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CENTRAL MEASURES ON MULTIPLICATIVE GRAPHS,

REPRESENTATIONS OF LIE ALGEBRAS AND WEIGHT POLYTOPES

CÉDRIC LECOUVEY AND PIERRE TARRAGO

Abstract. To each finite-dimensional representation of a simple Lie algebra is associated
a multiplicative graph in the sense of Kerov and Vershik defined from the decomposition of
its tensor powers into irreducible components. It was shown in [14] and [15] that the con-
ditioning of natural random Littelmann paths to stay in their corresponding Weyl chamber
is controlled by central measures on this type of graphs. Using the K-theory of associ-
ated C

∗-algebras, Handelman [10] established a homeomorphism between the set of central
measures on these multiplicative graphs and the weight polytope of the underlying repre-
sentation. In the present paper, we make explicit this homeomorphism independently of
Handelman’s results by using Littelmann’s path model. As a by-product we also get an ex-
plicit parametrization of the weight polytope in terms of drifts of random Littelmann paths.
This explicit parametrization yields a complete description of harmonic and c-harmonic
functions for this Littelmann paths model.

1. Introduction

Consider a simple Lie algebra g of rank d over C and its root system in Rd. Let P be
the corresponding weight lattice and fix ∆ a dominant Weyl chamber. Then P+ = P ∩∆ is
the cone of dominant weights of g. Denote by S = {α1, . . . , αd} the underlying set of simple
roots. To each dominant weight δ ∈ P+ corresponds a finite-dimensional representation V (δ)
of g of highest weight δ. In [17] Littelmann associated with V (δ) a set B(δ) of paths in Rd

with length 1 starting at 0 with ends the set Πδ of weights of V (δ). Random Littelmann
paths can then be defined first by endowing B(δ) with a suitable probability distribution,
next by considering random concatenations of paths in B(δ). In [14] and [15] distributions
on the set B(δ) are defined from morphisms from P to R>0. This is equivalent to associate to
each simple root αi a real ti in ]0,+∞[. It is then shown that these random paths and their
conditioning to stay in the Weyl chamber ∆ are controlled by the representation theory of g.
In fact, one so obtains particular central distributions on the set Γn(R

d) of paths of any length
n ≥ 1 (obtained by concatenating n paths in B(δ)). By central distributions we here mean
that the probability of a finite path only depends on its length and its end. Equivalently,
we get a central measure on the set of infinite concatenations Γ(Rd) of paths in B(δ) (see
Section 2).

Write H∞(Rd) for the set of central measures on Γ(Rd) and H∞(∆) for the subset of
H∞(Rd) of central measures on Γ(∆), the set of infinite trajectories remaining in ∆. By
Choquet Theorem both sets H∞(Rd) and H∞(∆) are simplices so they are essentially deter-
mined by their minimal boundaries ∂H∞(Rd) and ∂H∞(∆). Write K(δ) for the convex hull
of Πδ and set K(δ)+ = ∆ ∩K(δ). For walks in the Weyl chambers, the characterization of
the sets ∂H∞(Rd) and ∂H∞(∆) has been obtained by Handelman in [10] and [11] using a
deepful work of Price [19, 20], by proving that they are respectively homeomorphic to K(δ)
and K(δ)+. Nevertheless, the relevant homeomorphisms are not here made explicit. Their
existence is established by considering the central measures as traces on certain fixed point
C∗-algebras, and then using analytic tools. In particular, a central element of the proof is the
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2 CÉDRIC LECOUVEY AND PIERRE TARRAGO

extension of traces on C∗-algebras using K-theory (a short explanation of these arguments is
given in Section 3.4).

The goal of this paper is essentially threefold: first we make explicit both homeomorphisms
by using the Weyl characters of g (see Theorem 3.1), next we give a purely algebraic self con-
taining alternative proof of Handelman’s results and finally we connect them with more recent
studies on conditioned random walks or Brownian motions, Pitman transform generalizations
and asymptotic Young tableaux (see [18], [1], [14, 15, 16], [5], [6], [23]). As a corollary of
these results, we describe the set of harmonic and c-harmonic functions corresponding to
the aforementioned random walks. Finally, we get a law of large numbers for random walks
following the central measures obtained. Our two last results seem quite disconnected from
the initial algebraic setting in representation theory, and we conjecture that they still hold
for a very broad class of random paths. Our approach extends that of Kerov and Vershik
to which it essentially reduces when V (δ) is the defining representation of g = sln. Never-
theless, numerous difficulties arise when considering the general case of dominant weights of
any simple algebra g, which explains the involved material used in the proof of Handelman.
Our methods to determine ∂H∞(Rd) and ∂H∞(∆) are quite similar. So we will now give its
main steps only in the case of ∂H∞(∆).

We first need to show that the characterization of ∂H∞(∆) is equivalent to that of the
extremal harmonic functions on the growth graph G(∆) associated with Γ(∆). This growth
diagram is rooted, graded and multiplicative: its vertices label the basis B = {(sλ, n) | V (λ)

irreducible component of V (δ)⊗n and n ≥ 1} of a commutative algebra T̂+
δ (here sλ is the

Weyl character of V (λ)). We then establish that the extremal nonnegative harmonic functions

on G(∆) are in bijection with the algebra morphisms from T̂+
δ to R that are nonnegative on B.

Next, we prove that all these morphisms are obtained by associating to each simple root αi, i =
1, . . . , n a real in [0, 1]. The difficulty here comes from the fact that two such associations can
yield the same morphism. So to obtain a genuine parametrization we need to restrict ourselves
to a subset [0, 1]dδ (see (5) for a precise definition) of [0, 1]d whose combinatorial description
is in terms of the δ-admissible subsets of S introduced in [22]. Finally, in Proposition 6.3,
we show that our set [0, 1]dδ also parametrizes the simplex K(δ)+ by considering, for each

d-tuple in [0, 1]dδ , the drift of the corresponding random Littelmann path appearing in the
construction of [14] and [15].

The paper is organized as follows. In Section 2, we recall some background on random
chains, central measures and multiplicative graphs. We also give a generalization of a Theo-
rem by Kerov and Vershik relating extremal harmonic functions on a multiplicative graph to
nonnegative morphisms of the underlying algebra. The main result is written down in Sec-
tion 3 where we also introduce the algebras T̂δ and T̂+

δ ; a sketch of Handelman’s arguments

is proposed at the end of Section 3. Section 4 gives the description of ∂H∞(Rd). Here, we
define our set [0, 1]dδ and relate it to the geometry of the polytope K(δ). The description of

∂H∞(∆) is deduced from that of ∂H∞(Rd) in Section 5. It is worth noticing that we need
here (as in the result of Kerov and Vershik) a classical theorem relating polynomials with
non positive roots to totally positive sequences. Another important ingredient in the proof is
the use of certain plethyms of Schur and Weyl characters of g. Finally, Section 6 relates both
descriptions of ∂H∞(Rd) and ∂H∞(∆) to the drift of random Littelmann paths. Notably it
explains how the polytope K(δ) can be simply parametrized by using the set [0, 1]dδ .

2. General probabilistic framework

We present here a general probabilistic model of random paths in a domain, which is well
suited to study probabilistic aspects of Littelmann paths and their asymptotics. We introduce
first a discrete version of paths in a vector space.
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2.1. Random paths on a lattice. Let d ≥ 0 and let Λ be a lattice of Rd.

Definition 2.1. Let n be a nonnegative integer. A path γ on Λ is a piecewise linear function
γ : [0, n] −→ Rd with γ(0) = 0, γ(i) ∈ Λ for all i ∈ {0, ..., n}, and γ(x) ∈ Λ for all x for
which γ is not differentiable at x. The path γ is called infinitesimal if t = 1 and γ(0) = 0.
The length of the path γ is defined as the length of the interval on which γ is defined and
denoted by l(γ): the path is said finite if its length is finite, and infinite otherwise.

We denote by γ.τ the concatenation of two finite paths γ and τ . A path defines a sequence
of vectors (γ(0), . . . , γ(i), . . . ) in Λ. Let k ∈ N. When γ is a path of length n ≥ k, we denote
by γ↓k the path γ|[0,k]. Let X be a denumerable set of infinitesimal paths and let Ω be a

domain of Rd such that 0 ∈ Ω; from now on, the set X is fixed and is not mentioned in
the various notations. A path γ is called X-valued if γ is the concatenation of infinitesimal
paths coming from X: equivalently,

(

γ|[i,i+1] − γ(i)
)

∈ X for all i ≥ 1. In the sequel, any
path is always considered as X-valued. The set of X-valued paths (resp. finite X-valued
paths, resp. X-valued paths of length n, with n ∈ N ∪ {∞}) whose image is included in Ω is
denoted by Γ(Ω) (resp. by Γf (Ω), resp. Γn(Ω)). For x, y ∈ Λ, we denote by ΓΩ(x, y) the set
of infinitesimal paths γ ∈ X such that γ(1) = y − x and x + γ ⊂ Ω. Finally, we denote by
ΓΩ(y, n) the set of finite paths of length n ending at y.

In order to consider random paths in Ω, we need to define a σ-algebra on Γ(Ω). Let τ be
a finite rooted path of length n, and let ΓΩ(τ) be the set {γ ∈ Γ(Ω)|l(γ) ≥ n, γ↓n = τ}. We
define the σ-algebra A as the coarsest σ-algebra containing all the sets ΓΩ(τ) for τ ∈ Γf (Ω).
It is readily seen that Γf (Ω) ∈ A and that the restriction of A to Γf (Ω) is the discrete
σ-algebra. The set M1(Γ(Ω)) of probability measures on Γ(Ω) is considered with the initial
topology with respect to the evaluation maps on the sets ΓΩ(τ), τ ∈ Γf (Ω). By Tychonov’s
Theorem, M1(Γ(Ω)) is a compact set with respect to this topology.

2.2. Central random paths.

Definition 2.2. A random path ω in Γ(Ω) is called central if there is a function p : Λ×Λ×
N −→ R+ such that

P(ω ∈ ΓΩ(γ)) = p(γ(0), γ(l(γ)), l(γ)),

for all γ ∈ Γf (Ω). A measure on Γ(Ω) is called central if the corresponding random path is
central.

The set of central measures (resp. central measures supported on Γf (Ω), resp. central
measures supported on Γ∞(Ω)) is denoted by H(Ω) (resp. Hf (Ω),H∞(Ω)). The sets H(Ω),
Hf (Ω) and H∞(Ω) are convex subsets of M1(Γ(Ω)). Conditioning elements of H(Ω) on Γf (Ω)
and Γ∞(Ω) yields that any central measure is a convex combination of central measures in
Hf (Ω) and H∞(Ω). Therefore, the description of H(Ω) is equivalent to the description of
Hf (Ω) and H∞(Ω).

It is readily seen that there is an alternative equivalent definition of central random paths: a
random path ω is central if and only if the law of ω↓n conditioned on the set {γ ∈ Γ(Ω)|l(γ) ≥
n, γ(n) = y} is the uniform law on ΓΩ(y, n). This equivalent definition gives a straightforward
description of the setHf (Ω). Namely, conditioning on the last point of the random path yields
that any central measure P ∈ Hf (Ω) admits a unique decomposition

P =
∑

y∈Λ
n≥1

ay,nPy,n,

where ay,n ≥ 0 and Py,n is the uniform distribution on the set ΓΩ(y, n) for y ∈ Λ and n ≥ 1.
On the other hand, the description of the set H∞(Ω) is much more complicated. It is known
(see the next section) that H∞(Ω) is a convex set and even a Choquet simplex. Therefore,
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there exists a subset ∂H∞(Ω) ⊂ H∞(Ω), such that any central measure P0 in H∞(Ω) admits
a unique integral representation

P0 =

∫

∂H∞(Ω)
Pdµ(P ),

where µ is a probability measure on the set ∂H∞(Ω). The set ∂H∞(Ω) is called the minimal
boundary of Γ(Ω).

2.3. The graph embedding and Martin theory. Let P ∈ H∞(Ω). Then, by Definition
2.2 there exists a function p : Λ× N −→ R+ such that

P (ΓΩ(γ)) = p(γ(l(γ)), l(γ)),

for all γ ∈ Γf (Ω). Let λ ∈ Λ, and suppose that γ is a finite path of Γf (Ω) starting at x and
ending at λ with length n. A path τ of length n+ 1 ending at µ ∈ Λ satisfies τ↓n = γ if and
only if τ↓n = γ and τ[n,n+1] is an infinitesimal path joining λ to µ. Therefore, ΓΩ(γ) can be
decomposed as

ΓΩ(γ) =
∐

µ∈Λ

∐

τ∈Γλ,µ(Ω)

Γ(γ.τ).

Thus,

P (ΓΩ(γ)) =
∑

µ∈λ

∑

τ∈ΓΩ(λ,µ)

P (Γ(γ.τ)) ,

which translates into the relation

(1) p(λ, n) =
∑

µ∈Λ

#ΓΩ(λ, µ)p(µ, n + 1),

where in the latter equality and in the sequel of the paper the cardinality of a set X is denoted
by #X. The set H∞(Ω) is in bijection with the set of nonnegative solutions of (1) with value
1 on (0, 0). This equivalence leads to an alternative description of central random paths.

Definition 2.3. The growth graph of Γ(Ω) is the rooted graded graph G(Ω) defined recursively
as follows:

• The root is denoted by (0, 0).
• For each element λ of Λ such that there exists an infinitesimal path ending at λ,
we define a vertex (λ, 1) of rank 1 and an edge between (0, 0) and (λ, 1) with weight
e(x, λ) = #Γ0,λ(Ω).

• Let n ≥ 1, and suppose that the graded graph is defined up to rank n: the set Gn(Ω)
of vertices of rank n can be written as {(λ, n)}λ∈Λn , where Λn is a subset of Λ. For
each element µ of Λ such that there exists an infinitesimal path γ with γ(0) ∈ Λn and
γ(1) = µ, we define a vertex (µ, n + 1) of rank n + 1. For each λ ∈ Λn there is an
edge from (λ, n) to (µ, n+ 1) with weight e(λ, µ) = #ΓΩ(λ, µ).

We write λ ր µ when #ΓΩ(λ, µ) 6= 0. It is readily seen that the number of paths between
the root and (λ, n) is canonically equal to #ΓΩ(λ, n), and the set H∞(Ω) is isomorphic
to the set of nonnegative functions p :

∐

n≥0Λn −→ R+ with p(0, 0) = 1 and p(λ, n) =
∑

λրµ e(γ, µ)p(µ, n + 1).
We conclude this subsection by establishing some connections between central measures

on random paths and Markov chains on lattices. From the growth graph of Γ(Ω), it is clear
that any central measure P ∈ H∞(Ω) yields a Markov chain Z = (Z(0), Z(1), . . . ) on the
lattice Λ∩Ω with initial state 0 and with a family of Markov kernels (Qn)n≥1: the kernel Qn

can be explicitly given from the associated function p :
∐

Λn −→ R+ as

Qn(µ, ν) = 1µրν,p(µ,n−1)6=0
e(µ, ν)p(ν, n)

p(µ, n− 1)
.
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By the equality p(µ, n − 1) =
∑

µրν e(µ, ν)p(ν, n), Qn is a well-defined Markov kernel, and
it is readily seen that this family of Markov kernels generates the random walk Z. Note that
this random walk is generally not homogeneous in times, since the kernel Qn depends on n
through p.

2.4. Doob conditioning and central measure. Let (ωt)t≥0 be the random path in Γ(Rd)
defined by the Markovian evolution

P(ω|[i,i+1] − ω(i) = γ) =
1

Z
where Z is the cardinality of X. Under this perspective, the central measures defined on
Γ(Ω) in the previous section are exactly the possible ways to condition the random path ω
to stay in Ω, while keeping the uniform law on each set ΓΩ(x, n).

The standard procedure to achieve this is the Doob-conditioning with c-harmonic functions.
Assume that h is a c-harmonic function (with c > 0) for the random path ω killed when exiting
Ω. Namely, we have

h(x) =
1

cZ

∑

γ∈X
x+γ⊂Ω

h(x+ γ(1)).

Then, the Doob conditioning ωh of ω in Ω is given by the Markov kernel

P(ωh
|[i,i+1] − ωh(i) = γ|ωh(i) = x) = 1x+γ⊂Ω

1

cZ

h(x+ γ(1))

h(x)
,

and we have P(ωh ∈ ΓΩ(γ)) =
1

(cZ)nh(x) for all γ ∈ ΓΩ(x, n). The resulting random path ωh

is thus central, and the associated function pωh is exactly pωh(x, n) = 1
(cZ)nh(x).

Reciprocally, suppose that ω is a central random path with an associated function pω which
satisfies pω(x, n) =

1
Knp(x) for some function p : Λ ∩Ω −→ R+ and K > 0. Then, (1) yields

1

Kn
p(x) =

∑

y∈Λ

#ΓΩ(x, y)
1

Kn+1
p(y),

which is equivalent to the relation

p(x) =
∑

γ∈X
x+γ⊂Ω

1

K
p(x+ γ(1)).

Hence, p is a K
Z -harmonic function.

Thus, the set of c-harmonic functions is homeomorphic to the set of central random paths

ω ∈ H∞(Ω) whose associated functions pω have the form pω(x, n) =
p(x)
(cZ)n with p : Λ∩Ω −→

R+. We denote by Hc(Ω) the set of central measures coming from c-harmonic functions, and
by ∂Hc(Ω) the set of extreme points of Hc(Ω). Up to our knowledge there is no general proof
that ∂Hc(Ω) = ∂H∞(Ω) ∩ Hc(Ω); in our case of study, this equality is proven by explicitly
describing both sets.

We remark that the random walk Zω associated with a central random path ω ∈ Hc(Ω)
is homogeneous in time. A quick computation shows that Zω is homogeneous in time if and
only if ω ∈ Hc(Ω) for some c > 0.

2.5. Central measures on multiplicative graphs. A rooted graded graph G = {∗} ⊔
∐

n≥1 Gn with weights (e(λ, µ))µ,λ∈G
λրµ

is called multiplicative if there is a commutative algebra

A and an injective map i : G −→ A such that i(λ)i(∗) =
∑

λրµ e(λ, µ)i(µ). We suppose that
the graph is connected, which means that for all µ ∈ G, the number of paths between the
root and µ is positive. The weight w(γ) of a path γ between the root and a vertex µ is the
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product of all the weights of the edges of γ. Let K be the positive cone spanned by i(G), and
let AG be the unital subalgebra of A generated by K. The following result is an application of
the Ring theorem of Kerov and Vershik (see for example [8, Section 8.4]) which characterizes
the extreme points of the set H(G) of solutions to the following problem:

(2)







p : G −→ R+

p(∗) = 1
p(λ) =

∑

λրµ e(γ, µ)p(µ).

Denote by Mult+(AG) ⊂ A∗
G the set of multiplicative functions on AG which are nonnegative

on K and equal to 1 on i(∗). Note that i : G −→ AG induces a map i∗ : A∗
G −→ F (G,R).

Proposition 2.4. Suppose that K.K ⊂ K. Then, the map i∗ yields an homeomorphism
between Mult+(AG) and the set of extreme points of H(G).

The proof of this proposition is based on the following Theorem of Kerov and Vershik:

Theorem 2.5. [8, Section 8.4] Let B be a unital commutative algebra over R and K ⊂ B a
convex cone satisfying the following conditions:

• K −K = B (K generates B).
• K.K ⊂ K (K is stable by multiplication).
• K is spanned by a countable set of elements.
• For all a ∈ B, there exists ǫ > 0 such that 1− ǫa ∈ K.

If L denotes the convex set of linear forms on B which are nonnegative on K and map
1B to 1, then φ is an extreme point of L if and only if φ is multiplicative (meaning that
φ(ab) = φ(a)φ(b) for all a, b ∈ B).

We give now the proof of Proposition 2.4.

Proof. Let B = AG/〈i(∗) = 1〉 and let π : AG −→ B be the canonical projection; denote

by K̃ the projection of the cone R+ Id+K in B. Since K.K ⊂ K and {1,K} spans AG ,

K̃.K̃ ⊂ K̃ and K̃ spans B. Since G has a countable set of vertices, K̃ is spanned by a
countable set of elements. Note that there is a bijection between the elements of H(G) and

the linear forms on B which are nonnegative on K̃ and equal to 1 on 1: indeed h ∈ H(G)
if and only if h(µ) =

∑

µրν e(µ, ν)h(ν). Thus, for f ∈ A∗
G , i∗(f) ∈ H(G) if and only if

f(i(∗)i(µ)) = f(i(µ)); equivalently, this means that f factors through B. Non-negativeness

on G for i∗(f) is then equivalent to nonnegativeness on K̃ for f , and [i∗(f)](∗) = 1 if and
only if f(π ◦ i(∗)) = f(1) = 1.

Let a ∈ B, and let us show that there exists ǫ such that 1 − ǫa ∈ K̃. Since K̃ − K̃ = B,
and 1 − b ∈ K̃ for all b ∈ −K̃, we can suppose without loss of generality that a ∈ K̃. It is
thus enough to prove that for µ ∈ G, there exists ǫ such that 1 − ǫπ ◦ i(µ) ∈ K. Suppose
that µ has rank n. Since the graph is connected, there exists a path γ0 of weight w(γ0)
between ∗ and µ. By iteration of the relation coming from the multiplicative structure
of G, i(∗)n =

∑

ν∈G
rk(µ)=n

(
∑

γ:∗→µw(γ))i(ν). Thus i(∗)n − w(γ0)i(µ) belongs to K. Since

π(i(∗)n) = 1, 1 − w(γ0)π ◦ i(µ) belongs to K̃. Therefore, we can apply Theorem 2.5 to

(B, K̃), which yields that the extreme linear maps among the set of linear maps on B which

are nonnegative on K̃ and equal to 1 on 1 are the multiplicative ones. Since there is a bijection
between multiplicative maps on B which are nonnegative on K̃ and multiplicative maps on
AG which are nonnegative on K and equal to 1 on i(∗), the proof is complete. �

3. Littelmann paths in Weyl chambers

We describe a class of random paths coming from the representation theory of semi-simple
Lie groups.
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3.1. Background. We consider a simple Lie group G over C and its Lie algebra g. Let R ⊂ V
be the set of roots of g regarded as a finite subset of the euclidean vector space V . We fix
R+ a subset of positive roots and S = {α1, α2, . . . , αd} ⊂ R+ a basis of R. The Weyl group
of g is denoted by W .

Write P for the weight lattice of g and ω1, . . . , ωd for its fundamental weights so that we
have

P =

d
⊕

i=1

Zωi.

We denote by ∆ the fundamental Weyl chamber of g with respect to S, which corresponds

to the positive orthant on the weight space
⊕d

i=1 Rωi. The cone of dominant weights is then

P+ = P ∩∆ =

d
⊕

i=1

Nωi.

Write Q+ the subset of P spanned by linear combinations of the simple roots with nonnegative
coefficients. We denote by R[P ] the ring group of P over R with basis {eβ | β ∈ P}, and by
R[Q+] the subalgebra of R[P ] generated by Q+. Then

RW [P ] = {u | w(u) = u,w ∈ W}

is the character ring of g. To each λ ∈ P+ corresponds a simple finite-dimensional represen-
tation of g we denote by V (λ). The Weyl character of V (λ) is

sλ =
∑

γ∈P

Kλ,γe
γ

where Kλ,γ is the dimension of the weight space γ in V (λ). For ~t ∈ (R+)d and γ ∈ Rd, set
~tγ =

∏

1≤i≤d exp(γi log(ti)). It is then possible to define the evaluation of sλ on ~t ∈ (R+)d

with the formula sλ(~t) =
∑

γ∈P Kλ,γ~t
γ . For µ ≥ λ (that is µ − λ is a sum of simple roots),

denote by Sλ,µ the function

Sλ,µ = e−µsλ =
∑

γ∈P

Kλ,γe
γ−µ

where for any γ such that Kλ,γ > 0, γ − µ is a linear combination of the simple roots with
nonpositive coefficients; for µ = λ, we simply write Sλ, instead of Sλ,λ. By setting Ti = e−αi

we thus obtain that Sλ,µ = Sλ,µ(T1, . . . , Td) is polynomial in the variables T1, . . . , Td with
nonnegative integer coefficients. Recall also the Weyl dimension formula

dim(V (λ)) =
∏

α∈R+

(λ+ ρ, α)

(ρ, α)
.

In particular, dim(V (λ)) is polynomial in the coordinates of λ on the basis of fundamental
weights.

3.2. Random Littelmann paths. Now, fix a dominant weight δ ∈ P+ and denote by Πδ

the set of weights of the irreducible representation V (δ). Let Pδ be the sublattice of P
generated by Πδ. This defines subalgebras

R[Pδ] = {eβ | β ∈ Pδ} ⊂ R[P ] and RW [Pδ] = {u ∈ R[Pδ ] | w(u) = u} ⊂ RW [P ].

Finally write T+
δ the subset of P+ of weights λ such that V (λ) appears as an irreducible

component in a tensor power V (δ)⊗n, n ≥ 0. Given λ and µ in T+
δ , we clearly have λ + µ

in T+
δ . Moreover the Z-lattice Tδ generated by T+

δ is a sublattice of Pδ. We thus have the
following inclusions of Z-lattices

Tδ ⊂ Pδ ⊂ P.
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Since B = (ω1, . . . , ωd) is a Z-basis of P+ there exists (q1, . . . , qd) ∈ Z>0 such that qi+1 | qi
for any i = 1, . . . , d− 1 and

Pδ =
d
⊕

i=1

Z≥0qiωi.

Now let Aδ be the subalgebra of RW [P ] generated by the Weyl character sλ with λ ∈ T+
δ .

We have the inclusions

Aδ ⊂ RW [Pδ ] ⊂ R[Pδ] ⊂ R[P ].

We denote by K(δ) the convex hull of the set Πδ: K(δ) is a polytope whose extreme points
are the elements w(δ) for w ∈ W . The intersection of K(δ) with the Weyl chamber ∆ is
denoted by K(δ)+. By Littelmann’s paths theory, there is a set B(δ) = {γi}1≤i≤dimV (δ) of
infinitesimal paths on Pδ, with the following properties:

• γi(1) ∈ Πδ for all 1 ≤ i ≤ dimV (δ).
• The multiplicity of the weight µ in V (δ)⊗n is equal to #ΓRd(µ, n).
• The multiplicity of the irreducible representation V (ν) in V (µ) ⊗ V (δ) is equal to
#Γ∆(µ, ν) and the multiplicity of the irreducible representation V (ν) in V (δ)⊗n is
equal to #Γ∆(ν, n) for all µ, ν ∈ P+ and n ≥ 0.

The set of infinite paths we are interested in is the set of infinite paths starting at 0 with
set of infinitesimal paths B(δ).

3.3. Statements of the result. We recall that we consider the space of probability measures
on each Γ(Ω) with the initial topology with respect to the evaluation maps on the cylinders
ΓΩ(τ), τ ∈ Γf (Ω). We give an algebraic proof of the identification of the minimal bound-

aries for random paths in Γ(Rd) and Γ∞(∆) with the topological spaces K(δ) and K(δ)+,
respectively. In both cases, the homeomorphism can be made explicit by the introduction of
a natural parametrization t : K(δ) −→ [0, 1]d×W of K(δ) such that t(K(δ)+) ⊂ [0, 1]d× IdW
(this parametrization is explained in Section 5). For m ∈ K(δ), we denote by (~tm, wm) the
image of m through this parametrization. The main result of the paper is summarized in the
following theorem:

Theorem 3.1. A homeomorphism between the set of extremal measures ∂H∞(Rd) and K(δ)
is given by the map

P :

{

K(δ) −→ ∂H∞(Rd)
m 7→ Pm

such that Pm(ΓRd(γ)) =
~t
Nδ−wm(λ)
m

Sδ(~tm)
for all γ ∈ ΓRd(λ,N). A homeomorphism between the set

of extremal measures ∂H∞(∆) and K(δ)+ is given by the map

P+

{

K(δ)+ −→ ∂H∞(∆)
m 7→ P+

m

such that P+
m(Γ∆(γ)) =

Sλ,Nδ(~tm)

Sδ(~tm)N
for all γ ∈ Γ∆(λ,N).
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It is easy to see that the measures Pm and P+
m are indeed central. Note moreover that for

m ∈ K(δ)+, Littelmann’s theory yields that for γ ∈ Γ∆(y,N),

∑

γ̃∈ΓN+1(∆),γ̃↓N=γ

P+
m(Γ∆(γ̃)) =

∑

µ∈B(δ),γ.µ∈Γ∆(y,N+1) Sγ(N)+µ(1),Nδ+x(~tm)

Sδ(~tm)N+1

=
Sγ(N),Nδ(~tm)Sδ(~tm)

Sδ(tm)N+1

=
Sγ(N),Nδ(t1, . . . , td)

Sδ(~tm)N

=P+
m(Γ∆(γ)),

so that P+
m is a well defined probability measure on Γ∞(∆). The main point of the result is

to prove that P and P+ are bijective.

Remark 3.2. In type Ad, when δ = ω1 is the first fundamental weight, V (δ) can be regarded
as the defining representation of sld+1 or more conveniently, of gld+1. The set ∂H∞(∆) is
then homeomorphic to

K(δ)+ = {(p1, . . . , pn+1) ∈ Rd+1 | p1 ≥ · · · ≥ pn+1 ≥ 0 and p1 + · · ·+ pn+1 = 1}

and we recover the finite-dimensional version of the Thoma simplex.

As a corollary of Theorem 3.1, we get the complete characterization of c-harmonic measures
killed when exiting ∆. Define the function ŝδ : ∂H∞(∆) −→ R+ ∪ {∞} by ŝδ(Pm) = sδ(~tm).

Corollary 3.3. For c > 0, the set ∂Hc(∆) is homeomorphic to ŝ−1
δ ({cdim V (δ)}). In par-

ticular,

• H1(∆) is a singleton corresponding to P~0,
• and for c < 1, Hc(∆) = ∅.

We prove Corollary 3.3 in Section 6.3. We discuss here a possible generalization of the
latter result. Let X be an arbitrary set of infinitesimal paths, and let wg : X −→ R+ be
a weight function. We denote by Ẑ(~t) :=

∑

γ∈X wg(γ)~tγ(1) the partition function for this

weighting, and we simply write Z for Ẑ(1). Finally, let us fix a cone C centered at 0 and

denote by KC the set of elements ~t ∈ Rd such that
∑

γ∈X wg(γ)~tγ(1)γ(1) ∈ C.
The definition of c-harmonic functions for weighted paths is similar to the one for unweighted
paths; namely, a function f is c-harmonic if and only if

f(x) =
∑

γ∈X
x+γ⊂C

1

cZ
wg(γ)f(x + γ(1)).

We use the same notation as in the unweighted case, since the theory is the same in this
broader situation. Then, we conjecture that the following general result holds:

Conjecture 3.4. For c > 0, the set ∂Hc(∆) is homeomorphic to Ẑ−1({cZ}) ∩ KC. In
particular,

• for u = minKC
Ẑ, Hu/Z(∆) is a singleton.

• and for c < u/Z, Hc(∆) = ∅.

This conjecture is a generalization of the conjecture of Raschel [21, Conjecture 1] for two
dimensional random walks with bounded increments, which asserts that such a random walk
admits a unique harmonic function killed on the boundary of a quarter plane. This special
situation can be seen in the above conjecture, in which case the minimum of Ẑ is exactly Z.
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3.4. The approach of Handelman and Price. The existence of the homeomorphism of
Theorem 3.1 can also be deduced from the main results of [10, 11], themselves based on
fundamental results of [19, 20]. We review here their approach, and the reader could read
the aforementioned articles and references therein for a detailed proof.

Let n denote the dimension of V (δ), and consider the adjoint representation π : G −→
GL(Mn(C)) which is defined by π(g)(M) = uδ(g)Muδ(g)

−1, where uδ is the irreducible repre-
sentation associated with δ. Form the infinite tensor product A :=

⊗

Mn(C) as an inductive
limit of the sequence of finite-dimensional C∗-algebras (Mn(C)

⊗k)k≥1, where Mn(C)
⊗k em-

beds in Mn(C)
⊗k+1 with the map X 7→ X ⊗ Idn. We can canonically associate a structure

of C∗-algebra to this inductive limit of C∗-algebras. Then, G acts continuously on each
Mn(C)

⊗k and on A with the map π̃(g) :=
⊗

π(g) (which means that g acts as π(g) on each
component of the tensor product), and we can therefore consider the C∗-algebra Aδ (resp.
Aδ

k) of elements of A (resp. Mn(C)
⊗k) fixed by π. The algebra Aδ is the inductive limit of

the finite-dimensional C∗-algebras (Aδ
k)k≥1, and the Bratteli diagram of this inductive limit

is exactly the growth graph of Γ∞(∆). Therefore, the set of central measures on Γ∞(∆) is
in bijection with the set of traces on Aδ.
Doing the same construction for the restriction of the representation δ to the maximal torus
T ⊂ G, we get another sequence of finite dimensional C∗-algebras (AT

k )k≥1, whose inductive

limit is denoted by AT . Similarly, the Bratteli diagram of AT is exactly the growth graph of
Γ∞(Rd), and the set of central measures on Γ∞(Rd) is in bijection with the set of traces on
AT .
Note that we have the natural inclusion of C∗-algebras Aδ ⊂ AT . The main result of [10] is
that any extreme trace on Aδ extends to an extreme trace on AT . To prove this, the author
uses the bijection between the set of traces on an approximately finite C∗-algebra A and the
set of states on its associated dimension group K0(A). Let us quickly explain the nature of
K0(A): a dimension group is a group with a notion of positive cone. By considering equiv-
alence classes of projections on the ∗-algebra

⊕

k≥1Mk(A), one can canonically associate a

dimension group K0(A) to each C∗-algebra A; this dimension group is always a ring in our
case. An important fact is that an inclusion of C∗-algebras induces an inclusion of the asso-
ciated dimension groups, and therefore the problem reduces to extend any state on K0(A

δ)
to a state on K0(A

T ). Handelman managed to prove this in [10], and the main ingredient of
the proof is the non-trivial property that K0(A

T ) is a finitely generated K0(A
δ)-module.

Once proven that any trace on Aδ extends to a trace on AT , the problem amounts to describe
the set of traces on AT . In [11], the author achieves this by proving that the set of faithful
traces on AT is in bijection with the interior of K(δ). Then, the identification of the set
of faithful traces on Aδ with the interior of K(δ)+ is done thanks to a result of [20], which
asserts that the Weyl group W acts transitively on the set of traces extending a particular
faithful trace on AT . Finally, the case of non-faithful traces is done by considering parabolic
subgroups of G.

3.5. The extended algebra of characters. Our proof of Theorem 3.1 will mainly use
algebraic properties of the representations of the Lie algebra g. We define the extended
algebra of characters Âδ as follows:

• Âδ is isomorphic to Aδ × R[T ] as a vector space; for x ∈ Aδ, we simply denote by

(x, n) the element (x, T n). A basis of Âδ is given by the set B = {(sλ, n)}n≥0,λ∈T+
δ
.

• The multiplicative structure of Âδ is defined on B with the product

(sλ, n)× (sµ,m) = (sλsµ, n +m).
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We denote by T̂+
δ the subalgebra of Âδ spanned by the set {(sλ, n)|V (λ) ∈ V (δ)⊗n}. Here

V (λ) ∈ V (δ)⊗n means that V (λ) is an irreducible component of V (δ)⊗n. Likewise, we define

the extended algebra of weights P̂δ as follows

• P̂δ is isomorphic to R[Pδ]× R[T ] as a vector space. A basis of P̂δ is given by the set
P = {(eγ , n)|n ≥ 0, γ ∈ Pδ}.

• The multiplicative structure of P̂δ is defined on P with the product

(eγ , n)× (eγ
′
,m) = (eγ+γ′

, n+m).

We denote by T̂δ the subalgebra of P̂δ spanned by the elements {(eγ , n)|n ≥ 1,Kδ⊗n,γ >

0}. It is readily seen that T̂δ is the subalgebra of P̂δ generated by {(eγ , 1)|γ ∈ Πδ}. Note

that the inclusion Aδ ⊂ R[Pδ] translates naturally into the inclusion Âδ ⊂ P̂δ and T̂+
δ ⊂

T̂δ. We can write the multiset of weights of δ in T̂δ as Πδ = {(eγ1 , 1), . . . , (eγN , 1)} where
each weight appears a number of times equal to its multiplicity. For any k = 0, . . . , N ,
let ek(X1, . . . ,XN ) be the k-th elementary symmetric function in the variables X1, . . . ,XN .

Define the polynomial Φ(X) ∈ T̂δ[X] by

Φ(X) =
∏

γ∈Πδ

(X + (eγ , 1)).

Proposition 3.5. We have

(3) Φ(X) =

N
∑

k=0

(ek(e
γ1 , . . . , eγN ), k)XN−k

and for any k = 0, . . . , N, the expression (ek(e
γ1 , . . . , eγN ), k) decomposes as a sum of elements

(sλ, n) ∈ T̂+
δ with positive integer coefficients. In particular, we have Φ(X) ∈ T̂+

δ [X].

Proof. The expression ek(e
γ1 , . . . , eγN ) is the plethysm of the elementary symmetric function

ek by sδ. This means that

ek(e
γ1 , . . . , eγN ) = char

(

k
∧

V (δ)

)

is the character of the k-th exterior power of the representation V (δ). Since
k
∧

V (δ) is a
submodule of V (δ)⊗k, its character indeed decomposes as a sum of characters in {sλ | V (λ) ∈
V (δ)⊗k} with positive integer coefficients. �

Corollary 3.6. T̂+
δ is integrally closed in T̂δ.

Proof. Let T̂+
δ denote the integral closure of T̂+

δ in T̂δ. We have T̂+
δ ⊂ T̂δ by definition.

Conversely, since T̂+
δ is a ring and T̂δ is generated by the monomials (eγ , 1) with γ ∈ Πδ, it

suffices to prove that each such (eγ , 1) belongs to T̂+
δ . But −(eγ , 1) is a root of Φ(X) which is,

by the previous proposition, a monic polynomial with coefficients in T̂+
δ . Therefore −(eγ , 1)

and (eγ , 1) are integers over T̂+
δ and thus belong to T̂+

δ . �

4. Minimal boundary of Γ∞(Rd)

4.1. Algebraic description of the growth graph. Let G(Rd) be the growth graph of
Γ(Rd) and G(∆) be the one of Γ(∆). Namely, the set Λn of vertices of rank n of the graph
G(Rd) are pairs (γ, n) where γ is a weight of Pδ such that ΓRd(γ, n) 6= ∅, and the weight
of the edge between (γ, n) and (γ′, n + 1) is e((γ, n), (γ′, n + 1)) = #Γγ,γ′(Rd). From the

graph embedding of Section 1, the set of extreme central measures on Γ∞(Rd) is in bijection
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with the set of extreme points of the convex set ∂H(G(Rd)) of nonnegative functions p :
∐

n≥0Λn −→ R+ with p(0, 0) = 1 and p(λ, n) =
∑

λրµ e(γ, µ)p(µ, n+1), and the same holds

for G(∆). An important feature of G(Rd) is that this graded graph is multiplicative: it is

related to the algebra T̂δ as follows.

Proposition 4.1. G(Rd) is a multiplicative graph associated with the algebra P̂δ with the
injective map

i :







∐

n≥0Λn −→ P̂δ

(γ, n) 7→ (eγ , n), n ≥ 1
∗ 7→ (sδ, 1)

,

and (P̂δ)G(Rd) = T̂δ. In particular, ∂H∞(G(Rd)) is homeomorphic to Mult(T̂δ)
+ through the

map

i∗ :

{

Mult(T̂δ)
+ −→ ∂H∞(G(Rd))

f 7→ f ◦ i

Proof. Since e((γ, n), (γ′, n + 1)) = #ΓRd(γ, γ′) = Kδ,γ′−γ , the following equality holds for
(γ, n) ∈ Λn:

i(γ, n)i(∗) =(eγ , n)(
∑

κ∈Πδ

Kδ,κe
γ′
, 1) =

∑

κ∈Πδ

Kδ,κ(e
γ+κ, n+ 1)

=
∑

γ′∈Pδ,γ
′−γ∈Πδ

Kδ,γ′−γ(e
γ′
, n+ 1)

=
∑

γ′∈Pδ

e((γ, n), (γ′, n+ 1))i(γ′, n+ 1).

Thus, G(Rd) is a multiplicative graph associated with P̂δ through the map i. Note that by

construction, the sub-algebra of P̂δ generated by the elements {i(γ, n)}(γ,n)∈G(Rd) is precisely

T̂δ: the last part of the proposition is deduced from Proposition 2.4. �

4.2. Characterization of the multiplicative maps on T̂δ. The set of extreme central
measures on G(Rd) is thus given by the set of positive morphisms from T̂δ to R which take
the value 1 on (sδ, 1). We will prove in this subsection the following result:

Proposition 4.2. Let f ∈ Mult(T̂δ)
+. There exists a multiplicative map φ : R[Q+] −→ R+

and an element w ∈ W such that

f(eγ , n) =
1

φ(Sδ)n
φ(enδ−w(γ)),

for all (eγ , n) ∈ T̂δ.

Note that the element φ(enδ−w(γ)) is well-defined: indeed, if (eγ , n) ∈ T̂δ, then the weight
γ appears in the representation V (δ)⊗n and w(γ) is thus smaller than nδ with respect to the
roots order relative to the set of simple roots S. Therefore, nδ − w(γ) ∈ Q+.

Let f be a multiplicative map on T̂δ. Since f is multiplicative and T̂δ is generated by the
set Π̃δ := {(eγ , 1), γ ∈ Πδ}, f is completely determined by its value on Π̃δ. We suppose from

now on that f ∈ Mult(T̂δ)
+. Let Mf =

∑

γ∈Πδ
Kδ,γf(γ, 1)γ: Mf belongs to Rd, thus there

exists w ∈ W such that w(Mf ) ∈ ∆. Replacing f by f ◦ w−1 gives another multiplicative

map on T̂δ such that Mf◦w−1 =
∑

γ∈Πδ
Kδ,γ(f ◦ w−1)(eγ , 1)γ ∈ ∆ and such that f can be

expressed from f ◦ w−1 with the formula f = (f ◦ w−1) ◦ w.
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Lemma 4.3. Assume that Mf ∈ ∆ and let α ∈ S. For all γ ∈ Πδ such that γ − α ∈ Πδ,

f(eγ , 1) = 0 =⇒ f(eγ−α, 1) = 0.

In particular, f(eδ, 1) 6= 0.

Proof. Let α ∈ S, and suppose that there exists γ ∈ Πδ such that γ − α ∈ Πδ, f(e
γ , 1) = 0

and f(eγ−α, 1) 6= 0. If γ′ is another vector of Πδ such that f(eγ
′
, 1) 6= 0, then necessarily

γ′ − α 6∈ Πδ: indeed, if γ
′ − α ∈ Πδ, then

f(eγ
′−α, 1)f(eγ , 1) = f(eγ+γ′−α, 2) = f(eγ−α, 1)f(eγ

′
, 1) 6= 0,

which contradicts the fact that f(eγ , 1) = 0. For all γ′ ∈ Πδ, γ′ − α 6∈ Πδ implies that

〈γ′, α〉 ≤ 0: thus, f(eγ
′
, 1) 6= 0 implies that 〈γ′, α〉 ≤ 0. We get

〈
∑

γ′ 6=γ−α

Kδ,γ′f(eγ
′
, 1)γ′, α〉 ≤ 0.

Since f(eγ−α, 1) 6= 0 and from the previous argument, we get γ−2α 6∈ Πδ. Hence,
2〈γ,α〉
〈α,α〉 ≤ 1,

which yields 〈γ − α,α〉 < 0. Finally,

〈M,α〉 = Kδ,γ−αf(e
γ−α, 1)〈γ − α,α〉 + 〈

∑

γ′ 6=γ−α

Kδ,γ′f(eγ
′
, 1)γ′, α〉 < 0,

which contradicts the fact that M ∈ ∆. Let γ ∈ Πδ be such that f(eγ , 1) 6= 0. Since γ ∈ Πδ,

there exists a finite sequence (xi)1≤i≤r in S such that δ −
∑j

i=1 xi ∈ Πδ for all 1 ≤ j ≤ r

and δ −
∑r

i=1 xi = γ. Thus, from the first part of the lemma, f(eδ−
∑j

i=1 xi , 1) 6= 0 for all

1 ≤ j ≤ r; in particular, f(eδ−x1 , 1) 6= 0, and applying again the first part of the lemma
yields that f(eδ, 1) 6= 0. �

We can now prove Proposition 4.2:

Proof of Proposition 4.2. Let f ∈ Mult(T̂δ)
+ be such that Mf ∈ ∆. Let α ∈ S. If for all

γ ∈ Πδ such that f(eγ , 1) 6= 0 we have γ−α 6∈ Πδ, then set φ(eα) = 0. Otherwise, let γ ∈ Πδ

be such that f(eγ , 1) 6= 0 and such that γ −α ∈ Πδ , and set φ(eα) = f(eγ−α,1)
f(eγ ,1) . Then, φ(α) is

independent of the choice of γ. Indeed, if γ′ is another weight satisfying the same hypothesis,
then

f(eγ , 1)f(eγ
′−α, 1) = f(eγ+γ′−α, 2) = f(eγ−α, 1)f(eγ

′
, 1),

so that finally,

f(eγ−α, 1)

f(eγ , 1)
=

f(eγ
′−α, 1)

f(eγ′ , 1)
.

Note that we have in particular proven that for all γ ∈ Πδ such that γ + α ∈ Πδ and
f(eγ+α, 1) 6= 0, we have

(4)
f(eγ , 1)

f(eγ+α, 1)
= φ(eα).

Let φ : R[Q+] −→ R+ be the multiplicative map obtained by extending multiplicatively the
map φ defined on {eα, α ∈ S} and by specifying the value φ(1) = 1. Consider the roots order
with respect to the set of simple roots S and let us prove by induction on the roots order that
f(eγ , 1) = f(eδ, 1)φ(eδ−γ ) for γ ∈ Πδ. For γ = δ the result is straightforward. Let γ ∈ Πδ

and suppose that the result is true for all γ′ > γ. There exists α ∈ S such that γ + α ∈ Πδ.
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If f(eγ+α, 1) = 0, then f(eγ , 1) = 0 by Lemma 4.3; in particular, f(eγ , 1) = φ(eα)f(eγ+α, 1).
By the induction hypothesis, f(eγ+α, 1) = f(eδ, 1)φ(eδ−(γ+α)), and finally,

f(eγ , 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ ).

If f(eγ+α, 1) 6= 0, then by (4) and by the induction hypothesis,

f(eγ , 1) = φ(eα)f(eγ+α, 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ ).

Let (γ, n) ∈ T̂δ, and let γ1, . . . , γn ∈ Πδ such that γ =
∑n

i=1 γi. Then, by multiplicativity of
f and the result above, we have

f(eγ , n) =f(e
∑n

i=1 γi , n) =

n
∏

i=1

f(eγi , 1) =

n
∏

i=1

f(eδ, 1)φ(eδ−γi )

=f(eδ, 1)nφ(enδ−
∑n

i=1 γi) = f(eδ, 1)nφ(enδ−γ)

Since f(sδ, 1) = 1, we have on the one hand
∑

γ∈Πδ

Kδ,γf(e
γ , 1) = 1.

On the other hand, from the result above,
∑

γ∈Πδ

Kδ,γf(e
γ , 1) =

∑

γ∈Πδ

Kδ,γf(e
δ, 1)φ(eδ−γ ) = f(eδ, 1)φ(Sδ).

Thus, f(eδ, 1) = 1
φ(Sδ)

, which ends the proof of the proposition in the case Mf ∈ ∆. Suppose

that f is a general nonnegative multiplicative function on T̂δ. Let w ∈ W be such that
Mf◦w−1 ∈ ∆. By the first part of the proof, there exists φ ∈ Mult(R[Q+])+ such that

f ◦ w−1(eγ , n) = 1
φ(Sδ)n

φ(enδ−γ). Thus, composing f ◦ w−1 with w yields that f(eγ , n) =
1

φ(Sδ)n
φ(enδ−w(γ)) for (γ, n) ∈ T̂δ. �

Remark 4.4. Suppose that φ(eα) 6= 0 for all α ∈ S. Then, the map φ extends to a homo-
morphism φ : R[P ] −→ R+ with the formula

φ(eγ) =
∏

α∈S

φ(eα)rα for γ =
∑

α∈S

rαα.

In this case,

f(eγ , n) = f(eδ, 1)nφ(eλ−nδ) =

(

f(eδ, 1)

φ(eδ)

)n

φ(eγ).

Since, f(sδ, 1) = 1, f(eδ ,1)
φ(eδ)

= φ(sδ)
−1. Hence, when φ(eα) > 0 for all α ∈ S, f can be written

on T̂δ as

f(eγ , n) =
φ(eγ)

φ(sδ)n
,

with φ : P −→ R+ a multiplicative map.
In this case, for (sλ, n) ∈ T̂+

δ , we have also

f(sλ, n) =
φ(sλ)

φ(sδ)n
,

where the restriction φ : Aδ −→ R+ is again a multiplicative map.
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To summarize, let us define the map Φ : Mult(R[Q+])+ ×W −→ Mult(T̂δ)
+ by

Φ(φ,w)(eγ , n) =
1

φ(Sδ)
φ(enδ−w(γ)).

Proposition 4.2 yields that the map Φ is surjective. Since R[Q+] is the free commutative
algebra generated by {eα, α ∈ S}, Mult(R[Q+])+ is isomorphic to (R+)d through the map
θ : Mult(R[Q+])+ −→ (R+)d given by θ(φ) = (φ(eαi))1≤i≤d for φ ∈ Mult(R[Q+])+. The

composition of Φ with θ−1 yields thus a surjective map (R+)d ×W −→ Mult(T̂δ)
+. Since Φ

is not necessarily injective, the latter map is not bijective. The lack of injectivity comes from
two facts: first, if Mf lies at the intersection of two Weyl chambers, then Mf◦w−1 ∈ ∆ for
several w ∈ W . Secondly, some degeneracy may occur when δ is orthogonal to some simple
roots. The goal of the next subsection is to overcome the second problem.

4.3. Dominant faces of the weight polytope. Let f ∈ Mult(T̂δ) such that Mf ∈ ∆; it
is possible to give a geometric description of the set Πδ(f) := {γ ∈ Πδ | f(eγ , 1) 6= 0)}. A
dominant face F is a face of the polytope K(δ) such that F ∩ ∆ 6= 0. We denote by ΠF

the intersection of Πδ with F . We say that a subset S′ ⊂ S of simple roots is δ-admissible
if each indecomposable component of S′ contains a root which is not orthogonal to δ; in
particular, according to this definition, the empty set is a δ-admissible subset, since it has
no indecomposable component. For each subset S′ ⊂ S, denote by WS′ the Weyl group
generated by the elements sα′ , α′ ∈ S′ (where W∅ is simply {Id}). We will use the following
results which comes from [22].

Theorem 4.5. Assigning to each δ-admissible subset S′ ⊂ S the polytope FS′ = Conv(w′δ |
w′ ∈ WS′) yields a one-to-one correspondence between δ-admissible subsets of S and dominant
faces of the polytope K(δ). Moreover, the set ΠFS′ coincides with the set (δ + 〈S′〉) ∩Πδ and
dimFS′ = #S′

This yields the following characterization Πδ(f).

Proposition 4.6. There exists a dominant face F of the weight polytope K(δ) such that
Πδ(f) = ΠF .

Before proving Proposition 4.6, let us prove the following lemma:

Lemma 4.7. Let S′ ⊂ S and γ ∈ Πδ such that δ−γ =
∑

α∈S′ kαα with kα > 0 for all α ∈ S′.
Then, S′ is δ-admissible and γ ∈ FS′.

The proof of this lemma uses ingredients similar to those of Vinberg in [22].

Proof. Suppose γ can be written as

γ = δ −
∑

α∈S′

kαα,

with S′ a subset of S and kα ∈ N∗ for α ∈ S′. Since γ ∈ Πδ, there exists a sequence (γi)0≤i≤t

with t =
∑

α∈S′ kα such that γi ∈ Πδ, γ0 = γ, γt = δ and γi+1 − γi ∈ S. Since for all γ ∈ Πδ,
δ − γ is a sum of simple roots with nonnegative coefficients, for all 0 ≤ i ≤ t − 1 we have
γi+1 − γi ∈ S′ and #{0 ≤ i ≤ t− 1|γi+1 − γi = α} = kα for α ∈ S′. This implies in particular
that γi ∈ δ + 〈S′〉 for all 0 ≤ i ≤ t. Let α ∈ S′: since kα > 0, there exists 0 ≤ iα ≤ t− 1 such
that γi+1 − γi = α. This yields that dim(K(δ) ∩ (δ + 〈S′〉) = #S′. Let l be the linear form
such that l(α) = 1 for α ∈ S \S′ and l(α) = 0 for α ∈ S. For γ ∈ Πδ, δ− γ is a sum of simple
roots with positive coefficients, thus l(γ) ≤ l(δ), with equality if and only if γ ∈ δ + 〈S′〉.
Thus, (K(δ) ∩ (δ + 〈S′〉) is a face of the polytope Kδ; since dim(K(δ) ∩ (δ + 〈S′〉) = #S′, S′

is δ-admissible by [22, p.10]. Finally, K(δ) ∩ (δ + 〈S′〉) = FS′ and γ ∈ FS′ . �
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Lemma 4.8. ΠF ⊂ Πδ(f) if and only if φ is nonzero on SF .

Proof. Suppose that ΠF ⊂ Πδ(f). Let α0 ∈ SF . Since f(eγ , 1) is nonzero for γ ∈ ΠF , by
Lemma 4.3 and the definition of φ it suffices to prove that there exists γ ∈ ΠF such that
γ + α0 ∈ ΠF or γ − α0 ∈ ΠF . Since SF is δ-admissible, dimF = #SF ; F = Conv(w.δ | w ∈
WSF

) and dimF = #SF , thus there exists w ∈ WF such that δ − w.δ =
∑

α∈SF
kαα with

kα0 > 0. This implies the existence of γ ∈ ΠF such that γ + α0 ∈ ΠF . Since ΠF ⊂ Πδ(f),
f(eγ+α0 , 1) 6= 0 and f(eγ , 1) 6= 0, and thus

φ(α0) =
f(eγ , 1)

f(eγ+α0 , 1)
6= 0.

Conversely, suppose that φ is nonzero on SF . By Theorem 4.5, ΠF = (δ + 〈SF 〉) ∩Πδ. Since
f(eδ, 1) 6= 0 and φ is nonzero on SF , f is nonzero ΠF by Proposition 4.2. �

We turn now to the proof of Proposition 4.6.

Proof. We order the set of dominant faces by the inclusion order; note that the set of dominant
faces is a lattice with respect to this order, and we denote by F ∨ F ′ the supremum of two
dominant faces F and F ′: F ∨ F ′ is the smallest dominant face containing both F and F ′.
Let γ ∈ Πδ such that f(eγ , 1) 6= 0, and let F be the smallest dominant face containing γ. We
denote by SF the δ-admissible subset of simple roots corresponding to F . Then, γ can be
written as

γ = δ −
∑

α∈SF

kαα

with kα ∈ N. Necessarily, we have kα > 0 for all α ∈ SF . Otherwise, Lemma 4.7 would imply
that γ belongs to a smaller dominant face of K(δ). Let (γi)0≤i≤t with t =

∑

α∈S′ kα be a
sequence of Πδ such that γi ∈ Πδ, γ0 = γ, γt = δ and γi+1 − γi ∈ SF . Since f(eγ0 , 1) 6= 0,
Lemma 4.3 yields that f(eγi , 1) 6= 0 for 0 ≤ i ≤ t. Let α ∈ SF : since kα > 0, a similar
deduction as in the proof of the previous lemma yields that there exists 0 ≤ i ≤ t − 1 such
that γi+1 − γi = α. Therefore,

φ(eα) =
f(eγi , 1)

f(eγi+1 , 1)
6= 0.

Since φ(eα) 6= 0 for α ∈ SF , f(e
γ , 1) is nonzero on Πδ ∩ (δ − 〈SF 〉), and ΠF ⊂ Πδ(f). We

have thus proven that if a weight γ is in Πδ(f), then the intersection of Πδ with the smallest
dominant face containing γ is also included in Πδ(f); hence, Πδ(f) is an union of sets ΠF ,
where F are dominant faces.

Let F and F ′ be two dominant faces such that ΠF ,ΠF ′ ⊂ Πδ(f), and let us show that
ΠF∨F ′ ⊂ Πδ(f). Note first that F ∨ F ′ = FSF∪SF ′ : on the first hand, the smallest vector
space containing both 〈SF 〉 and 〈SF ′〉 is 〈SF ∪ SF ′〉. On the other hand, since SF and SF ′

are δ-admissible, SF ∪ SF ′ is again δ-admissible. It suffices thus to show that ΠFSF∪S
F ′

⊂

Πδ(f). But Lemma 4.8 yields that φ(eα) is nonzero for α ∈ SF and α ∈ SF ′ . Thus,
φ(eα) is nonzero for α ∈ SF ∪ SF ′ and ΠFSF∪S

F ′
⊂ Πδ(f). Let F0 be the supremum of

{F dominant face of K(δ),ΠF ⊂ Πδ(f)}. By the previous argument, ΠF0 ⊂ Πδ(f). Let
γ ∈ Πδ(f) and let F be the smallest dominant face of K(δ) containing γ. By the first part of
the proof, ΠF ⊂ Πδ(f). Thus F ⊂ F0 and γ ∈ F0: this proves that Πδ(f) ⊂ ΠF0 , and finally
Πδ(f) = ΠF0 . �

Corollary 4.9. Let f ∈ Mult(T̂δ)
+ be such that Mf ∈ ∆. There exists a unique φ ∈

Mult(R[Q+])+ such that Φ(φ, Id) = f and {α, φ(eα) 6= 0} is a δ-admissible subset of S.
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Proof. Let φ be such that Φ(φ, Id) = f . By Proposition 4.6, there exists a face F of K(δ)
such that ΠF = Πδ(f). Lemma 4.8 yields that φ is nonzero on SF . Let α ∈ SF : then,
there exists γ ∈ Πδ such that γ ∈ ΠF , γ − α ∈ ΠF ; thus, f(e

γ , 1) 6= 0 and f(eγ−α, 1) 6= 0.

Therefore, the value of φ on α has to be equal to f(eγ−α,1)
f(eγ ,1) . Hence, there exists at most one φ

such that {α, φ(eα) 6= 0} is the δ-admissible subset SF . Such a map φ exists, since f is zero
on Πδ \Πδ(f). Suppose that there exists a bigger δ-admissible subset SF ( S′ such that φ is
nonzero on S′. Then by Lemma 4.8, ΠFS′ ⊂ Πδ(f). But by Theorem 4.5, there is a bijection
between dominant faces and δ-admissible subsets: therefore, Πδ(f) = ΠF ( ΠFS′ ⊂ Πδ(f),
which is a contradiction. Thus, there exists exactly one map φ such that Φ(φ, Id) = f and
{α ∈ S, φ(eα) 6= 0} is a δ-admissible subset (and this δ-admissible subset has to be SF ). �

4.4. Identification of the minimal boundary. We give in this subsection a complete
description of the minimal boundary by describing Mult(T̂δ)

+.

Lemma 4.10. Let f ∈ Mult(T̂δ)
+ be such that Mf ∈ ∆, and let φ ∈ Mult(R[Q+])+ be such

that Φ(φ, Id) = f . Then φ(eα) ∈ [0, 1].

Proof. Let f ∈ Mult(T̂δ)
+ be such that

M =
∑

γ∈Πδ

Kδ,γf(e
γ , 1)γ ∈ ∆.

Let φ ∈ Mult(R[Q+])+ be a morphism associated with f by Proposition 4.2, and let α ∈ S.
Since M ∈ ∆, 〈M,α〉 ≥ 0. Moreover,

〈M,α〉 =
∑

γ∈Πδ

Kδ,γf(e
δ, 1)φ(eδ−γ )〈γ, α〉.

By invariance of Πδ under the symmetry sα, γ ∈ Πδ implies that sα(γ) ∈ Πδ. Since s2α = Id
and since sα(γ) = γ if and only if〈α, γ〉 = 0, we have

〈M,α〉 =f(eδ, 1)
∑

γ∈Πδ

〈γ,α〉>0

Kδ,γ(φ(e
δ−γ )− φ(eδ−sα(γ)))〈γ, α〉

=f(eδ, 1)
∑

γ∈Πδ

〈γ,α〉>0

Kδ,γφ(e
δ−γ)(1 − φ(eα)

2〈γ,α〉
〈α,α〉 )〈γ, α〉.

If φ(eα) > 1, then (1 − φ(eα)
2〈γ,α〉
〈α,α〉 ) < 0 for all γ ∈ Πδ such that 〈γ, α〉 > 0, and thus

〈M,α〉 < 0: this would contradict the choice of f . Therefore, φ(eα) ≤ 1. �

The set {1, . . . , d} is identified with S by ordering the set of simple roots, and for S′ ⊂ S,

we denote by W S′
the set of minimal right-coset representatives with respect to S′: namely,

W S′
= {w ∈ W |l(sw) > l(w) for s ∈ S′}.

For x ∈ ∆, we denote by Sx the set {α ∈ S, 〈α, x〉 = 0}.

Lemma 4.11. Let x ∈ Rd and let y be the unique element of Wx belonging to ∆. There
exists a unique element w ∈ W Sy such that wx = y.

Proof. Let Wy be the parabolic subgroup generated by Sy. Then, Wy is the stabilizer of
y. In particular, the set {w ∈ W,w(y) = x} is a left coset of Wy in W , and thus the
set {w ∈ W,w(x) = y} is a right coset of Wy in W . By [12, 1.10], there exists a unique
w̃ ∈ W Sy such that {w ∈ W,w(x) = y}w̃wWy. Thus, there exists a unique w̃ ∈ W Sy such
that w̃(x) = y. �
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For each d-tuple ~t = (t1, . . . , td), denote by 0c(~t) the set of indices i such that ti 6= 0 and
by 1(~t) the set of indices i such that ti = 1. Now consider the set [0, 1]dδ such that

(5) [0, 1]dδ := {~t ∈ [0, 1]d | 0c(~t) is δ-admissible}.

This set will turn out to be a natural parametrization ofK(δ)+. Then, we will prove in Section
6 that there exists a natural map t : K(δ) −→ [0, 1]dδ ×W , written as t(m) = (~tm, wm), such

that t(K(δ)+) = [0, 1]dδ × Id.

Proposition 4.12. The map Φ ◦ θ−1 yields a bijection Ψ between Mult(T̂δ)
+ and

{(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)}.

Proof. Let f ∈ Mult(T̂δ)
+. Let y be the unique point in W (Mf ) ∩ ∆ and denote by Sy

the set {α ∈ S | 〈α, y〉 = 0}. By Lemma 4.11, there exists a unique w ∈ W Sy such that
w(Mf ) = y. Thus, by Proposition 4.2, Corollary 4.9 and Lemma 4.10, there exists a unique
φ ∈ Mult(R[Q+])+ such that Φ(φ,w) = f and {α ∈ S | φ(eα) 6= 0} is a δ-admissible subset.
In order to conclude, we just have to show that φ(eα) = 1 if and only if 〈α,w(Mf )〉 = 0: but,
as in the proof of Lemma 4.10, we have

〈α,w(Mf )〉 =〈w−1(α),Mf 〉 =
∑

γ∈Πδ

Kδ,γf(e
γ , 1)〈w−1(α), γ〉

=
∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈w−1(α), γ〉 =

∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈α,w(γ)〉

=
∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−γ)〈α, γ〉 =

1

φ(Sδ)

∑

γ∈Πδ

〈γ,α〉>0

Kδ,γ(φ(e
δ−γ)− φ(eδ−sα(γ)))〈α, γ〉

=
1

φ(Sδ)

∑

γ∈Πδ

〈γ,α〉>0

Kδ,γφ(e
δ−γ)(1 − φ(eα)

2〈γ,α〉
〈α,α〉 )〈α, γ〉,

where the fourth inequality is due to the fact that w yields a bijection on the set of weights
which satisfies the relation Kδ,w(γ) = Kδ,γ for each γ ∈ Πδ. Thus, 〈Mf , α〉 = 0 if and only
φ(eα) = 1. �

Note that the bijection Ψ in the above proposition is explicitly given by Proposition 4.2:
for ~t ∈ [0, 1]dδ , denote by φ~t the unique element of Mult(R[Q+])+ such that {φt(α) 6= 0} is δ-

admissible and Φ(φt, w) = Ψ(~t, w). Then,

Ψ(~t, w)(eγ , n) =
1

φ~t(Sδ)n
φ~t(e

nδ−w(γ)) =
~tnδ−w(γ)

Sδ(~t)n
,

for (eγ , n) ∈ T̂δ.

Remark 4.13. The restriction of the set of parameters (~t, w) from [0, 1]d ×W to {(~t, w) ∈

[0, 1]dδ ×W |w ∈ W 1(~t)} is only useful to ensure the injectivity of the map Ψ. It is however still

possible to define an element of Mult(T̂δ)
+ by applying the map Φ◦θ−1 to any element (~t, w).

The lack of injectivity without the restriction of the parameters can be seen in the following
example: consider the Lie algebra of type A2 with set of simple roots {α1, α2} and choose
δ = ω1, the first fundamental weight. Then, (ω1, α2) = 0, and thus any weight γ 6= ω1 of Πω1

is written γ = ω1 − k1α1 − k2α2 with k1 > 0: hence, if t1 = 0, we have φ(eω1−γ) = δγ,ω1

for all value of t2. On the other hand, the ω1-admissible subsets of {α1, α2} are ∅, {α1}
and {α1, α2}. Thus the empty ω1-admissible subset ∅ yields the unique choice of t2 such that
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t1 = 0 and 0c(~t) is ω1-admissible, namely t2 = 0. The latter procedure has singled out a
particular choice of parameters t1 = 0, t2 = 0 among all the choices of ~t yielding the map
φ(eω1−γ) = δγ,ω1 .

A straightforward application of Proposition 4.1 yields the following corollary:

Corollary 4.14. The map i ◦ Ψ gives a bijection between the minimal boundary ∂H∞(Rd)
and

{(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)}.

5. Minimal boundary of Γ∞(∆)

In this section, we use the description of ∂H∞(Rd) to get the one of ∂H∞(∆).

5.1. Algebraic description of the growth graph of Γ∞(∆). The growth graph G(∆) of
Γ∞(∆) admits a similar description as the one of Γ∞(Rd). The set Λ+

n of vertices of rank n
of the graph G(∆) are pairs (λ, n) where λ is a weight of P+

δ such that Γ∆(λ, n) 6= ∅, and
the weight of the edge between (λ, n) and (µ, n + 1) is e+((λ, n), (µ, n + 1)) = #Γ∆(λ, µ).
Moreover, we have the following algebraic description of G(∆):

Proposition 5.1. G(∆) is a multiplicative graph associated with the algebra Âδ with the
injective map

i :







∐

n≥0Λn −→ Âδ

(λ, n) 7→ (sλ, n), n ≥ 1
∗ 7→ (sδ, 1)

,

and
(

Âδ

)

G(∆)
= T̂+

δ . In particular, ∂H(G(∆)) is isomorphic to Mult(T̂+
δ )+ through the map

i∗ :

{

Mult(T̂+
δ )+ −→ ∂H(G(∆))

f 7→ f ◦ i

Proof. By Littelmann’s paths theory, the following equality holds for (λ, n) ∈ Λn:

i(λ, n)i(∗) =(sλ, n)(sδ, 1) =
∑

µ∈Aδ

#Γ∆(λ, µ)(sµ, n+ 1)

=
∑

µ∈Aδ

e
(

(λ, n), (µ, n + 1)
)

i(µ, n+ 1).

Thus, G(∆) is a multiplicative graph associated with Âδ with the map i. Note that by

construction,
(

Âδ

)

G(∆)
= T̂+

δ : the last part of the proposition is deduced from Proposition

2.4. �

Now we are going to connect the sets Mult(T̂+
δ )+ and Mult(T̂δ)

+.

5.2. Relation between Mult(T̂δ)
+ and Mult(T̂+

δ )+. Recall that T̂+
δ is a subalgebra of T̂δ;

therefore, any nonnegative morphism on T̂δ induces by restriction a nonnegative morphism on
T̂+
δ . This yields a map χ : Mult(T̂δ)

+ −→ Mult(T̂+
δ )+. The important step in the description

of Mult(T̂+
δ ))+ is the following:

Proposition 5.2. The map χ yields a surjection from {f ∈ Mult(T̂δ)
+ | Mf ∈ ∆} to

Mult(T̂+
δ )+.
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The proof of this proposition needs some preparation. Let f be a nonnegative morphism
from T̂+

δ to R. By Corollary 3.6 and by Corollary 4 page 35 in [3], f can be extended to a

morphism f̃ from T̂δ to C. The first task is to prove that f̃ ∈ Mult(T̂δ)
+.

We need to recall a classical result by Aissen, Edrei, Schoenberg and White on polynomials
with real coefficients having negative zeros.

Theorem 5.3. [2] Consider a polynomial P (T ) = amTm+am−1T
m−1+· · ·+a1T+a0 ∈ R[T ].

Then P has only real and nonpositive zeros if and only if the sequence a0, a1, . . . , am, 0, 0, 0, . . .
is totally positive, that is if and only if all the minors of the infinite matrix

a0 0 0 0 · · ·
a1 a0 0 0 · · ·
a2 a1 a0 0 · · ·
a3 a2 a1 0 · · ·
...

. . .
. . .

. . . · · ·

are nonnegative.

Proposition 5.4. Any morphism f̃ defined on T̂δ which extends the positive morphism f
belongs to Mult(T̂δ)

+.

Proof. Let f̃ be a morphism extending f . Set ϕ(T ) = f̃(Φ)(T ) that is

ϕ(T ) =
∏

γ∈Πδ

(T + f̃(eγ , 1)).

By using the same arguments as in the proof of Proposition 3.5, we obtain that the coefficients
of ϕ(T ) are the

f̃(ek(e
γ1 , . . . , eγN ), k) ∈ C, k = 0, . . . , N

Now it follows from the Jacobi-Trudi determinantal expression of the Schur functions that
the minors of the matrix defined from the coefficients of ϕ(T ) as in Theorem 5.3 coincide
with the complex numbers

f̃(sΛ(e
γ1 , . . . , eγN ), |Λ|),Λ ∈ PN

where PN is the set of partitions with at most N parts and sΛ(e
γ1 , . . . , eγN ) is the plethysm

of the Schur function sλ in N variables X1, . . . ,XN by the Weyl character sδ. If we consider
any young symmetrizer cΛ of shape Λ in R[Sl], the group algebra of the symmetric group Sl

(see [7]), the space

cΛ · V (δ)⊗l such that l = |Λ|

has indeed the structure of a G-module and

sΛ(e
γ1 , . . . , eγN ) = char

(

cΛ · V (δ)⊗l
)

.

This shows that sΛ(e
γ1 , . . . , eγN ) decomposes as a sum of characters in {sλ | λ ∈ δ⊗|Λ|}

with nonnegative integer coefficients. In particular, (sΛ(e
γ1 , . . . , eγN ), |Λ|) belongs to T̂+

δ and

therefore we get that f̃(sΛ(e
γ1 , . . . , eγN ), |Λ|) = f(sΛ(e

γ1 , . . . , eγN ), |Λ|) is real nonnegative

since f is assumed nonnegative. By Theorem 5.3 this shows that −f̃(eγ , 1) is real nonpositive

for any γ ∈ Πδ . Finally we obtain that f̃(eγ , 1) is real nonnegative for any γ ∈ Πδ and thus

f̃ takes real nonnegative values on T̂δ. �
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Proof of Proposition 5.2. Let f ∈ Mult(T̂+
δ )+. By Proposition 5.3, there exists f̃ ∈ Mult(T̂δ)

+

such that f̃(sλ, n) = f(sλ, n) for (sλ, n) ∈ T̂+
δ . Let w ∈ W and (sλ, n) ∈ T̂+

δ : since w−1 yields
a multiplicity preserving bijection on Πλ,

(f̃ ◦ w)(sλ, n) =
∑

γ∈Πλ

Kλ,γ f̃(e
w(γ), n)

=
∑

γ∈Πλ

Kλ,w−1(γ)f̃(e
γ , n)

=
∑

γ∈Πλ

Kλ,γ f̃(e
γ , n) = f̃(sλ, n).

Thus, for all w ∈ W , (f̃ ◦w)|T̂+
δ

= f̃|T̂+
δ
. Let w ∈ W be such that Mf̃◦w ∈ ∆ and set g = f̃ ◦w.

Then, g is an element of Mult(T̂δ)
+ such that χ(g) = f and Mg ∈ ∆. �

A straightforward application of Proposition 4.2 and Proposition 4.12 yields the following
corollary:

Corollary 5.5. There exists ~t ∈ [0, 1]dδ such that 0c(~t) is δ-admissible and such that f is
equal to

f(sλ, n) =
Sλ,nδ(~t)

(Sδ(~t))n
.

We denote this function by f~t.

We denote by Ψ+ : [0, 1]dδ −→ Mult(T̂+
δ )+ the map sending ~t to the multiplicative map f~t

of the latter corollary.

5.3. Injectivity of the map Ψ+. It remains to show that the map Ψ+ is injective.

Lemma 5.6. Let f ∈ Mult(T̂+
δ ). Let ~t ∈ [0, 1]dδ . For any (λ, n) ∈ T̂+

δ we have

1 ≤
Sλ,nδ(~t)

~tnδ−λ
≤ dim(V (λ)).

Proof. On the first hand,

Sλ,nδ(~t) =
∑

γ∈Πλ

Kλ,γ~t
nδ−γ ≥ ~tnδ−λ,

which yields 1 ≤
Sλ,nδ(~t)
~tnδ−λ

. On the other hand, since ti ≤ 1 for all 1 ≤ i ≤ d,

Sλ,nδ(~t) =
∑

γ∈Πλ

Kλ,γ~t
nδ−γ ≤

∑

γ∈Πλ

Kλ,γ~t
nδ−λ ≤ dimV (λ)~tnδ−λ,

yielding the other inequality

Sλ,nδ(~t)

~tnδ−λ
≤ dim(V (λ)).

�

Corollary 5.7. Let t = (t1, . . . , td), τ = (τ1, . . . , τd) be such that Ψ+(~t) = Ψ+(~τ). Then
Sδ(~t) = Sδ(~τ).
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Proof. For all n ≥ 1, (nδ, n) ∈ T̂+
δ . Thus, by Lemma 5.6, we have

1 ≤ Snδ,nδ(~t) ≤ dim(V (nδ)) and 1 ≤ Snδ,nδ(~τ) ≤ dim(V (nδ)).

This yields

1

dim(V (nδ))
≤

Snδ,nδ(~t)

Snδ,nδ(~τ)
≤ dim(V (nδ)).

But
Snδ,nδ(~t)

Snδ,nδ(~τ )
=

Sδ(~τ)
nΨ(t1, . . . , td)(snδ, n)

Sδ(~t)nΨ(τ1, . . . , τd)(snδ, n)
=

Sδ(~τ )
n

Sδ(~t)n
,

the last equality being due to the fact that Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd). Therefore, we have
the inequality

1

dim(V (nδ))
≤

Sδ(~τ)
n

Sδ(~t)n
≤ dim(V (nδ)).

Since dim(V (nδ)) is polynomial in n, necessarily Sδ(~t) = Sδ(~τ ). �

The proof of the injectivity uses the combinatorics of Littelmann paths and we assume that
the reader is familiar with this theory. We refer to [17] for an introduction to the operator
fα, α ∈ S which are used in the following proofs. We recall that B(δ) denotes the set of
Littelmann paths obtained from a path π0 in ∆ of weight δ. We introduce moreover the
following decomposition of a δ-admissible subset S′ ⊂ S.

Definition 5.8. Let S′ ⊂ S be δ-admissible. A Dynkin subchain of type α and length r is a
sequence (α1, . . . , αr) of simple roots in S′ such that α1 = α, 〈αr, δ〉 6= 0 and 〈αi, αi+1〉 6= 0
for 1 ≤ i ≤ r−1. The depth dS′,δ(α) of α relatively to S′ is the smallest integer corresponding
to the length of a Dynkin subchain of type α.

Note that any simple root of a δ-admissible subset admits at least one Dynkin subchain,
since it belongs to an indecomposable root system which is not orthogonal to δ.

Lemma 5.9. Let λ ∈ P+ and α ∈ S be such that 〈λ, α〉 6= 0. Then there exists (µ, n) ∈ T̂+
λ

such that nλ− µ = α.

Proof. Suppose that 〈λ, α〉 > 0, and thus λ− α ∈ Πλ. We denote by π0 the Littelmann path
of B(λ) with weight λ. Then, wt(fα(π0)) = λ − α. Moreover, since fα(π0) = π0 − vα with
v : [0, 1] −→ [0, 1], we have

〈fα(π0)(t), α〉 = 〈π0(t), α〉 − v(t)〈α,α〉 ≥ −〈α,α〉,

and for all simple root α′ 6= α and t ∈ [0, 1], we have

〈fα(π0)(t), α
′〉 = 〈π0(t), α

′〉 − v(t)〈α′, α〉 ≥ 0,

because π0 lies in the Weyl chamber ∆ and 〈α,α′〉 ≤ 0. Consider an integer n ≥ 2 such

that 〈(n − 1)λ, α〉 ≥ 〈α,α〉. Then, from the two previous inequalities, π
∗(n−1))
0 ∗ fα(π0) lies

in ∆: thus, wt
(

π
∗(n−1)
0 ∗ fα(π0)

)

= (n− 1)λ+ (λ− α) is the highest weight of an irreducible

component of V (λ)⊗n, and ((n − 1)λ + (λ − α), n) = (nλ − α, n) ∈ T̂+
λ : setting µ = nλ− α

gives the result. �

The latter result can be generalized along a Dynkin subchain and yields the following
Lemma:

Lemma 5.10. Let S′ ⊂ S be δ-admissible and let α0 ∈ S′. There exists (λ, n) ∈ P̂+
δ such

that nδ − λ = α0 +
∑

α′∈S′

d(α′)<d(α0)

kα′α′.
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Proof. Let S′ ⊂ S be a δ-admissible subset. We will prove the result by induction on the
depth of the simple root. For d(α) = 1, the result is given by Lemma 5.9. Let i ≥ 2. Suppose
that the result is proven for all roots of depth at most i − 1, and let α be a root in S′ of
depth i. Let (α,α2, . . . , αi) be a Dynkin chain of minimal length for α: by minimality, αj

has depth i − j + 1 for 2 ≤ j ≤ i. Since d(α2) = i − 1, there exists (λ′, l) ∈ T̂+
δ such

that lδ − λ′ = α2 +
∑

d(α′)<d(α2)
kα′α′. If α′ is such that d(α′) < d(α2), then necessarily

〈α,α′〉 = 0 (otherwise, there would exist a Dynkin subchain of type α and length smaller
than i); likewise, since d(α) ≥ 2, 〈δ, α〉 = 0. Thus,

〈λ′, α〉 =

〈

lδ − α2 −
∑

d(α′)<d(α2)

kα′α′, α

〉

= −〈α2, α〉 > 0.

Let π be a Littelmann path in B(δ)⊗l lying in ∆ and having weight λ′. We consider π as the
Littelmann path of highest weight for the irreducible representation V (λ′). Since 〈α, λ′〉 > 0,
λ′ − α is a weight of V (λ′). Applying Lemma 5.9 yields the existence of m ≥ 1 such that
π∗m ∗ fα(π) lies in the Weyl chamber. Thus, π∗m ∗ fα(π) correspond to a highest weight
vector in (V (δ)⊗l)⊗m. On the other hand,

wt(π∗m ∗fα(π)) = mλ′−α = lmδ−α−mα2−m
∑

d(α′)<d(α2)

kα′α′ = lmδ−α−
∑

d(α′)<d(α)

k′α′α′,

with k′α ≥ 0. Setting λ = lmδ − α −
∑

d(α′)<d(α) k
′
α′α′ and n = lm, we get an element

(λ, n) ∈ T̂δ
+
satisfying the hypothesis of the Lemma. �

Corollary 5.11. Let (t1, . . . , td), (τ1, . . . , τd) ∈ [0, 1]dδ and 1 ≤ i ≤ d be such that ti = 0 and
τi 6= 0. Then, Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd).

Proof. Note that 0c~t and 0c~τ are δ-admissible subsets by definition of [0, 1]dδ . Since τi 6= 0, i ∈

0c~τ . Thus, by Lemma 5.10, there exists (λ, n) ∈ T̂+
δ such that λ = nδ−αi−

∑

j∈0c
~τ

d(αj)<d(αi)

kαj
αj .

Since τj > 0 for all j ∈ 0cτ ,

Ψ(τ1, . . . , τd)(sλ, n) =
Sλ,nδ(~τ)

Sδ(~τ )n
≥

~τnδ−λ

Sδ(~τ )n
=

1

Sδ(~τ)n
τi

∏

j∈0c
~τ

d(αj )<d(αi)

τ
kαj

j > 0.

On the other hand, any weight of V (λ) has the form λ−
∑

α∈S rαα for some integer coefficients
rα ≥ 0; thus, since ti = 0, for any weight µ = λ−

∑

α∈S rαα of V (λ) we have

~tnδ−µ = ti
∏

j∈0c
~τ

d(αj)<d(αi)

t
kαj

j

∏

αj∈S

t
rαj

j = 0.

Thus, Ψ(t1, . . . , td)(sλ, n) = 0 6= Ψ(τ1, . . . , τd). This yields that Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd).
�

Proposition 5.12. The map Ψ+ is injective.

Proof. Let (t1, . . . , td), (τ1, . . . , τd) ∈ [0, 1]dδ be such that Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd). In

this case, Corollary 5.7 yields that Sδ(~τ ) = Sδ(~t). By Corollary 5.11, we can assume that
0c~t

= 0c~τ , and we will denote this set S′: we recall that the set of simple roots is identified with

{1, . . . , d}, so that S′ corresponds to a δ-admissible subset of S. We will prove by induction
on the depth of the simple root αj with respect to S′ that tj = τj. Suppose that αj ∈ S′ is
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such that d(αj) = 1. By Lemma 5.10, there exists n ≥ 1 such that (nδ − αj , n) ∈ T̂+
δ . Thus,

(nkδ − kαj , kn) ∈ T̂+
δ for all k ≥ 1. Since Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd), we have

1

Sδ(~t)kn
Sknδ−kαj ,knδ(~t) =

1

Sδ(~τ)kn
Sknδ−kαj ,knδ(~τ),

which simplifies into Sknδ−kαj ,knδ(~t) = Sknδ−kαj ,knδ(~τ ) because Sδ(~t) = Sδ(~τ). By Lemma
5.6, we have

1 ≤
Sknδ−kαj ,knδ(~t)

tkj
≤ dimV (knδ − kαj) and 1 ≤

Sknδ−kαj ,knδ(~τ )

τkj
≤ dimV (knδ − kαj).

Thus,

1

dimV (knδ − kαj)
≤

tkj

τkj
≤ dimV (knδ − kαj).

Since dimV (knδ − kαj) is polynomial in k, necessarily tj = τj. Let i ≥ 2, and suppose that
we have proven that tj = τj for all j such that d(αj) < i. Let αl be such that d(αl) = i. By

Lemma 5.10, there exists (λ, n) ∈ T̂+
δ such that nδ−λ = αl+

∑

α′∈S′

d(α′)<d(α)

kα′α′, with kα′ ≥ 0.

Thus, for all k ≥ 1, (kλ, kn) ∈ T̂+
δ . As in the initial case, this implies that

Skλ,knδ(~t) = Skλ,knδ(~τ),

yielding together with Lemma 5.6 the inequality

(6)
1

dimV (kλ)
≤

~tnkδ−λ

~τnkδ−λ
≤ dimV (kλ).

But nkδ − kλ = kαl + k
∑

j∈0c
~t

d(αj )<d(αl)

kαj
αj , and by the induction hypothesis, tj = τj for all

j ∈ 0c~t
, d(αj) < d(αl). Thus

~tnkδ−λ

~τnkδ−λ
=

tkl
τkl

.

Since dimV (kλ) is polynomial in k, (6) yields that tl
τl

= 1. This concludes the proof of
Proposition 5.12. �

Corollary 5.13. The map Ψ+ is a bijection from [0, 1]dδ to Mult(T̂+
δ )+. In particular,

∂H∞(∆) is isomorphic to [0, 1]dδ .

6. Drift of a path following a central measure

In this section, we identify the set {(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)} with K(δ) in order to
complete the proof of Theorem 3.1: this identification is done by considering the mean vector
of the random walk given by the map Ψ. At the end of this section we prove Corollary 3.3.

6.1. The mean vector ~M . Let us introduce the map

~M :

{

{(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)} −→ K(δ)
~t× w 7→ MΨ(~t,w)

,

where the mean vector Mf has been introduced in Section 3.2 for any multiplicative map

f ∈ Mult(T̂δ)
+. For I ⊂ {1, . . . , d}, denote by WI the parabolic subgroup generated by the

simple roots αi for i ∈ I.

Lemma 6.1. Let (~t, w) ∈ {(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)}. Then MΨ(~t,w) ∈ w′−1(∆) if and

only if w′ ∈ W
1(~t)w.
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Proof. Let αi ∈ S. We have

MΨ(~t,w) =
1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−w(γ)γ.

Thus,

〈MΨ(~t,w), w
−1(αi)〉 =

1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−w(γ)〈γ,w−1(αi)〉 =

1

Sδ(~t)

∑

γ∈Πδ

Kδ,w(γ)
~tδ−w(γ)〈w(γ), αi〉

=
1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−γ〈γ, αi〉 =

1

Sδ(~t)

∑

γ∈Πδ

〈γ,αi〉>0

Kδ,γ~t
δ−γ(1− t

2
〈γ,αi〉

〈αi,αi〉

i )〈γ, αi〉.

Since each ti is in [0, 1], 〈MΨ(~t,w), w
−1(αi)〉 ≥ 0 for 1 ≤ i ≤ d and hence w(MΨ(~t,w)) ∈ ∆.

Moreover, 〈MΨ(~t,w), w
−1(αi)〉 = 0 if and only if ti = 1. Therefore, w(MΨ(~t,w)) ∈ w′(∆) if and

only if w′ is a product of reflections sαi
such that ti = 1. Applying w−1 to the latter result

yields the proof of the Lemma. �

Proposition 6.2. The map ~M is injective.

Proof. Let (~t, w) and (~t′, w′) be two elements of {(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)} such that
~M(~t, w) = ~M(~t′, w′). We simply denote by M this common value. Lemma 6.1 implies that
W

1(~t)w = W
1(~t′)w

′. Thus, W
1(~t) = W

1(~t′), which implies that 1(~t) = 1(~t′); since w and w′

are both a minimal right coset representative of W
1(~t′)w, we have w = w′. Let F be the

dominant face corresponding to the δ-admissible set 0c~t and let F ′ be the one corresponding

to the δ-admissible set 0c~t′
. By the results of Section 4.3, ~M(~t, w) ∈ w−1(

◦
F ) (where

◦
F the

interior of the face F ) and ~M(~t′, w) ∈ w′−1(
◦

F ′). Since w = w′, we must have F = F ′ and
thus 0c~t = 0c~t′

. Let (Xl)l≥0, (X
′
l )l≥0 be two random walks with initial position X0 = X ′

0 = 0
and respective transition matrices

P(Xl+1 = γ|Xl = γ′) = Kδ,γ−γ′

~tδ−w(γ−γ′)

Sδ(~t)
,P(X ′

l+1 = γ|X ′
l = γ′) = Kδ,γ−γ′

~t′δ−w(γ−γ′)

Sδ(~t′)
.

Both random walks have mean M , thus it follows by the local limit theorem for large devia-
tions (see for instance Theorem 4.2.1 in [14]) that for any sequences of weights (γl)l≥1, (γ

′
l)l≥1

such that γl − lM = o(l2/3), γ′l − lM = o(l2/3), and P(Xl = γl) 6= 0,P(Xl = γ′l) 6= 0, we have

(7) P(Xl = γl) ∼ P(Xl = γ′l),

and the same relation holds for (X ′
l )l≥1. Let i ∈ 0c~t

. For l ≥ 1, let (γl, l) ∈ T̂+
δ be such

that γl is an element of Pδ ∩ lF at minimal distance from lM and set γ′l = γl − αi. Then,
P(Xl = γl) 6= 0. Since M belongs to the interior of M , γ′l ∈ Pδ ∩ lF for l large enough: thus,
P(Xl = γ′l) 6= 0 for l large enough. The sequences (γl− lM)l≥1 and (γ′l− lM)l≥1 are bounded,
thus the local limit Theorem applies and

(8) P(Xl = γl) ∼ P(Xl = γ′l)

as l goes to infinity. Since X comes from a central measure,

(9) P(Xl = γl) = #ΓRd(γl, l)
~tnδ−γl

(

Sδ(~t)
)l
.

Using (7) with (9) yields that
#Γ

Rd
(γl,l)

#Γ
Rd

(γ′
l
,l) ∼

~tγ
′
l−γl = t−1

i . But the same holds for X ′, yielding

that
#Γ

Rd
(γl,l)

#Γ
Rd

(γ′
l
,l) ∼

~t′γ
′
l−γl = t′−1

i . Finally, ti = t′i. �
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We can now prove the main result of this subsection:

Proposition 6.3. The map ~M is a bijective map from {(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)} to

K(δ) such that ~M([0, 1]dδ × Id) = K(δ)+.

Proof. The injectivity of ~M has already been proven in Proposition 6.2. Let us prove that ~M is
surjective. Recall that Ψ is a restriction of the map Φ◦θ−1 : [0, 1]d×W −→ Mult(T̂δ)

+ defined
at the end of Section 4.2, and that both maps have the same image; thus, it is enough to prove

that the map ~M extended to the domain [0, 1]d ×W by the formula ~M(~t, w) = MΦ◦(θ−1(~t),w)

is surjective. Let us first prove that ~M|[0,1]d×Id is surjective onto K(δ)+. Let 1 ≤ i ≤ d be

such that 〈δ, αi〉 6= 0: then, αi is a δ-admissible set, and the dominant face associated with
αi is one-dimensional. Let xi = Fi ∩ ∂∆ (that is, xi is the projection of δ on α⊥

i ). Then,
K(δ)+ is a convex polytope whose extreme points are the elements δ, 0 and {xi} 1≤i≤d

〈αi,δ〉>0

. Let

Σ : (R+)d −→ R be the function defined by

Σ(~u) = log(Sδ(e
u1 , . . . , eud)) = log(

∑

γ∈Πδ

Kδ,γe
~u.(δ−γ)).

Then,

∇Σ(~u) =





1

Sδ(eu1 , . . . , eud)

∑

γ∈Πδ

Kδ,γ(δi − γi)e
~u.(δ−γ)





1≤i≤d

= δ − ~M((eu1 , . . . , eud), Id).

Moreover, we can show that Σ is a convex function: introduce the random variable X such

that P(X = δ − γ) =
Kδ,γ

Sδ(e
u1 ,...,eud)e

~u.(δ−γ). The Hessian matrix of Σ at ~u is exactly the

covariance matrix of the random variable X, which is nonnegative: since this is true for all
vector ~u ∈ (R+)d, Σ is indeed convex. Since Σ is a convex function and (R+)d is convex, the

set ∇Σ(R+)d) is a convex set. We have thus proven that the set {δ − ~M(eu1 , . . . , eud)|~u ∈

(R+)d} = ~M(]0, 1]d, Id) is convex. Note first that M(1, Id) = 0, yielding that 0 ∈ ~M(]0, 1]d ×
Id). Let 1 ≤ i ≤ d be such that 〈αi, δ〉 6= 0. Since the map Sδ is continuous and nonzero on

[0, 1]d, the map ~M is continuous on [0, 1]d × Id: thus, if (~tl)l≥1 is a sequence of ]0, 1]d such

that ~tl → (δij)1≤j≤d as l goes to infinity, then ~M(~tl, Id) converges to ~M((δij)1≤j≤d, Id). Let

us set (αi, δ) := 2〈αi,δ〉
〈αi,αi〉

. For 1 ≤ l ≤ (δ, αi), Kδ,δ−lαi
= 1, since the only element of B(δ)

ending at δ − lαi is f
l
αi
(π0); thus, we have

~M((δij)1≤j≤d, Id) =
1

Sδ((δij)1≤j≤d)

(αi,δ)
∑

l=0

Kδ,δ−lαi
(δ − lαi)

=
1

∑(αi,δ)
l=0 Kδ,δ−lαi





(αi,δ)
∑

l=0

δ −

(αi,δ)
∑

l=0

lαi





=
1

(αi, δ) + 1

(

(

(αi, δ) + 1
)

δ −
(αi, δ).

(

(αi, δ) + 1
)

2
αi

)

=δ −
(αi, δ)

2
αi = xi,

and xi belongs to ~M(]0, 1]d × Id), the closure of ~M(]0, 1]d× Id). Similarly, if (~tl) is a sequence

of [0, 1]d converging to 0, then ~M(~tl, Id) converges to ~M(~0, Id). Since ~M (~0, Id) = δ, δ ∈
~M(]0, 1]d × Id). Hence, 0, δ and {xi} 1≤i≤d

〈αi,δ〉>0

are in the closure of ~M(]0, 1]d × Id). Since
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~M(]0, 1]d × Id) is convex, this yields that K(δ)+ ⊂ ~M(]0, 1]d × Id). Since [0, 1]d is compact,

~M([0, 1]d, Id) is compact and thus ~M(]0, 1]d × Id) ⊂ ~M([0, 1]d, Id): this yields that K(δ)+ ⊂
~M([0, 1]d, Id). By Lemma 6.1, ~M([0, 1]d, Id) ⊂ K(δ)+, so that finally ~M ([0, 1]d, Id) = K(δ)+.

Since ~M(~t, w) = w−1 ~M(~t, Id), ~M([0, 1]d ×W ) =
⋃

w∈W w(K(δ)+) = K(δ). �

6.2. Proof of Theorem 3.1. We give the proof of Theorem 3.1 by gathering the different
results of the paper. Let us prove the result only for ∂H∞(Rd), since the proof for ∂H∞(∆)
is similar.

• By Corollary 4.1, ∂H∞(Rd) is homeomorphic to Mult(T̂δ)
+ through the map j :

Mult(T̂δ)
+ −→ ∂H∞(Rd) defined by j(f)(Γ(τ)) = f(γ, n) for any path τ ∈ Γ∞(Rd)

of length n ending at γ. Since Mult(T̂δ)
+ is compact, ∂H∞(Rd) is a compact space.

• By Proposition 4.12 the map Ψ : {(~t, w) ∈ [0, 1]dδ × W |w ∈ W 1(~t)} −→ Mult(T̂δ)
+

given by Ψ(~t, w)(γ, n) = 1
Sδ(~t)n

~tnδ−w(γ) is a bijection.

• Finally, by Proposition 6.3, the map ~M : {(~t, w) ∈ [0, 1]dδ ×W |w ∈ W 1(~t)} −→ K(δ)

given by ~M(~t, w) = 1
Sδ(~t)

∑

γ∈Πδ
Kδ,γ~t

δ−w(γ) is bijective.

Therefore, the map P : K(δ) −→ ∂H∞(Rd) given by P = j ◦Ψ ◦ ( ~M−1) is a bijection. Note
that from the previous results, for m ∈ K(δ),

Pm(Γ(τ)) =
1

Sδ(~tm)n
~tnδ−w(γ)
m ,

for all paths τ of length n ending at γ. It remains to show that P is indeed an homeomorphism.
Since K(δ) and ∂H∞(Rd) are compact, it suffices to prove that P or P−1 is continuous. But
for P ∈ ∂H∞(Rd),

P−1(P ) =
∑

τ∈B(δ)

P
(

ΓRd(τ)
)

τ(1).

Thus P−1 is continuous, which concludes the proof of Theorem 3.1. The same proof holds
for ∂H∞(∆) with K(δ)+ and the map P+ introduced in the statement of the Theorem. For
a metric space X, denote by M1(X) the set of probability measures on X with respect to
its Borel σ-algebra; we consider M1(X) as a topological space with the weak convergence
topology. As a straightforward corollary of Theorem 3.1, we get the following integral repre-
sentation of H∞(Rd) and H∞(∆).

Corollary 6.4. The topological spaces H∞(Rd) and H∞(∆) are homeomorphic to M1(K(δ))
and M1(K(δ)+), respectively through the maps

P :

{

M1(K(δ)) −→ H∞(Rd)
µ 7→

∫

K(δ) Pmdµ(m)

and

P :

{

M1(K(δ)+) −→ H∞(∆)
µ 7→

∫

K(δ)+ P+
mdµ(m) .

We prove now that a random path in Γ∞(∆) following the harmonic measure P+
m admits

a law of large numbers with drift m. In the case of a random path in Γ∞(Rd) following the
harmonic measure Pm, the result is clear from the definition of Pm and the classical law of
large numbers for random walks. The case of P+

m is more complicated, since the random path
is constrained to remain in a domain. However, the result is still true:
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Proposition 6.5. Let γm be a random path in Γ∞(∆) following the harmonic measure P+
m.

Denote by τm(n) the position of the path after n steps. Then, almost surely,

1

n
τm(n) −→ m,

as n goes to infinity.

Proof. Denote by τ̃m the random path in Γ∞(Rd) following the harmonic measure Pm. By
[16, Theorem 4.12], we have the equality in law

τm = Pαi1
. . .Pαir

(τ̃m),

where w0 = sαi1
. . . sαir

is a minimal length decomposition of the longest element of W , and
each operator Pα is the Pitman transformation associated with the root α. We recall that
the definition of the operator Pα on a path τ ∈ Γ∞(Rd) is given by

Pα(τ)(t) = τ(t)− ( inf
s∈[0,t]

2〈τ(s), α〉

〈α,α〉
)α.

By a large deviation principle,

‖
1

t
(τ̃m)|[0,t] −m Id|[0,t] ‖∞ −→

t→+∞
0

with probability one. Thus, for s ∈ [0, t] and α ∈ S,
∣

∣

∣

∣

1

t

2〈τ̃m(s), α〉

〈α,α〉
−

2〈ms,α〉

〈α,α〉

∣

∣

∣

∣

≤ ǫ(t),

with ǫ(t) converging to 0 when t goes to infinity with probability one. Since m ∈ K(δ)+,

〈m,α〉 ≥ 0, and thus infs∈[0,t] s
2〈m,α〉
〈α,α〉 = 0. Hence,

∣

∣

∣

∣

1

t
inf

s∈[0,t]

2〈τ̃m(s), α〉

〈α,α〉
α

∣

∣

∣

∣

≤ ǫ(t)|α| −→
t→+∞

0,

and finally 1
tPα(τ̃m)(t) ∼ 1

t τ̃m(t) −→ m as t goes to +∞, with probability one. Iterating this
result for Pαi1

, . . . ,Pαir
yields that

1

t
P(τ̃m)(t) −→

t→+∞
m

with probability one. Since P(τ̃m) is equal in law to τm, the proof is done. �

6.3. c-harmonic function killed on the boundary of ∆. We end this section by proving
Corollary 3.3. We recall that ŝ is the map from ∂H∞(∆) to R+ ∪ {∞} defined by

ŝ(P+
m) =

∑

γ∈P

Kδ,γ~t
γ
m.

Note that the range of ~tm is exactly [0, 1]dδ by Proposition 6.3.

Proof of Corollary 3.3. Suppose that P ∈ Hc(∆) and set Z = dimV (δ). By Corollary 6.4,
there exists µ ∈ M1(K(δ)+) such that P =

∫

K(δ)+ P+
mdµ(m). Since P ∈ Hc(∆), there exists

p : Λ ∩∆ −→ R+ such that

P (Γ∆(γ)) =
p(x)

(cZ)n
,
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for γ ∈ Γ∆(x, n). Let γ = (γn)n≥1 be a sequence of paths such that γn ∈ Γ∆(x, φ(n)) with

φ(n) −→ +∞ when n goes to infinity. Then, on the one hand, (cZ)φ(n)P (Γ∆(γn)) is constant
and equal to p(x). On the other hand, by the expression of P and Theorem 3.1,

(10) (cZ)φ(n)P (Γ∆(γn)) =

∫

K(δ)+
(cZ)φ(n)

Sx,φ(n)δ(~tm)

Sδ(~tm)φ(n)
dµ(m).

Suppose that m is such that ŝδ(P
+
m) = +∞. This means that there exists 1 ≤ i ≤ d such

that (~tm)i = 0. Thus, by Proposition 4.6, P+
m(Γ∆(γ)) is nonzero only if γ ∈ Γ∆(y, n) for

y ∈ nδ + nΠF , where F is a fixed dominant face which is strictly smaller than Kδ. Hence,
for n large enough, P+

m(Γ∆(γn)) = 0, and we can assume that the support of µ is included in
{P+

m|~tm ∈]0, 1]d}. For ~tm ∈]0, 1]d, sx(~tm) is well defined for all x ∈ P+ and we have

Sx,φ(n)δ(~tm)

Sδ(~tm)φ(n)
=

~t
φ(n)δ
m sx(~tm)

~t
φ(n)δ
m (sδ(~tm))φ(n)

=
sx(~tm)

ŝδ(P
+
m)φ(n)

.

Thus, (10) becomes

(cZ)φ(n)P (Γ∆(γn)) =

∫

K(δ)+
(cZ)φ(n)

sx(~tm)

ŝδ(P
+
m)φ(n)

dµ(m).

In order that the right hand-side of the latter expression does not go to infinity, we must
have µ(ŝ−1

δ [0, cZ[) = 0. Then, we have

p(x) = lim
n→+∞

∫

K(δ)+

(

tZ

ŝδ(P
+
m)

)φ(n)

sx(~tm)dµ(m) =

∫

ŝ−1
δ ({cZ})

sx(~tm)dµ(m),

and the support of µ is ŝ−1
δ ({cZ}). Finally, ∂Hc(∆) ⊂ ŝ−1

δ ({cZ}).

Its is readily seen that ŝ−1
δ ({cZ}) ⊂ Hc(∆)∩∂H∞(∆) by the expression of P+

m from Theorem
3.1, and by the characterization of c-harmonic functions from Section 2.4; thus ∂Hc(∆) =
ŝ−1
δ ({cZ}), which proves the first part of the corollary.
For the second part of the corollary, a quick computation yields that log(sδ) is strictly convex
on Rd: the hessian matrix of log(sδ) at ~t is actually the covariance matrix of a non-degenerate
random variable. Thus, log(sδ) admits a unique minimum on Rd, which is located at the

unique vector ~t0 such that ∇ log(sδ)(~t0) = ~0. Since

∇ log(sδ)(~t) =
1

sδ(t)

∑

γ∈P

Kδ,γ~t
γγ = ~M(~t)

and ~M(~1) = ~0, the minimum of log(sδ) is at~1. The same holds for sδ, and thus min∂∞(∆,0) ŝδ =
ŝδ(P~1) = Z. The second part of the corollary is a straightforward deduction of this fact.

�

Note that the proof of the latter corollary gives an explicit expression of the harmonic
measure associated with the central measure Pm.
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[15] C. Lecouvey, E. Lesigne and M. Peigné, Conditioned random walks from Kac-Moody root systems,

Transactions of the AMS. 368(5): 3177-3210 (2016).
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