;i.j is done analogously by conditioning on the v component
of velocity.

Assuming that 1-D Gaussian-EQMOM has been applied to the u direction, we
can assume that ρα, uα and σ1 are known. Thus, for the nondegenerate case with
u1 6= u2, (5.5) can be written as

Fx;i,j =

2∑
α=1

ρα

j∑
j1=0

(
j

j1

)[
〈ui+1V j−j1〉+α + 〈ui+1V j−j1〉−α

]
µj1α (5.7)
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where µjα are the conditional moments of (v − V )j given uα, and

〈uiV j〉+α :=
1√
π

∫ ∞
−uα√
2σ1

(uα +
√

2σ1s)
iV (uα +

√
2σ1s)

je−s
2

ds,

〈uiV j〉−α :=
1√
π

∫ ∞
uα√
2σ1

(uα −
√

2σ1s)
iV (uα −

√
2σ1s)

je−s
2

ds,

(5.8)

can be computed analytically. For the degenerate case (ρ2 = 0), the same expressions
are used but with the conditional moments µj defined in §4.2.2.

6. Numerical examples. As example applications, we consider a Riemann
problem with 1-D velocity phase space and a frozen turbulence problem with a 2-
D velocity phase space. In each case, we solve the moment transport equations in
(3.3) and (5.3), respectively.

6.1. 1-D Riemann problem. The initial conditions are defined on the real line
with a step in the mean u velocity at x = 0:

Um =
M1

M0
=

{
1 if x < 0,

−1 otherwise.

For all x, the initial density is unity and the velocity distribution function is Maxwellian
with energy σ2 = 1/3. The velocity distribution is assumed initially to be in equilib-
rium (i.e., e0 = σ2). However, the discontinuous nature of the mean particle velocity
quickly leads to particle trajectory crossing and a strongly non-equilibrium velocity
distribution function.

For 1-D phase space, a measure of the degree of non-equilibrium is the ratio σ2/e,
which is unity for an equilibrium distribution and zero when the distribution is com-
posed entirely of Dirac delta functions. In order to identify clearly deviations of the
higher-order moments from their equilibrium values, we will use the following nor-
malized moments: e∗ = e/e0 (energy), q∗ = q/e3/2 (skewness), η∗ = η/e2 (kurtosis);
whose equilibrium values are e∗ = 1, q∗ = 0, and η∗ = 3.

In order to solve the moment equations numerically, the 1-D computational do-
main −2 < x < 2 is discretized into 402 finite-volume cells. The spatial fluxes are
treated using the first-order kinetic-based approach. The time step is chosen based
on the largest magnitude of the abscissas vα used to define the spatial fluxes with a
CFL number of 0.5. For comparison, results are shown for σ2 found with (3.6) and
with the velocity limiter in (3.7).

Simulation results for the 1-D Riemann problem are presented in Figures 6.1–6.3
at time t = 0.5. Note that due to the equilibrium initial conditions, only one velocity
abscissa is used when σ2/e = 1 (i.e., v1) and the other (v2) is set to zero automatically
using the 1-D quadrature algorithm described in §3.2. At t = 0.5, one can observe
from Figure 6.3 that the equilibrium condition is still present on the left and right
sides of the computational domain. In the center of the domain, σ2/e ≈ 0.2, indicating
that the overall distribution is composed of two Gaussian distributions with very little
overlap. Also, note that unlike in a pure PTC problem where the velocity abscissas
remain at their initial values (i.e., 1 and -1), in Figure 6.2 the abscissas have their
largest magnitudes just behind the “shock” in density at the edge of the equilibrium
domain. This behavior is a direct result of the definition of the spatial fluxes in terms
of the underlying two-node Gaussian-EQMOM distribution. Indeed, the outer tails
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Fig. 6.1. Solution to 1-D Riemann problem at t = 0.5. Five transported moments (M0,...,4)
and reconstructed moment (M5). The dashed line is found with (3.7) and the solid line with (3.6).

of the Gaussian distribution have higher velocity than the value at the peak density
and thus penetrate faster into the equilibrium domain, resulting in a higher local
flux velocity. The strong deviations from equilibrium are also clearly observed in the
normalized energy, skewness, and kurtosis in Figure 6.3. Note, however, that using
the velocity limiter in (3.7) does not compromise the prediction of the moments in
Figure 6.1 because the high velocities correspond to negligibly small weights as can
be seen in Figure 6.2.

Except at the edges of the equilibrium domain, we see from Figure 6.1 that the
transported moments and σ2 are smoothly varying functions of x. More importantly,
the singularities appearing in the solution do not belong to the class of δ-shocks but
to the less singular class of shocks encountered with hyperbolic systems of conserva-
tions laws, thus revealing a potentially well-behaved system. Moreover, due to the
kinetic-based definition of the spatial fluxes, the moments are always realizable, and
the moment-inversion algorithm always computes a well-defined quadrature from the
updated moments. Overall, the two-node Gaussian-EQMOM reconstruction of the
velocity distribution yields a robust numerical algorithm using a minimum number
of moments. In comparison to the high-order delta function reconstruction described
in [10], the two-node Gaussian-EQMOM provides a higher fidelity flux representation
for a fixed number of transported moments. Moreover, because the moments of the
Gaussian-EQMOM distribution can be computed to any desired order, the flux repre-
sentation described in §3.6 can be systematically improved. This advantage becomes
even more significant for 2-D and 3-D phase spaces where the number of transported
moments needed for the delta-function reconstruction increases rapidly with the order
of the moments [10].
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Fig. 6.2. Solution to 1-D Riemann problem at t = 0.5. Left: weights. Center: abscissas. Top
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found with (3.7) and the solid line with (3.6).

6.2. 2-D particle-laden turbulent flow. The proposed test case is a particle-
laden gas phase represented by 2-D frozen homogeneous isotropic turbulence (HIT)
generated with the ASPHODELE code of CORIA [28, 29], which solves the 2-D
and 3-D low-Mach-number Navier-Stokes equations. The turbulence is generated
following the Pope spectrum [27] with parameters p0 = 4, cL = 0.013, cη = 0.105
and β = 5.2. The particle phase is placed homogeneously in the domain at t = 0
with the same velocity as the gas phase. The droplet number density is uniform
and the Stokes number range based on the Kolmogorov time scale (tη = 0.3172 s)
is St = τp/tη ∈ [1, 20], which is large enough to observe particle trajectory crossings
(PTC). Predicting this type of flows is important, as it is expected to exhibit the
main effects of a turbulence gas field on a disperse liquid spray, i.e., the preferential
concentration of particles in low vorticity zones that greatly influences auto-ignition,
which is of primary importance for turbulent combustion applications [1]. This effect
is highly size dependent, so the test case is particularly interesting for quantifying the
accuracy of the proposed methods.

As a reference, Lagrangian computations using a first order in time scheme with
time step ∆t = 0.001 s are performed using 10 million particles, for which a sat-
isfactory statistical convergence has been verified. The Eulerian projection of the
Lagrangian particle statistics is done using a box filter at the grid-cell size. Example
comparisons of the number density field M0,0 found with the Lagrangian and Eule-
rian (MG) simulations are shown for four different Stokes numbers in Figures 6.4–6.7,
respectively, at t = 4 s. Note that at the time shown in the figures, the Eulerian fields
have nearly reached a steady-state condition during which the moments change very
little with time. This is possible because of the frozen (time-independent) nature of
the turbulent gas phase.
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Fig. 6.3. Solution to 1-D Riemann problem at t = 0.5. Top left: density ρ. Top center:
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Fig. 6.4. Number density in frozen turbulence with St = 1 at time t = 4 s for Lagrangian (left)
and Eulerian (right) simulations.

At the smallest Stokes number shown in Figure 6.4, very little PTC is present.
However, very strong preferential concentration of the particles is evident. In the
absence of PTC, the Eulerian moment equations do not require a moment closure
since the velocity distribution is monokinetic [6] (i.e., the granular temperature is
null). Thus, the comparison between the Lagrangian and Eulerian number density
fields can be used to judge the ability of the finite-volume scheme to capture the steep
density gradients caused by the hypercompressibility of the particle phase. From
Figure 6.4, it is clearly evident that the Eulerian method is able to capture accurately
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the segregation of the particle phase, including regions in the domain where M0,0 is
null (i.e., vacuum zones), with very small numerical diffusion.

Fig. 6.5. Number density in frozen turbulence with St = 5 at time t = 4 s for Lagrangian (left)
and Eulerian (right) simulations.

For St = 5 shown in Figure 6.5, appreciable PTC is present and results in a
decrease in the preferential concentration. Indeed, for this Stokes number, the velocity
distribution has small (but nonzero) dispersion about the local mean velocity. In
the Lagrangian simulation, the full structure of the velocity dispersion is captured,
while in the Eulerian model it is only partially captured due to the moment closure
needed to close the system. From Figure 6.5, we can observe that the Eulerian model
captures much of the segregation structure seen in the Lagrangian number density
field. Moreover, due to the hyperbolic nature of the moment closure, the Eulerian
number density field is free from δ-shocks caused by not resolving the PTC, which
inevitably arise in weakly hyperbolic systems that do not adequately account for
velocity dispersion [4].

Fig. 6.6. Number density in frozen turbulence with St = 10 at time t = 4 s for Lagrangian
(left) and Eulerian (right) simulations.

For St = 10 shown in Figure 6.6, the Lagrangian number density field becomes
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appreciably more uniform due to abundant PTC. Nevertheless, as clearly observed in
the Eulerian field, near-vacuum zones still exist along side regions with preferential
concentration of particles. Interestingly, due to the isotropic nature of the gas velocity
field, the particle velocity dispersion becomes more isotropic with increasing Stokes
number. Under these conditions, the Eulerian simulation becomes less dependent on
the choice of the moment closure (albeit as long as the chosen moment closure can
represent velocity dispersion). In fact, a full second-order moment closure based on a
single Gaussian distribution [37] (i.e., a degenerate case of Gaussian-ECQMOM) yields
results very similar to Figure 6.6 for homogeneous isotropic turbulence. However, for
more complicated configurations with large-scale PTC (e.g., crossing particle jets),
the full multi-Gaussian represention will be needed to capture the particle phase.

Fig. 6.7. Number density in frozen turbulence with St = 20 at time t = 4 s for Lagrangian
(left) and Eulerian (right) simulations.

The last comparison for St = 20 is shown in Figure 6.7. Here, the Lagrangian
number density field is free of vacuum zones since PTC is rampant. Indeed, for this
Stokes number the particles are accelerated slowly by the gas and, once they achieve a
given velocity, they move in a manner that is weakly coupled to the gas velocity. From
the Eulerian field, we can observe that the moment closure again does a good job of
reproducing the Lagrangian field. Furthermore, the Eulerian model has the advantage
that the ‘stochastic noise’ present in the Lagrangian field due to the finite sample of
particles is absent in the moment model. It would thus be possible to extract high-
fidelity information concerning, for example, the spatial gradients of moments (e.g.,
energy spectra) that would be impossible to obtain from a Lagrangian simulation
using a tractable number of particles.

From a mathematical perspective, the 2-D simulations presented above, carried
out with the kinetic-based fluxes described in §5.3, provide evidence that the proposed
multivariate Gaussian-EQMOM closure is robust for simulating particle-laden turbu-
lent flows. In these simulations, no evidence of unrealizable moments was observed
(although we have not proved that the kinetic-based fluxes in the form of (5.7) are
realizable even for first-order schemes), nor was any evidence of weakly hyperbolic
behavior when V 6= 0 (i.e., outside the conditions of Theorem 5.1) observed.

7. Conclusions. The multivariate Gaussian extended quadrature method of
moments and the related moment-inversion algorithms appear to be a very promising
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approach for the direct-numerical simulation of particle-laden turbulent flows [11].
The approach combines stability and a lower level of singularity compared to exist-
ing quadrature-based moment methods, see [4], and is able to capture both particle
trajectory crossing (PTC) caused by the free-transport term and the effects of tur-
bulent agitation. It is noteworthy that the Gaussian-EQMOM naturally degenerates
toward the correct velocity distribution with the associated spatial fluxes in both the
PTC and dispersion limits. Moreover, by relying on the recent advances in CQMOM
[40], the Gaussian-ECQMOM naturally adapts to the required number of nodes in
even highly degenerate cases (e.g., in the absence of particles). As such, the Eule-
rian moment methods described in this work should offer an attractive alternative to
Lagrangian particle tracking methods for simulating particle-laden flows.
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ence Foundation (CCF-0830214). The research leading to the results reported in this
work has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement No. 246556.

Appendix A. Realizability of the first-order finite volume scheme with
the kinetic-based flux.

The finite volume scheme corresponding to the transport part of (3.3) can be
written:

Mn+1
k,j = Mn

k,j −
∆t

∆xj

(
Fnk,j+1/2 − F

n
k,j−1/2

)
(A.1)

where Mn
k,j is an approximation at time tn of the mean value of the kth-order moment

on the cell ]xj−1/2, xj+1/2[ of size ∆xj . Using the kinetic-based definition (3.9), the
flux is defined by

Fnk,j+1/2 =

∫ ∞
0

vk+1fnj (v) dv +

∫ 0

−∞
vk+1fnj+1(v) dv, k = 0, . . . , 4 (A.2)

where fnj is the two-node Gaussian-EQMOM reconstruction corresponding to the set
of moments (Mn

k,j)k∈{0,...,4} and given by the parameters (ρj,α, vj,α, σj)α=1,2.
Let us denote by (uλ,α)α=1,2,3 the three abscissas corresponding to the three-node

quadrature of the measure exp(−x2)1]λ,+∞[(x)dx. We then introduce the following
conjecture, numerically checked for a large number of λ ∈ R:

[C] ∀λ ∈ R, ∀α ∈ {1, 2, 3}, |uλ,α| ≤ maxα (u0,α) + max{0, λ} .
Let us also remark that maxα (u0,α) ≤ 1.8. The following proposition then gives a
sufficient condition for the realizability of the scheme (A.1).

Proposition A.1 (Realizability). Let us assume that the conjecture [C] is true.
Then the scheme (A.1) with flux (A.2) is realizable if

∀j, ∆t

∆xj
max
α

(|vj,α|+ 1.8σj
√

2) ≤ 1.

Proof. The scheme can be written, for k ∈ {0, . . . , 4}:

Mn+1
k,j = Ij,k +

∆t

∆xj

∫ 0

−∞
vk|v|fnj+1(v) dv +

∆t

∆xj

∫ +∞

0

vk|v|fnj−1(v) dv,

with

Ij,k = Mn
k,j −

∆t

∆xj

∫
R
vk|v|fnj (v) dv =

∫
R
vk
(

1− |v| ∆t

∆xj

)
fnj (v) dv
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It is sufficient to prove that (Ij,k)k∈{0,...,4} is a moment vector. For that, let us use
the reconstruction of fnj and the formulas (3.10,3.11):

Ij,k =

2∑
α=1

ρj,α√
π

∫ ∞
−vj,α√

2σj

(vj,α +
√

2σjs)
k

(
1− (vj,α +

√
2σjs)

∆t

∆xj

)
e−s

2

ds

+

∫ ∞
vj,α√
2σj

(vj,α −
√

2σjs)
k

(
1 + (vj,α −

√
2σjs)

∆t

∆xj

)
e−s

2

ds

 .
Noticing that the integrals can be exactly computed by using the three-node quadra-
tures of the measures exp(−x2)1

]
−vj,α√

2σj
,+∞[

(x)dx and exp(−x2)1
]
vj,α√
2σj

,+∞[
(x)dx, re-

spectively, and using the conjecture concludes the proof.
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[17] D. Kah, Prise en compte des aspects polydispersés dans le contexte d’une approche couplée
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