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CENTRAL MEASURES ON MULTIPLICATIVE GRAPHS,

REPRESENTATIONS OF LIE ALGEBRAS AND WEIGHT POLYTOPES

CÉDRIC LECOUVEY AND PIERRE TARRAGO

Abstract. To each finite-dimensional representation of a simple Lie algebra is associated
a multiplicative graph in the sense of Kerov and Vershik defined from the decomposition
of its tensor powers into irreducible components. It was shown in [11] and [12] that the
conditioning of natural random Littelmann paths to stay in their corresponding Weyl cham-
ber is controlled by central measures on this type of graphs. In this paper we characterize
all the central measures on these multiplicative graphs and explain how they can be eas-
ily parametrized by the weight polytope of the underlying representation. We also get an
explicit parametrization of this weight polytope by the drifts of random Littelmann paths.

1. Introduction

Consider a simple Lie algebra g of rank d over C and its root system in Rd. Let P be
the corresponding weight lattice and fix ∆ a dominant Weyl chamber. Then P+ = P ∩∆ is
the cone of dominant weights of g. Denote by S = {α1, . . . , αd} the underlying set of simple
roots. To each dominant weight δ ∈ P+ corresponds a finite-dimensional representation V (δ)
of g of highest weight δ. In [14] Littelmann associated to V (δ) a set B(δ) of paths in Rd

with length 1 starting at 0 with ends the set Πδ of weights of V (δ). Random Littelmann
paths can then be defined first by endowing B(δ) with a suitable probability distribution,
next by considering random concatenations of paths in B(δ). In [11] and [12] distributions
on the set B(δ) are defined from morphisms from P to R>0. This is equivalent to associate
to each simple root αi a real ti in ]0,+∞[. It is then shown that these random paths and
their conditioning to stay in the Weyl chamber ∆ are controlled by the representation theory
of g. In fact, one so obtains particular central distributions on the set Γn(0,R

d) of paths
of any length n ≥ 1 (obtained by concatenating n paths in B(δ)). By central distributions
we here mean that the probability of a finite path only depends on its length and its end.
Equivalently, we get a central measure on the set of infinite concatenations Γ(0,Rd) of paths
in B(δ) (see Section 2).

Write H∞(0,Rd) for the set of central measures on Γ(0,Rd) and H∞(0,∆) for the subset
of H∞(0,Rd) of central measures on Γ(0,∆), the set of infinite trajectories remaining in ∆.
By Choquet Theorem both sets H∞(0,Rd) and H∞(0,∆) are simplices so they are essentially
determined by their minimal boundaries ∂H∞(0,Rd) and ∂H∞(0,∆). The goal of this paper
is to characterize the sets ∂H∞(0,Rd) and ∂H∞(0,∆). Write K(δ) for the convex hull of
Πδ and set K(δ)+ = ∆ ∩ K(δ). We will establish in fact that ∂H∞(0,Rd) and ∂H∞(0,∆)
are respectively homeomorphic to K(δ) and K(δ)+ and make explicit both homeomorphisms
by using the Weyl characters of g (see Theorem 3.1). Our approach will extend that of
Kerov and Vershik to which it essentially reduces when V (δ) is the defining representation
of g = sln. Nevertheless, numerous difficulties arise when considering the general case of
dominant weights of any simple algebra g. Our methods to determine ∂H∞(0,Rd) and
∂H∞(0,∆) are quite similar. So we will now give its main steps only in the case of ∂H∞(0,∆).
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2 CÉDRIC LECOUVEY AND PIERRE TARRAGO

We first need to show that the characterization of ∂H∞(0,Rd) is equivalent to that of the
extremal harmonic functions on the growth graph GRd(∆) associated to Γ(0,∆). This growth
diagram is rooted, graded and multiplicative: its vertices label the basis B = {(sλ, n) | V (λ)

irreducible component of V (δ)⊗n and n ≥ 1} of a commutative algebra Âδ (here sλ is the
Weyl character of V (λ)). We then establish that the extremal nonnegative harmonic functions

on GRd(∆) are in bijection with the algebra morphisms from Âδ to R that are nonnegative
on B. Next, we prove that all these morphisms are obtained by associating to each simple
root αi, i = 1, . . . , n a real in [0, 1]. The difficulty here comes from the fact that two such
associations can yield the same morphism. So to obtain a genuine parametrization we need
to restrict ourselves to a subset [0, 1]δ (see (6)) of [0, 1]d whose combinatorial description is in
terms of the δ-admissible subsets of S introduced in [16]. Finally, in Proposition 6.3, we show
that our set [0, 1]δ also parametrizes the simplex K(δ)+ by considering, for each d-tuple in
[0, 1]δ , the drift of the corresponding random Littelmann path appearing in the construction
of [11] and [12].

The paper is organized as follows. In Section 2, we recall some background on random
chains, central measures and multiplicative graphs. We also give a generalization of a Theo-
rem by Kerov and Vershik relating extremal harmonic functions on a multiplicative graph to
positive morphisms of the underlying algebra. Our main result is written down in Section 3
where we also introduce the algebra Âδ. Section 4 gives the description of ∂H∞(0,Rd). Here,
we define our set [0, 1]δ and relate it to the geometry of the polytope K(δ). The description
of ∂H∞(0,∆) is deduced from that of ∂H∞(0,Rd) in Section 5. It is worth noticing that we
need here (as in the result of Kerov and Vershik) a classical theorem relating polynomials
with non positive roots to totally positive sequences. Another important ingredient in the
proof is the use of certain plethyms of Schur and Weyl characters of g. Finally, Section 6
relates both descriptions of ∂H∞(0,Rd) and ∂H∞(0,∆) to the drift of random Littelmann
paths. Notably it explains how the polytope K(δ) can be simply parametrized by using the
set [0, 1]δ .

2. General probabilistic framework

We present here a general probabilistic model of random paths in a domain, which is well
suited to study probability aspects of Littelmann paths and their asymptotics. We introduce
a discrete version of this model.

2.1. Random paths on a lattice. Let d ≥ 0 and let Λ be a lattice of Rd.

Definition 2.1. Let n be a nonnegative integer. A path γ on Λ is a piecewise linear function
γ : [0, n] −→ Rd with γ(i) ∈ Λ for all i in 0, ..., n, and γ(x) ∈ Λ for all x for which γ is not
differentiable at x. The path γ is called infinitesimal if t = 1 and γ(0) = 0. The length of the
path γ is defined as the length of the interval on which γ is defined and denoted by l(γ): the
path is said finite if its length is finite, and infinite otherwise.

A path defines a sequence of vectors (γ(0), . . . , γ(i), . . . ) in Λ. Let k ∈ N. When γ is a path
of length n ≥ k, we denote by γ↓k the path γ|[0,k]. Let X be a denumerable set of infinitesimal

paths and let Ω be a domain of Rd. A path γ is called X-valued if γ is the concatenation
of infinitesimal paths coming from X: equivalently,

(

γ|[i,i+1] − γ(i)
)

∈ X for all i ≥ 1. The
set of X-valued paths (resp. finite X-valued paths, resp. X-valued paths of length n, with
n ∈ N∪{∞}) whose image is included in Ω is denoted by Γ(Ω) (resp. by Γf (Ω), resp. Γn(Ω)).
For x, y ∈ Λ and n ≥ 1, we denote by Γ(x, y, n) the set of paths γ of length n in Γn(Ω) with
γ(0) = x, γ(n) = y. We also write Γn(x, n) =

⋃

y∈Λ Γ(x, y, n) and Γ(x) =
⋃

n≥0 Γn(x).
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In order to consider random paths in Ω, we need to define a σ-algebra on Γ(Ω). Let τ be
a finite rooted path of length n, and let ΓΩ(τ) be the set {γ ∈ Γ(Ω)|l(γ) ≥ n, γ↓n = τ}. We
define the σ-algebra A as the coarsest σ-algebra containing all the sets ΓΩ(τ) for τ ∈ Γf (Ω).
It is readily seen that Γf (Ω) ∈ A and that the restriction of A to Γf (Ω) is the discrete
σ-algebra. The set M1(Γ(Ω)) of probability measures on Γ(Ω) is considered with the initial
topology with respect to the evaluation maps on the sets ΓΩ(τ), τ ∈ Γf (Ω). By Tychonov’s
Theorem, M1(Γ(Ω)) is a compact set with respect to this topology.

2.2. Central random paths.

Definition 2.2. A random path τ in Γ(Ω) is called central if there is a function p : Λ×Λ×
N −→ R+ such that

P(τ ∈ ΓΩ(γ)) = p(γ(0), γ(l(γ)), l(γ)),

for all τ ∈ Γf (Ω). A measure on Γ(Ω) is called central if the corresponding random path is
central.

The set of central measures (resp. central measures supported on Γf (Ω), resp. central
measures supported on Γ∞(Ω)) is denoted by H(X) (resp. Hf (X),H∞(X)). The sets H(X),
Hf and H∞(X) are convex subsets of M1(Γ(Ω)). Conditioning elements of H(X) on Γf (Ω)
and Γ∞(Ω) yields that any central measure is a convex combination of central measures in
Hf (X) and H∞(X). Therefore, the description of H(X) is equivalent to the description of
Hf (X) and H∞(X).

It is readily seen that there is an alternative equivalent definition of central random paths: a
random path is central if and only if the law of τ[m,n] conditioned on the set {γ ∈ Γ(Ω)|l(γ) ≥
n, γ(m) = x, γ(n) = y} is the uniform law on the set of paths of length n − m joining x

to y. This equivalent definition gives a straightforward description of the set Hf . Namely,
conditioning on the first and last point of the random paths yields that any central measure
w ∈ Hf admits a unique decomposition

w =
∑

x,y∈Λ
n≥1

ax,y,nPx,y,n,

where ax,y,n ≥ 0 and Px,y,n is the uniform distribution on the set Γ(x, y, n) for x, y ∈ Λ and
n ≥ 1. On the other hand, the description of the set H∞ is much more complicated. It is
still possible to condition an infinite random path on the starting point, in such a way that
any central measure ω in H∞ admits the decomposition

ω =
∑

x∈Λ

axωx,

where ωx is an central measure on the set of paths starting at x, and ax is non-negative.
Denote by H∞(x) the set of infinite central measures starting at x. It is known (see the next
section) that H∞(x) is a convex set and even a Choquet simplex. Therefore, there exists
a subset ∂H∞(x) ⊂ H∞(x), such that any central measure ω0 in H∞(x) admits a unique
integral representation

ω0 =

∫

∂H∞(x)
ωdµ(ω),

where µ is a probability measure on the set ∂H∞(x).
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2.3. The graph embedding and Martin theory. Let P ∈ H∞(x) and denote by w

the random path sampled according to P. Then, by Definition 2.2 there exists a function
pω : Λ× N −→ R+ such that

P(ω ∈ ΓΩ(γ)) = pω(γ(l(γ)), l(γ)),

for all γ ∈ Γf (x). Let λ ∈ Λ, and suppose that γ is a finite path of Γf (Ω) starting at x and
ending at λ with length n. A path τ of length n + 1 ending at µ ∈ Λ satisfies τ↓n = γ if
and only if τ↓n = γ and τn+1 is an infinitesimal path joining λ to µ. Therefore, ΓΩ(γ) can be
decomposed as

ΓΩ(γ) =
∐

µ∈Λ

∐

τ∈Γ(λ,µ,1)

Γ(γ.τ).

Thus,

P (ω ∈ ΓΩ(γ)) =
∑

µ∈λ

∑

τ∈Γ(λ,µ,1)

P (ω ∈ Γ(γ.τ)) ,

which translates into the relation

(1) pω(λ, n) =
∑

µ∈Λ

#Γ(λ, µ, 1)p(µ, n + 1)

here and in the sequel of the paper #X is the cardinality of the set X. The set H∞(x) is in
bijection with the set of non-negative solutions of (1) with value 1 on (x, 0). This equivalence
leads to an alternative description of central random paths starting at x.

Definition 2.3. The growth graph of Γ(x) is the rooted graded graph G(x) defined recursively
as follows:

• The root is denoted by (x, 0).
• For each element λ of Λ such that there is an infinitesimal path γ in Γ(Ω) starting at
x and ending at λ, we define a vertex (λ, 1) of rank 1 and an edge between (x, 0) and
(λ, 1) with weight e(x, λ) = #Γ(x, λ, 1).

• Let n ≥ 1, and suppose that the graded graph is defined up to rank n: the set Gn(x) of
vertices of rank n can be written as {(λ, n)}λ∈Λn , where Λn is a subset of λ depending
on x. For each element µ of Λ such that there exists an infinitesimal path γ with
γ(0) ∈ Λn and γ(1) = µ, we define a vertex (µ, n+1) of rank n+1. For each λ ∈ Λn

there is an edge from (λ, n) to (µ, n+ 1) with weight e(λ, µ) = #Γ(λ, µ, 1).

We write λ ր µ when #Γ(λ, µ, 1) 6= 0. It is readily seen that the number of paths
between (x, 0) and (λ, n) is canonically equal to #Γ(x, λ, n), and the set H∞(x) is iso-
morphic to the set of non-negative function p :

∐

n≥0 Λn −→ R+ with p(x, 0) = 1 and

p(λ, n) =
∑

λրµ e(γ, µ)p(µ, n + 1). We conclude this subsection by establishing some con-
nection between central measures on random paths and Markov path on lattices. Suppose
that we are considering paths on a lattice Γ having their infinitesimal paths in a finite set
X = (γ1, . . . , γn) and restricted to lie in a domain Ω. Let x ∈ Λ ∩ Ω. From the growth
graph of Γ(x), it is clear that any central measure ω ∈ H∞(x) yields a Markov path
Xω = (γω(0), γω(1), . . . ) on the lattice Λ ∩ Ω with initial state space x and with a possibly
time-inhomogeneous kernel (Qω

n)n≥1: by considering the associated function p :
∐

Λn −→ R+,
the kernel can be explicitly given as

Qω
n(µ, ν) = 1µրν

e(µ, ν)p(ν, n)

p(µ, n− 1)
.

By the equality p(µ, n − 1) =
∑

µրν e(µ, ν)p(ν, n), Qn is a well-defined Markov kernel, and
it is readily seen that this family of Markov kernels generates the random variable γω. Note
however that any random walk on Λ ∩ Ω is not necessarily coming from an central measure.
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2.4. Central measure on multiplicative graphs. A rooted graded graph G = {∗} ⊔
∐

n≥1 Gn with weights (e(λ, µ))µ,λ∈G
λրµ

is called multiplicative if there is an algebra A and an

injective map i : G −→ A such that i(λ)i(∗) =
∑

λրµ e(λ, µ)i(µ). We suppose that the graph
is connected, which means that for all µ ∈ G, the number of paths between the root and µ is
positive: the weight w(γ) of a path γ between the root and a vertex µ is the product of all
the weights of the edges of γ. Let K be the cone spanned by i(G), and let AG be the unital
subalgebra of A generated by K. The following result is an application of the Ring theorem
of Kerov and Vershik (see for example [7, Section 8.4]) which characterizes the extreme points
of the set H(G) of solutions to the following problem:

(2)







p : G −→ R+

p(∗) = 1
p(λ) =

∑

λրµ e(γ, µ)p(µ).

Denote by Mult+(AG) ⊂ A∗
G the set of multiplicative functions on AG which are non-negative

on K and equal to 1 on i(∗). Note that i : G −→ AG induces a map i∗ : A∗
G −→ F (G,R).

Proposition 2.4. Suppose that K.K ⊂ K. Then, the map i∗ yields an homeomorphism
between Mult+(AG) and the set of extreme points of H(G).

The proof of this proposition is based on the following Theorem of Kerov and Vershik:

Theorem 2.5. Let B be a unital commutative algebra over R and K ⊂ B a convex cone
satisfying the following conditions:

• K −K = B (K generates B).
• K.K ⊂ K (K is stable by multiplication).
• K is spanned by a countable set of elements.
• For all a ∈ B, there exists ǫ > 0 such that 1− ǫa ∈ K.

If L denotes the convex set of linear forms on B which are non negative on K and map
1B to 1, then φ is an extreme point of L if and only if φ is multiplicative (meaning that
φ(ab) = φ(a)φ(b) for all a, b ∈ B).

We give now the proof of Proposition 2.4.

Proof. Let B = AG� < i(∗) = 1 > and let π : AG −→ B be the canonical projection;

denote by K̃ the projection of the cone R+Id +K in B. Since K.K ⊂ K and {1,K} span

AG , K̃.K̃ ⊂ K̃ and K̃ spans B. Since G has a countable set of vertices, K̃ is spanned by a
countable set of elements. Note that there is a bijection between the elements of H(G) and

the linear forms on B which are non negative on K̃ and equal to 1 on 1: indeed h ∈ H(G)
if and only if h(µ) =

∑

µրν e(µ, ν)h(ν). Thus, for f ∈ A∗
G , i∗(f) ∈ H(G) if and only if

f(i(∗)i(µ)) = f(i(µ)); equivalently, this means that f factors through B. Non-negativeness

on G for i∗(f) is then equivalent to non-negativeness on K̃ for f , and [i∗(f)](∗) = 1 if and
only if f(π ◦ i(∗)) = f(1) = 1.

Let a ∈ B, and let us show that there exists ǫ such that 1 − ǫa ∈ K̃. Since K̃ − K̃ = B,
and 1 − b ∈ K̃ for all b ∈ −K̃, we can suppose without loss of generality that b ∈ K̃. It is
thus enough to prove that for µ ∈ G, there exists ǫ such that 1 − ǫπ ◦ i(µ) ∈ K. Suppose
that µ has rank n. Since the graph is connected, there exists a path γ0 of weight w(γ0)
between ∗ and µ. By iteration of the relation coming from the multiplicative structure
of G, i(∗)n =

∑

ν∈G
rk(µ)=n

(
∑

γ:∗→µw(γ))i(ν). Thus i(∗)n − w(γ0)i(µ) belongs to K. Since

π(i(∗)n) = 1, 1 − w(γ0)π ◦ i(µ) belongs to K̃. Therefore, we can apply Theorem 2.5 to

(B, K̃), which yields that the extreme linear maps among the set of linear maps on B which

are non negative on K̃ and equal to 1 on 1 are the multiplicative ones. Since there is a
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bijection between multiplicative maps on B which are non negative on K̃ and non negative
maps on AG which are non negative on K, the proof is done. �

3. Littelmann paths in Weyl chambers

We describe a class of random paths coming from the representation theory of semi-simple
Lie groups.

3.1. Background. We consider a simple Lie group G over C and its Lie algebra g. Let R ⊂ V

be the set of roots of g regarded as a finite subset of the euclidean vector space V . We fix
R+ a subset of positive roots and S = {α1, α2, . . . , αd} ⊂ R+ a basis of R. The Weyl group
of g is denoted by W .

Write P for the weight lattice of g and ω1, . . . , ωd for its fundamental weights so that we
have

P =

d
⊕

i=1

Zωi.

We denote by ∆ the fundamental Weyl chamber of g with respect to S, which corresponds

to the positive orthant on the weight space
⊕d

i=1 Rωi. The cone of dominant weights is then

P+ = P ∩∆ =

d
⊕

i=1

Nωi.

We denote by Q+ the subset of P spanned by linear combination of the simple roots with non
negative coefficients. We denote by R[P ] the ring group of P over R with basis {eβ | β ∈ P},
and by R[Q+] the subalgebra of R[P ] generated by Q+. Then

RW [P ] = {u | w(u) = u,w ∈ W}

is the character ring of g. To each λ ∈ P+ corresponds a simple finite-dimensional represen-
tation of g we denote V (λ). The Weyl character of V (λ) is

sλ =
∑

γ∈P

Kλ,γe
γ

where Kλ,γ is the dimension of the weight space γ in V (µ). By the Weyl character formula
we have

(3) sλ =

∑

w∈W ε(w)ew(λ+ρ)−ρ

∏

α∈R+
(1− e−α)

where ρ = 1
2

∑

α∈R+
α. For µ ≥ λ, denote by Sλ,µ the function

Sλ,µ = e−µsλ =
∑

γ∈P

Kλ,γe
γ−µ

where for any γ such that Kλ,γ > 0, γ − µ is a linear combination of the simple roots with
negative coefficients; for µ = λ, we simply write Sλ, instead of Sλ,λ. By setting Ti = e−αi

we thus obtain that Sλ,µ = Sλ,µ(T1, . . . , Td) is polynomial in the variables T1, . . . , Td with
nonnegative integer coefficients. Recall also the Weyl dimension formula

dim(V (λ)) =
∏

α∈R+

(λ+ ρ, α)

(ρ, α)

in particular, dim(V (λ)) is polynomial in the coordinates of λ on the basis of fundamental
weights.
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3.2. The random path of Littelmann paths. Now, fix a dominant weight δ ∈ P+ and
denote by Πδ the set of weights of the irreducible representation V (δ). Let Pδ be the sublattice
of P generated by Πδ. This defines subalgebras

R[Pδ] = {eβ | β ∈ Pδ} ⊂ R[P ] and RW [Pδ] = {u ∈ R[Pδ ] | w(u) = u} ⊂ RW [P ].

Finally denote by T+
δ the subset of P+ of weights λ such that V (λ) appears as an irreducible

component in a tensor power V (δ)⊗ℓ, ℓ ≥ 0. Given λ and µ in T+
δ , we clearly have λ + µ

in T+
δ . Moreover the Z-lattice Tδ generated by T+

δ is a sublattice of Pδ. We thus have the
following inclusions of Z-lattices

Tδ ⊂ Pδ ⊂ P.

Since B = (ω1, . . . , ωd) is a Z-basis of P+ there exists (q1, . . . , qd) ∈ Z>0 such that qi+1 | qi
for any i = 1, . . . , d− 1 and

Pδ =

d
⊕

i=1

Z≥0qiωi.

Now let Aδ be the subalgebra of RW [P ] generated by the Weyl character sλ with λ ∈ T+
δ .

We have the inclusions

Aδ ⊂ RW [Pδ ] ⊂ R[Pδ] ⊂ R[P ].

We denote by K(δ) the convex hull of the set Πδ: K(δ) is a polytope whose extreme points are
the elements w(δ) for w ∈ W . The intersection of K(δ) with the Weyl chamber ∆ is denoted
by K(δ)+.By Littelmann’s theory, there is a set B(δ) = {γi}1≤i≤dimV (δ) of infinitesimal paths
on Pδ, with the following properties:

• γi(1) ∈ Πδ for all 1 ≤ i ≤ dimV (δ).
• The multiplicity of the weight µ in V (δ) is equal to #ΓB(δ),Rd(0, µ, 1).

• The multiplicity of the irreducible representation V (ν) in V (µ)⊗ V (δ)⊗n is equal to
#ΓB(δ),∆(µ, ν, n) for all ν, µ ∈ P+ and n ≥ 0.

The set of infinite paths we are interested in is the set of infinite random paths starting at
0 with set of infinitesimal paths B(δ).

3.3. Statements of the result. We denote by Γ(0,Rd) the set of paths starting at 0 and
lying in Rd and by Γ(0,∆) the set of paths starting at 0 and lying in ∆, and we recall that
we consider the space of probability measures on Γ(δ) with the initial topology with respect
to the evaluation maps on the cylinders ΓΩ(τ), τ ∈ Γf (Ω). The main result of this paper is

an identification of the minimal boundaries for random paths in Γ(0,Rd) and Γ(0,∆) with
the topological spaces K(δ) and K(δ)+, respectively. In both cases, the homeomorphism can
be made explicit by the introduction of a natural parametrization t : K(δ) −→ [0, 1]d × W

of K(δ) such that t(K(δ)+) ⊂ [0, 1]d × IdW (this parametrization is explained in Section 5).
For m ∈ K(δ), we denote by (~tm, wm) the image of m through this parametrization. The
main result of the paper is summarized in the following theorem:

Theorem 3.1. The set of extremal measures ∂H∞(0,Rd) is homeomorphic to K(δ) through
a map

P :

{

K(δ) −→ ∂H∞(0,Rd)
m 7→ Pm

such that Pm(ΓB(δ),Rd(γ)) =
~t
Nδ−wm(λ)
m

Sδ(~tm)
for all γ ∈ ΓB(δ),Rd(0, λ,N). The set of extremal

measures ∂H∞(0,∆) is homeomorphic to K(δ)+ through a map

P+

{

K(δ)+ −→ ∂H∞(0,∆)
m 7→ P+

m
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such that P+
m(ΓB(δ),∆(γ)) =

Sλ,Nδ(~tm)

Sδ(~tm)N
for all γ ∈ ΓB(δ),∆(0, λ,N).

It is easy to see that the measures Pm are indeed central. Moreover, for m ∈ K(δ),
Littelmann’s theory yields that for γ ∈ Γ(0, y,N),

∑

γ̃∈Γ(0,N+1),γ̃↓N=γ

P+
m(ΓB(δ),∆(γ̃)) =

∑

µ∈B(δ),γ.µ∈Γ(0,y,N+1) Sγ(N)+µ(1),Nδ+x(~tm)

Sδ(~tm)N+1

=
Sγ(N),Nδ(~tm)Sδ(~tm)

Sδ(tm)N+1

=
sγ(N),Nδ(t1, . . . , td)

Sδ(~tm)N

=P+
m(ΓB(δ),∆(γ)),

so that P+
m is also a central probability measure on Γ(0,∆). The main point of the result is

to prove that P and P+ are bijective.

Remark 3.2. In type Ad, when δ = ω1 is the first fundamental weight, V (δ) can be regarded
as the defining representation of sld+1 or more conveniently, of gld+1. The set ∂H∞(0,∆) is
then homeomorphic to

K(δ)+ = {(p1, . . . , pn+1) ∈ Rd+1 | p1 ≥ · · · ≥ pn+1 ≥ 0 and p1 + · · ·+ pn+1 = 1}

and we recover the finite-dimensional version of the Thoma simplex.

3.4. The extended algebra of characters. The proof of Theorem 3.1 will use algebraic
properties of the representations of the Lie algebra g. We define the extended algebra of
characters Âδ as follows:

• Âδ is isomorphic to Aδ × R[T ] as a vector space; for x ∈ Aδ, we simply denote by

(x, n) the element (x, T n). A basis of Âδ is given by the set B = {(sλ, n)}n≥1,λ∈T+
δ
.

• The multiplicative structure of Âδ is defined on B with the product

(sλ, n)× (sµ,m) = (sλsµ, n +m).

We denote by T̂+
δ the subalgebra of Âδ spanned by the set {(sλ, n)|λ ∈ δ⊗n}. Likewise, we

define the extended algebra of weights P̂δ as follows

• P̂δ is isomorphic to R[Pδ ]× l2(N∗) as a vector space. A basis of P̂δ is given by the set
P = {(eγ , n)|n ≥ 1, γ ∈ δ⊗n}.

• The multiplicative structure of P̂δ is defined on P with the product

(eγ , n)× (eγ
′
,m) = (eγ+γ′

, n+m).

We denote by T̂δ the subalgebra of P̂δ spanned by the elements {(eγ , n)|n ≥ 1, γ ∈ δ⊗n}.

It is readily seen that T̂δ is the subalgebra of P̂δ generated by {(eγ , 1)|γ ∈ Πδ}.Note that the

inclusion Aδ ⊂ R[Pδ] translates naturally into the inclusion Âδ ⊂ P̂δ and T̂+
δ ⊂ T̂δ. We can

write the multiset of weights of δ in T̂δ as Πδ = {(eγ1 , 1), . . . , (eγN , 1)} where each weight ap-
pears a number of times equal to its multiplicity. For any k = 0, . . . , N , let ek(X1, . . . ,XN ) be
the k-th elementary symmetric function in the variables X1, . . . ,XN . Define the polynomial
Φ(X) ∈ T̂δ[X] by

Φ(X) =
∏

γ∈πδ

(X + (eγ , 1)).
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Proposition 3.3. We have

(4) Φ(X) =

N
∑

k=0

(ek(e
γ1 , . . . , eγN ), k)XN−k

and for any k = 0, . . . , N, the expression (ek(e
γ1 , . . . , eγN ), k) decomposes as a sum of elements

(sλ, n) ∈ T̂+
δ with positive integer coefficients. In particular, we have Φ(X) ∈ T̂+

δ [X].

Proof. The expression ek(e
γ1 , . . . , eγN ) is the plethysm of the elementary symmetric function

ek by sδ. This means that

ek(e
γ1 , . . . , eγN ) = char

(

k
∧

V (δ)

)

is the character of the k-th exterior power of the representation V (δ). Since
k
∧

V (δ) is a
submodule of V (δ)⊗k, its character indeed decomposes as a sum of characters in {sλ | sλ ∈
δ⊗k} with positive integer coefficients. �

Corollary 3.4. T̂+
δ is integrally closed in T̂δ.

Proof. Let T̂+
δ denote the integral closure of T̂+

δ in T̂δ. We have T̂+
δ ⊂ T̂δ by definition.

Conversely, since T̂+
δ is a ring and T̂δ is generated by the monomials (eγ , 1) with γ ∈ Πδ, it

suffices to prove that each such (eγ , 1) belongs to T̂+
δ . But −(eγ , 1) is a root of Φ(X) which is,

by the previous proposition, a monic polynomial with coefficients in T̂+
δ . Therefore −(eγ , 1)

and (eγ , 1) are integers over T̂+
δ and thus belong to T̂+

δ . �

4. Minimal boundary of Γ(0,Rd)

4.1. Algebraic description of the growth graph. Let GRd(0) be the growth graph of
Γ(0,Rd) and G∆(0) be the one of Γ(0,∆). Namely, the set Λn of vertices of rank n of the
graph GRd(0) are pairs (γ, n) where γ is a weight of Pδ such that ΓRd(0, γ, n) 6= ∅, and the
weight of the edge between (γ, n) and (γ′, n + 1) is e((γ, n), (γ′, n + 1)) = #ΓRd(γ, γ′, 1).
From the graph embedding of Section 1, the set extreme central measures on Γ(0,Rd) is in
bijection with the set of extreme points of the convex set ∂H(G(0) of non-negative functions
p :
∐

n≥0Λn −→ R+ with p(x, 0) = 1 and p(λ, n) =
∑

λրµ e(γ, µ)p(µ, n + 1), and the same

holds for G∆. An important feature of GRd(0) is that this graded graph is multiplicative: it

is related to the algebra T̂δ as follows.

Proposition 4.1. GRd(0) is a multiplicative graph associated to the algebra P̂δ with the
injective map

i :







∐

n≥1Λn −→ P̂δ

(γ, n) 7→ (eγ , n), n > 1
∗ 7→ (sδ, 1)

In particular, ∂H∞(GRd(0)) is homeomorphic to Mult(T̂δ)
+ through the map

i∗ :

{

Mult(T̂δ)
+ −→ ∂H∞(GRd(0))

f 7→ f ◦ i
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Proof. Since e((γ, n), (γ′, n + 1)) = #Γ(γ, γ′, 1) = Kγ′−γ,δ, the following equality holds for
(γ, n) ∈ Λn:

i(γ, n)i(∗) =(eγ , n)(
∑

κ∈Πδ

Kκ,δe
γ′
, 1) =

∑

κ∈Πδ

Kκ,δ(e
γ+κ, n+ 1)

=
∑

γ′∈Pδ,γ
′−γ∈Πδ

Kγ′−γ,δ(e
γ′
, n+ 1)

=
∑

γ′∈Pδ

e((γ, n), (γ′, n+ 1))i(γ′, n + 1).

Thus, GRd(0) is a multiplicative graph associated to P̂δ with the map i. Note that by con-

struction, the sub-algebra of P̂δ generated by the elements {i(γ, n)}(γ,n)∈G
Rd

(0) is precisely T̂δ:

the last part of the proposition is deduced from Proposition 2.4. �

4.2. Characterization of the multiplicative maps on T̂δ. The set of extreme central
measures on GRd is thus given by the set of positive morphisms from T̂δ to R which take the
value 1 on (sδ, 1). We will prove in this subsection the following result:

Proposition 4.2. Let f ∈ Mult(T̂δ)
+. There exists a multiplicative map φ : R[Q+] −→ R+

and an element w ∈ W such that

f(eγ , n) =
1

φ(Sδ)n
φ(enδ−w(γ)),

for all (eγ , n) ∈ T̂δ.

Note that the element φ(enδ−w(γ)) is well-defined: indeed, if (eγ , n) ∈ T̂δ, then the weight
γ appears in the representation V (δ)⊗n and w(γ) is thus smaller than nδ with respect to the
roots order relative to the set of simple roots S. Therefore, nδ − w(γ) ∈ Q+.

Let f be a multiplicative map on T̂δ. Since f is multiplicative and T̂δ is generated by the
set Π̃δ := {(eγ , 1), γ ∈ Πδ}, f is completely determined by its value on Π̃δ. We suppose from

now on that f ∈ Mult(T̂δ)
+. Let Mf =

∑

γ∈Πδ
Kδ,γf(γ, 1)γ: Mf belongs to tRd, thus there

exists w ∈ W such that w(M) ∈ ∆. Replacing f by f ◦ w−1 gives another multiplicative

maps on T̂δ such that Mf◦w−1 =
∑

γ∈Πδ
Kδ,γ(f ◦ w−1)(eγ , 1)γ ∈ ∆ and such that f can be

expressed from f ◦ w−1 with the formula f = (f ◦ w−1) ◦ w.

Lemma 4.3. Assume that Mf ∈ ∆ and let α ∈ S. For all γ ∈ Πδ such that γ − α ∈ Πδ,

f(eγ , 1) = 0 =⇒ f(eγ−α, 1) = 0.

In particular, f(eδ) 6= 0.

Proof. Let α ∈ S, and suppose that there exists γ ∈ Πδ such that γ − α ∈ Πδ, f(e
γ , 1) = 0

and f(eγ−α, 1) 6= 0. If γ′ is another vector of Πδ such that f(eγ
′
, 1) 6= 0, then necessarily

γ′ − α 6∈ Πδ: indeed, if γ
′ − α ∈ Πδ, then

f(eγ
′−α, 1)f(eγ , 1) = f(eγ+γ′−α, 2) = f(eγ−α, 1)f(eγ

′
, 1) 6= 0,

which contradicts the fact that f(eγ , 1) = 0.For all γ′ ∈ Πδ, γ′ − α 6∈ Πδ implies that

〈γ′, α〉 ≤ 0: thus, f(eγ
′
, 1) 6= 0 implies that 〈γ′, α〉 ≤ 0. We get

〈
∑

γ′ 6=γ−α

Kγ′,δf(e
γ′
, 1)γ′, α〉 ≤ 0.



CENTRAL MEASURES ON MULTIPLICATIVE GRAPHS 11

Since f(eγ−α, 1) 6= 0 and because of the reason above, we have γ−2α 6∈ Πδ. Hence,
2〈γ,α〉
〈α,α〉 ≤ 1,

which yields 〈γ − α,α〉 < 0. Finally,

〈M,α〉 = Kγ−α,δf(e
γ−α, 1)〈γ − α,α〉 + 〈

∑

γ′ 6=γ−α

Kγ′,δf(e
γ′
, 1)γ′, α〉 < 0,

which contradicts the fact that M ∈ ∆.Let γ ∈ Πδ such that f(eγ , 1) 6= 0. Since γ ∈ Πδ,

there exists a finite sequence (xi)1≤i≤r in S such that δ −
∑j

i=1 xi ∈ Πδ for all 1 ≤ j ≤ r

and δ −
∑r

i=1 xi = γ. Thus, from the first part of the lemma, f(eδ−
∑j

i=1 xi , 1) 6= 0 for all

1 ≤ j ≤ r; in particular, f(eδ−x1 , 1) 6= 0, and applying again the first part of the lemma
yields that f(eδ, 1) 6= 0. �

We can now prove Proposition 4.2:

Proof of Proposition 4.2. Let f ∈ Mult(T̂δ) be such that Mf ∈ ∆. Let α ∈ S. If for all
γ ∈ Πδ such that f(eγ , 1) 6= 0 we have γ−α 6∈ Πδ, then set φ(eα) = 0. Otherwise, let γ ∈ Πδ

such that f(eγ , 1) 6= 0 and such that γ − α ∈ Πδ, and set φ(eα) = f(eγ−α,1)
f(eγ ,1) . Then, φ(α) is

independent of the choice of γ. Indeed, if γ′ is another weight satisfying the same hypothesis,
then

f(eγ , 1)f(eγ
′−α, 1) = f(eγ+γ′−α, 1) = f(eγ−α, 1)f(eγ

′
, 1),

so that finally,
f(eγ−α, 1)

f(eγ , 1)
=

f(eγ
′−α, 1)

f(eγ′, 1)
.

Note that we have in particular proven that for all γ ∈ Πδ such that γ + α ∈ Πδ and
f(eγ+α, 1) 6= 0, we have

(5)
f(eγ , 1)

f(eγ+α, 1)
= φ(eα).

Let φ : R[Q+] −→ R+ be the multiplicative map obtained by extending multiplicatively the
map φ defined on {eα, α ∈ S} and by specifying the value φ(1) = 1. Consider the root order
with respect to the set of simple roots S and let us prove by induction on the root order that
f(eγ , 1) = f(eδ, 1)φ(eδ−γ ) for γ ∈ Πδ . For γ = δ the results is straightforward. Let γ ∈ Πδ

and suppose that the result is true for all γ′ ≥ γ. There exists α ∈ S such that γ + α ∈ Πδ.
If f(eγ+α, 1) = 0, then f(eγ , 1) = 0 by Lemma 4.3; in particular, f(eγ , 1) = φ(eα)f(eγ+α, 1).

By the induction hypothesis, f(eγ+α, 1) = f(eδ, 1)φ(eδ−(γ+α)), and finally,

f(eγ , 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ ).

If f(eγ+α, 1) 6= 0, then by (5) and by the induction hypothesis,

f(eγ , 1) = φ(eα)f(eγ+α, 1) = φ(eα)f(eδ, 1)φ(eδ−(γ+α)) = f(eδ, 1)φ(eδ−γ ).

Let (γ, n) ∈ T̂δ, and let γ1, . . . , γn ∈ Πδ such that γ =
∑n

i=1 γi. Then, by multiplicativity of
f and the result above, we have

f(eγ , n) =f(e
∑n

i=1 γi , n) =

n
∏

i=1

f(eγi , 1) =

n
∏

i=1

f(eδ, 1)φ(eδ−γi )

=f(eδ, 1)nφ(enδ−
∑n

i=1 γi) = f(eδ, 1)nφ(enδ−γ)

Since f(sδ, 1) = 1), we have on the one hand
∑

γ∈Πδ

Kγ,δf(e
γ , 1) = 1.
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On the other hand, from the result above,
∑

γ∈Πδ

Kγ,δf(e
γ , 1) =

∑

γ∈Πδ

Kγ,δf(e
δ, 1)φ(eδ−γ ) = f(eδ, 1)φ(Sδ).

Thus, f(eδ, 1) = 1
φ(Sδ)

, which ends the proof of the proposition in the case Mf ∈ ∆. Suppose

that f is a general multiplicative function on T̂δ. Let w ∈ W be such that Mf◦w−1 ∈ ∆.

By the first part of the proof, there exists φ ∈ Mult(R[Q+]) such that f ◦ w−1(eγ , n) =
1

φ(Sδ)n
φ(enδ−γ). Thus, composing f ◦ w−1 with w yields that f(eγ , n) = 1

φ(Sδ)n
φ(enδ−w(γ)))

for (γ, n) ∈ T̂δ. �

Remark 4.4. Suppose that φ(eα) 6= 0 for all α ∈ S. Then, the map φ extends to a homo-
morphism φ : R[P ] −→ R+ with the formula

φ(eγ) =
∏

α∈S

φ(eα)rα for γ =
∑

α∈S

rαα.

In this case,

f(eγ , n) = f(eδ, 1)nφ(eλ−nδ) =

(

f(eδ, 1)

φ(eδ)

)n

φ(eγ).

Thus, for (sλ, n) ∈ T̂+
δ we have

f(sλ, n) =

(

f(eδ, 1)

φ(eδ)

)n

φ(sλ).

Since, f(sδ, 1) = 1, f(eδ,1)
φ(eδ)

= φ(sδ). Moreover, φ is just a multiplicative map when restricted

to Aδ. Thus, when φ(eα) > 0 for all α ∈ S, f can be written on T̂+
δ as

f(sλ, n) =
φ(sλ)

φ(sδ)n
,

with φ : Aδ −→ R+ a multiplicative map.

To summarize, let us define the map Φ : Mult(R[Q+])+ ×W −→ Mult(T̂δ)
+ by

Φ(φ,w)(eγ , n) =
1

φ(Sδ)
φ(enδ−w(γ)).

Proposition 4.2 yields that the map Φ is surjective. Since R[Q+] is the free commutative
algebra generated by {eα, α ∈ S}, Mult(R[Q+])+ is isomorphic to (R+)d through the map
θ : Mult(R[Q+])+ −→ (R+)d given by θ(φ) = (φ(eαi))1≤i≤d for φ ∈ Mult(R[Q+])+. The

composition of Φ with θ−1 yields thus a surjective map (R+)d × W −→ Mult(T̂δ)
+ equal

to θ−1 ◦ Φ. Since Φ is not necessarily injective, the latter map is not bijective. The lack of
injectivity comes from two facts: first, if Mf lies at the intersection of two Weyl chambers,
then Mf◦w−1 ∈ ∆ for several w ∈ W . Secondly, some degeneracy may occurs when δ is
orthogonal to some simple roots. The goal of the next subsection is to solve the second
problem.

4.3. Dominant faces of the weight polytope. Let f ∈ Mult(T̂δ) such that Mf ∈ ∆; it
is possible to give a geometric description of the set Πδ(f) := {λ ∈ Πδ | f(eγ , 1) 6= 0)}. A
dominant face F is a face of the polytope K(δ) such that F ∩ ∆ 6= 0. We denote by ΠF

the intersection of Πδ with F . We say that a subset S′ ⊂ S of simple roots is δ-admissible
if each indecomposable component of S′ contains a root which is not orthogonal to δ; in
particular, according to this definition, the empty set is a δ-admissible subset, since it has
no indecomposable component. For each subset S′ ⊂ S, denote by WS′ the Weyl group
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generated by the elements sα′ , α′ ∈ S′ (where W∅ is simply {Id}). We will use the following
results which comes from [16].

Theorem 4.5. Assigning to each δ-admissible subset S′ ⊂ S the polytope FS′ = Conv(w′δ |
w′ ∈ WS′) yields a one-to-one correspondence between δ-admissible subsets of S and dominant
faces of the polytope K(δ). Moreover, the set ΠFS′ coincides with the set (δ + 〈S′〉) ∩Πδ and
dimFS′ = #S′

This yields the following characterization Πδ(f).

Proposition 4.6. There exists a dominant face F of the weight polytope K(δ) such that
Πδ(f) = ΠF .

Before proving Proposition 4.6, let us prove the following lemma:

Lemma 4.7. Let S′ ⊂ S and γ ∈ Πδ such that δ−γ =
∑

α∈S′ kαα with kα > 0 for all α ∈ S′.
Then, S′ is δ-admissible and γ ∈ FS′.

The proof of this lemma uses essentially the same ingredients as in [16].

Proof. Suppose γ can be written as

γ = δ −
∑

α∈S′

kαα,

with S′ a subset of S and kα ∈ N∗ for α ∈ S′. Since γ ∈ Πδ, there exists a sequence (γi)0≤i≤t

with t =
∑

α∈S′ kα such that γi ∈ Πδ, γ0 = γ, γt = δ and γi+1 − γi ∈ S. Since for all γ ∈ Πδ,
δ − γ is a sum of simple roots with non-negative coefficients, for all 0 ≤ i ≤ t − 1 we have
γi+1 − γi ∈ S′ and #{0 ≤ i ≤ t− 1|γi+1 − γi = α} = kα for α ∈ S′. This implies in particular
that γi ∈ δ + 〈S′〉 for all 1 ≤ i ≤ t. Let α ∈ S′: since kα > 0, there exists 1 ≤ iα ≤ t− 1 such
that γi+1 − γi = α. This yields that dim(K(δ)∩ (δ+ 〈S′〉) = #S′. Let f the linear form such
that f(α) = 1 for α ∈ S \ S′ and f(α) = 0 for α ∈ S. For γ ∈ Πδ, δ − γ is a sum of simple
roots with positive coefficients, thus f(γ) ≤ f(δ), with equality if and only if γ ∈ δ + 〈S′〉.
Thus, (K(δ) ∩ (δ + 〈S′〉) is a face of the polytope Πδ; since dim(K(δ) ∩ (δ + 〈S′〉) = #S′, S′

is δ-admissible by [16, p.10]. Finally, dim(K(δ) ∩ (δ + 〈S′〉) = FS′ and γ ∈ FS′ . �

Lemma 4.8. ΠF ⊂ Πδ(f) if and only if φ is non-zero on SF .

Proof. Suppose that ΠF ⊂ Πδ(f). Let α0 ∈ SF . Since f(eγ , 1) is non zero for γ ∈ ΠF , by
Lemma 4.3 and the definition of φ it suffices to prove that there exists γ ∈ ΠF such that
γ + α0 ∈ ΠF or γ − α ∈ ΠF . Since SF is δ-admissible, dimF = #SF ; F = Conv(w.δ | w ∈
WSF

) and dimF = #SF , thus there exists w ∈ WF such that δ − w.δ =
∑

α∈SF
kαα with

kα0 > 0. This implies the existence of γ ∈ ΠF such that γ + α0 ∈ ΠF . Since ΠF ⊂ Πδ(f),
f(eγ+α0 , 1) 6= 0 and f(eγ , 1) 6= 0, and thus

φ(α0) =
f(eγ , 1)

f(eγ+α0 , 1)
6= 0.

Conversely, suppose that φ is non-zero on SF . By Theorem 4.5, ΠF = (δ+ 〈SF 〉)∩Πδ. Since
f(eδ, 1) 6= 0 and φ is non-zero on SF , then f is non zero ΠF by Proposition 4.2. �

We turn now to the proof of Proposition 4.6.

Proof. We order the set of dominant faces by the inclusion order; note that the set of dominant
faces is a lattice with respect to this order, and we denote by F ∧ F ′ the supremum of two
dominant faces F and F ′: F ∧ F ′ is the smallest dominant face containing both F and F ′.
Let γ ∈ Πδ such that f(eγ , 1) 6= 0, and let F be the smallest dominant face containing γ. We
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denote by SF the δ-admissible subset of simple roots corresponding to F . Then, γ can be
written as

γ = δ −
∑

α∈SF

kαα

with kα ∈ N. Necessarily, we have kα > 0 for all α ∈ SF . Otherwise, Lemma 4.7 would imply
that γ belongs to a smaller dominant face of K(δ). Let (γi)0≤i≤t with t =

∑

α∈S′ kα be a
sequence of Πδ such that γi ∈ Πδ, γ0 = γ, γt = δ and γi+1 − γi ∈ SF . Since f(eγ0 , 1) 6= 0,
Lemma 4.3 yields that f(eγi , 1) 6= 0 for 1 ≤ i ≤ t. Let α ∈ SF : since kα > 0, a similar
deduction as in the proof of the previous lemma yields that there exists 0 ≤ i ≤ t − 1 such
that γi+1 − γi = α. Therefore,

φ(eα) =
f(eγi , 1)

f(eγi+1 , 1)
6= 0.

Since φ(eα) 6= 0 for α ∈ SF , f(e
γ , 1) is non-zero on Πδ ∩ (δ − 〈SF 〉), and ΠF ⊂ Πδ(f). We

have thus proven that if a weight γ is in Πδ(f), then the intersection of Πδ with the smallest
dominant face containing γ is also included in Πδ(f); hence, Πδ(f) is an union of sets ΠF ,
where F are dominant faces. Let F and F ′ be two dominant faces such that ΠF ,ΠF ′ ⊂ Πδ(f),
and let us show that ΠF∧F ′ ⊂ Πδ(f). Note first that F ∧F ′ = FSF∪SF ′ : on the first hand, the
smallest vector space containing both 〈SF 〉 and 〈SF ′〉 is 〈SF ∪SF ′〉. On the other hand, since
SF and SF ′ are δ-admissible, SF ∪ SF ′ is again δ-admissible. It suffices thus to show that
ΠFSF∪S

F ′
⊂ Πδ(f). But Lemma 4.8 yields that φ(eα) is non zero for α ∈ SF and α ∈ SF ′ .

Thus, φ(eα) is non zero for α ∈ SF ∪ SF ′ and ΠFSF∪S
F ′

⊂ Πδ(f). Let F0 be the supremum

of {F dominant face of K(δ),ΠF ⊂ Πδ(f)}. By the previous argument, ΠF0 ⊂ Πδ(f). Let
γ ∈ Πδ(f) and let F be the smallest dominant face of K(δ) containing γ. By the first part of
the proof, ΠF ⊂ Πδ(f). Thus F ⊂ F0 and γ ∈ F0: this proves that Πδ(f) ⊂ ΠF0 , and finally
Πδ(f) = ΠF0 . �

Corollary 4.9. Let f ∈ Mult(T̂δ)
+ be such that Mf ∈ ∆. There exists a unique φ ∈

Mult(R[Q+])+ such that Φ(φ, Id) = f and {α, φ(eα) 6= 0} is a δ-admissible subset of S.

Proof. Let φ be such that Φ(φ, Id) = f . By Proposition 4.6, there exists a face F of K(δ)
such that ΠF = Πδ(f). Lemma 4.8 yields that φ is non zero on SF . Let α ∈ SF : then,
there exists γ ∈ Πδ such that γ ∈ ΠF , γ − α ∈ ΠF ; thus, f(e

γ , 1) 6= 0 and f(eγ−α, 1) 6= 0.

Therefore, the value of φ on α has to be equal to f(eγ−α,1)
f(eγ ,1) . Hence, there exists at most one φ

such that {α, φ(eα) 6= 0} is the δ-admissible subset SF . Such a map φ exists, since f is zero
on Πδ \Πδ(f). Suppose that there exists a bigger δ-admissible subset SF ( S′ such that φ is
non-zero on S′. Then by Lemma 4.8, ΠFS′ ⊂ Πδ(f). But by Theorem 4.5, there is a bijection
between dominant faces and δ-admissible subsets: therefore, Πδ(f) = ΠF ( ΠFS′ ⊂ Πδ(f),
which is a contradiction. Thus, there exists exactly one map φ such that Φ(φ, Id) = f and
{α ∈ S, φ(eα) 6= 0} is a δ-admissible subset (and this δ-admissible subset has to be SF ). �

4.4. Identification of the minimal boundary. We give in this subsection a complete
description of the minimal boundary by describing Mult(T̂δ)

+.

Lemma 4.10. Let f ∈ Mult(T̂δ)
+ be such that Mf ∈ ∆, and let φ ∈ Mult(R[Q+] be such

that Φ(φ, Id) = f . Then φ(eα) ∈ [0, 1].

Proof. Let f ∈ Mult(T̂δ)
+ be such that

M =
∑

γ∈Πδ

f(γ, 1)γ ∈ ∆.
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Let φ ∈ Mult(R[Q+])+ be a morphism associated to f by Proposition 4.2, and let α ∈ S.
Since M ∈ ∆, 〈M,α〉 ≥ 0. Moreover,

〈M,α〉 =
∑

γ∈Πδ

f(eδ, 1)φ(eδ−γ )〈γ, α〉.

By invariance of Πδ under the symmetry sα, γ ∈ Πδ implies that sα(γ) ∈ Πδ. Since s2α = Id

and since sα(γ) = γ if and only if〈α, γ〉 = 0, we have

〈M,α〉 =f(eδ, 1)
∑

γ∈Πδ

〈γ,α〉>0

(φ(eδ−γ)− φ(eδ−sα(γ))〈γ, α〉

=f(eδ, 1)
∑

γ∈Πδ

〈γ,α〉>0

φ(eδ−γ)(1− φ(eα)
2〈γ,α〉
〈α,α〉 )〈γ, α〉.

If φ(eα) > 1, then (1 − φ(eα)
2〈γ,α〉
〈α,α〉 ) < 0 for all γ ∈ Πδ such that 〈γ, α〉 > 0, and thus

〈M,α〉 < 0: this would contradict the choice of f . Therefore, φ(eα) ≤ 1. �

The set {1, . . . , d} is identified with S by ordering the set of simple roots, and for S′ ⊂ S,

we denote by W S′
the set of minimal right-coset representatives with respect to I: namely,

W S′
= {w ∈ W |l(sw) > l(w) for s ∈ S′}.

For x ∈ ∆, we denote by Sx the set {α ∈ S, 〈α, x〉 = 0}.

Lemma 4.11. Let x ∈ Rd and let y be the unique element of Wx belonging to ∆. There
exists a unique element w ∈ W Sy such that wx = y.

Proof. Let Wy be the parabolic subgroup generated by Sx. Then, Wy is the stabilizer of y.
Thus we have the relation

w(y) = w′−1w′ ∈ Wx.

In particular, the set {w ∈ W,w(y) = x} is a left coset of Wy in W , and thus the set
{w ∈ W,w(x) = y} is a right coset of Wy in W . By [9, 1.10], there exists a unique w̃ ∈ W Sx

such that {w ∈ W,w(x) = y} = wWy. Thus, there exists a unique w̃ ∈ W Sx such that
w̃(x) = y. �

For each d-tuple ~t = (t1, . . . , td), denote by 0c(~t) the set of indices i such that ti 6= 0 and
by 1(~t) the set of indices i such that ti = 1. Now consider the set [0, 1]δ such that

(6) [0, 1]δ := {~t ∈ [0, 1]d | 0c~t is δ-admissible}.

This set will turn out to be a natural parametrization ofK(δ)+. Then, we will prove in Section
5 that there exists a natural map t : K(δ) −→ [0, 1]δ ×W , written as t(m) = (~tm, wm), such
that t(K(δ)+) = [0, 1]δ × Id.

Proposition 4.12. The map Φ ◦ θ−1 yields a bijection Ψ between Mult(T̂δ)
+ and

{(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)}.

Proof. Let f ∈ Mult(T̂δ)
+. Let y = W (Mf )∩∆ and denote by Sf the set {α ∈ S | 〈α, y〉 = 0}.

By Lemma 4.11, there exists a unique w ∈ W Sf such that w(Mf ) = y. Thus, by Proposition
4.2, Corollary 4.9 and Lemma 4.10, there exists a unique φ ∈ Mult(R[Q+])+ such that
Φ(φ,w) = f and {α ∈ S | φ(eα) 6= 0} is a δ-admissible subset. In order to conclude, we just
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have to show that φ(eα) = 1 if and only if 〈α,w(Mf )〉 = 0: but, as in the proof of Lemma
4.10, we have

〈α,w(Mf )〉 =〈w−1(α),Mf 〉 =
∑

γ∈Πδ

Kδ,γf(e
γ , 1)〈w−1(α), γ〉

=
∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈w−1(α), γ〉 =

∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−w(γ))〈α,w(γ)〉

=
∑

γ∈Πδ

Kδ,γ
1

φ(Sδ)
φ(eδ−γ)〈α, γ〉 =

1

φ(Sδ)

∑

γ∈Πδ

〈γ,α〉>0

(φ(eδ−γ )− φ(eδ−sα(γ)))〈α, γ〉

=
1

φ(Sδ)

∑

γ∈Πδ

〈γ,α〉>0

φ(eδ−γ)(1 − φ(eα)
2〈γ,α〉
〈α,α〉 )〈α, γ〉,

where the fourth inequality is due to the fact that w yields a bijection on the set of weights
in such a way that Kδ,w(γ) = Kδ,γ . Thus, 〈Mf , α〉 = 0 if and only φ(eα) = 1. �

Note that the bijection Ψ in the above proposition is explicitly given by Proposition 4.2:
for ~t ∈ [0, 1]δ , denote by φ~t the unique element of Mult(R[Q+])+ such that {φt(α) 6= 0} is δ-

admissible and Φ(φt, w) = Ψ(~t, w). Then,

Ψ(~t, w)(eγ , n) =
1

φ~t(Sδ)n
φ~t(e

nδ−γ) =
~tnδ−w−1(γ)

Sδ(~t)n
,

for (eγ , n) ∈ T̂δ.

Remark 4.13. The restriction of the set of parameters (~t, w) from [0, 1]d ×W to {(~t, w) ∈

[0, 1]δ×W |w ∈ W 1(~t)} is only useful to ensure the injectivity of the map Ψ. It is however still

possible to define an element of Mult(T̂δ)
+ by applying the map Φ◦θ−1 to any element (~t, w).

The lack of injectivity without the restriction of the parameters can be seen in the following
example: consider the Lie algebra A2 with set of simple roots {α1, α2} and choose δ = ω1,

the the first fundamental weight. Then, (ω1, α2) = 0, and thus any weight γ 6= ω1 of Πω1 can
be written γ = ω1 − k1α1 − k2α2 with k1 > 0: hence, if t1 = 0, we have φ(eω1−γ) = δγ,ω1

for all value of t2. On the other hand, the ω1-admissible subsets of {α1, α2} are ∅, {α1}
and {α1, α2}. Thus the empty ω1-admissible subset ∅ yields the unique choice of t2 such that
t1 = 0 and 0c(~t) is ω1-admissible, namely t2 = 0. The latter procedure has singled out a
particular choice of parameters t1 = 0, t2 = 0 among all the choices of ~t yielding the map
φ(eω1−γ) = δγ,ω1 .

A straightforward application of Proposition 4.1 yields the following corollary:

Corollary 4.14. The map i ◦Ψ gives a bijection between the minimal boundary ∂H∞(0,Rd)
and

{(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)}.

5. Minimal boundary of Γ(0,∆)

In this section, we use the description of ∂H∞(0,Rd) to get the one of H∞(0,∆).
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5.1. Algebraic description of the growth graph of Γ(0,∆). The growth graph G∆(0) of
Γ(0,∆) admits a similar description as the one of Γ(0,Rd). The set Λ+

n of vertices of rank n

of the graph G∆(0) are pairs (λ, n) where λ is a weight of P+
δ such that Γ∆(0, λ, n) 6= ∅, and

the weight of the edge between (λ, n) and (µ, n + 1) is e+((λ, n), (µ, n + 1)) = #Γ∆(λ, µ, 1).
Moreover, we have the following algebraic description of G∆(0):

Proposition 5.1. G∆(0) is a multiplicative graph associated with the algebra Âδ with the
injective map

i :







∐

n≥1Λn −→ Âδ

(λ, n) 7→ (sλ, n), n > 1
∗ 7→ (sδ, 1)

In particular, ∂H(G∆(0)) is isomorphic to Mult(T̂+
δ )+ through the map

i∗ :

{

Mult(T̂+
δ )+ −→ ∂H(G∆)

f 7→ f ◦ i

Proof. Since e((λ, n), (µ, n+1)) = #Γ(λ, µ, 1) = m
µ
λ,δ, the following equality holds for (λ, n) ∈

Λn:

i(λ, n)i(∗) =(sλ, n)(sδ, 1) =
∑

µ∈Aδ

m
µ
λ,δ(sµ, n+ 1)

=
∑

µ∈Aδ

e(λ, n), (µ, n + 1))i(µ, n + 1).

Thus, Gδ is a multiplicative graph associated to Âδ with the map i. Note that by construction,
(

Âδ

)

G(δ)
= T̂+

δ : the last part of the proposition is deduced from Proposition 2.4. �

The main point will be to relate the set Mult(T̂+
δ )+ to the set Mult(T̂δ)

+.

5.2. Relation between Mult(T̂δ)
+ and Mult(T̂+

δ )+. Recall that T̂+
δ is a subalgebra of T̂δ;

therefore, any non-negative morphism on T̂δ induces by restriction a non negative morphism
on T̂+

δ . This yields a map χ : Mult(T̂δ)
+ −→ Mult(T̂+

δ )+. The important step in the

description of Mult(T̂+
δ ))+ is the following:

Proposition 5.2. The map χ yields a surjection from {f ∈ Mult(T̂δ)
+ | Mf ∈ ∆} to

Mult(T̂+
δ )+.

Let f be a non-negative morphism from T̂+
δ to R. By Corollary 3.4 and Corollary 4 page

35 in [4], f can be extended to a morphism f̃ from T̂δ to C. The first task is to prove that

f̃ ∈ Mult(T̂δ)
+.

We need to recall a classical result by Aissen, Edrei, Schoenberg and White on polynomials
with real coefficients having negative zeros.

Theorem 5.3. Consider a polynomial P (T ) = amTm + am−1T
m−1 + · · ·+ a1T + a0 ∈ R[T ].

Then P has only real and nonpositive zeros if and only if the sequence a0, a1, . . . , am, 0, 0, 0, . . .
is totally positive, that is if and only if all the minors of the infinite matrix

a0 0 0 0 · · ·
a1 a0 0 0 · · ·
a2 a1 a0 0 · · ·
a3 a2 a1 0 · · ·
...

. . .
. . .

. . . · · ·

are non negative.
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Proposition 5.4. Any morphism f̃ defined on T̂δ which extends the positive morphism f

belongs to Mult(T̂δ)
+.

Proof. Let f̃ be a morphism extending f . Set ϕ(T ) = f̃(Φ)(T ) that is

ϕ(T ) =
∏

γ∈πδ

(T + f̃(eγ , 1)).

By using the same arguments as in the proof of Proposition 3.3, we obtain that the coefficients
of ϕ(T ) are the

f̃(ek(e
γ1 , . . . , eγN ), k) ∈ C, k = 0, . . . , N

Now it follows from the Jacobi-Trudi determinantal expression of the Schur functions that
the minor of the matrix defined from the coefficients of ϕ(T ) as in Theorem 5.3 coincide with
the complex numbers

f̃(sΛ(e
γ1 , . . . , eγN ), |Λ|),Λ ∈ PN

where PN is the set of partitions with at most N parts and sΛ(e
γ1 , . . . , eγN ) is the plethysm

of the Schur function sλ in N variables X1, . . . ,XN by the Weyl character sδ. If we consider
any young symmetrizer cΛ of shape Λ in R[Sm] the group algebra of the symmetric group Sm

(see [6]) the space

cΛ · V (δ)⊗l such that l = |Λ|

has indeed the structure of a G-module and

sΛ(e
γ1 , . . . , eγN ) = char

(

cΛ · V (δ)⊗l
)

.

This shows that sΛ(e
γ1 , . . . , eγN ) decomposes has a sum of characters in {sλ | λ ∈ δ⊗|Λ|}

with non negative integer coefficients. In particular, (sΛ(e
γ1 , . . . , eγN ), |Λ|) belongs to T̂+

δ and

therefore we get that f̃(sΛ(e
γ1 , . . . , eγN ), |Λ|) = f(sΛ(e

γ1 , . . . , eγN ), |Λ|) is real non-negative

since f is assumed non-negative. By Theorem 5.3 this shows that −f̃(eγ , 1) is real non-positive

for any γ ∈ Πδ. Finally we obtain that f̃(eγ) is real positive for any γ ∈ Πδ and f̃ takes real

non-negative values on T̂δ. �

Proof of Proposition 5.2. Let f ∈ Mult(T̂+
δ )+. By Proposition 5.3, there exists f̃ ∈ Mult(T̂δ)

+

such that f̃(sλ, n) = f(sλ, n) for (sλ, n) ∈ T̂+
δ . Let w ∈ W and (sλ, n) ∈ T̂+

δ : since w−1 yields
a multiplicity preserving bijection on Πλ,

(f̃ ◦ w)(sλ, n) =
∑

γ∈Πλ

Kλ,γ f̃(e
w(γ), n)

=
∑

γ∈Πλ

Kλ,w−1(γ)f̃(e
γ , n)

=
∑

γ∈Πλ

Kλ,γ f̃(e
γ , n) = f̃(sλ, n).

Thus, for all w ∈ W , (f̃ ◦w)|T̂+
δ

= f̃|T̂+
δ
. Let w ∈ W be such that Mf̃◦w ∈ ∆ and set g = f̃ ◦w.

Then, g is an element of Mult(T̂+
δ )+ such that χ(g) = f and Mg ∈ ∆. �

A straightforward application of Proposition 4.2 and Proposition 4.12 yields the following
corollary:
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Corollary 5.5. There exists ~t ∈ [0, 1]δ such that 0c(~t) is δ-admissible and such that

f~t(sλ, n) =
Sλ,nδ(~t)

(Sδ(~t))n
.

We denote by Ψ+ : [0, 1]δ −→ Mult(T̂+
δ )+ the map sending ~t to the multiplicative map f~t

of the latter corollary.

5.3. Injectivity of the map Ψ+. It remains to show that the map Ψ+ is injective.

Lemma 5.6. Let f ∈ Mult(T̂+
δ ). Let t ∈ [0, 1]δ. For any (λ, n) ∈ T̂+

δ we have

1 ≤
Sλ,nδ(~t)

~tnδ−λ
≤ dim(V (λ))

Proof. On the first hand,

Sλ,nδ(~t) =
∑

γ∈Πδ

Kδ,γ~t
nδ−γ ≥ ~tnδ−λ,

which yields 1 ≤
Sλ,nδ(~t)
~tnδ−λ

. On the other hand, since ti ≤ 1 for all 1 ≤ i ≤ d,

Sλ,nδ(~t) =
∑

γ∈Πδ

Kδ,γ~t
γ−nδ ≤

∑

γ∈Πδ

Kδ,γ~t
λ−nδ ≤ dimV (λ)~tλ−nδ,

yielding the other inequality
Sλ,nδ(~t)

~tnδ − λ
≤ dim(V (λ)).

�

Corollary 5.7. Let t = (t1, . . . , td), τ = (τ1, . . . , τd) be such that Ψ+(~t) = Ψ+(~τ). Then
Sδ(~t) = Sδ(~τ).

Proof. For all n ≥ 1, (nδ, n) ∈ T̂+
δ . Thus, by Lemma 5.6, we have

1 ≤ Snδ,nδ(~t) ≤ dim(V (nδ)) and 1 ≤ Snδ,nδ(~τ) ≤ dim(V (nδ)).

This yields
1

dim(V (nδ))
≤

Snδ,nδ(~t)

Snδ,nδ(~τ)
≤ dim(V (nδ)).

But
Snδ,nδ(~t)

Snδ,nδ(~τ )
=

Sδ(~τ)
nΨ(t1, . . . , td)(snδ, n)

Sδ(~t)nΨ(t1, . . . , td)(snδ, n)
=

Sδ(~τ )
n

Sδ(~t)n
,

the last equality being due to the fact that Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd). Therefore, we have
the inequality

1

dim(V (nδ))
≤

Sδ(~τ)
n

Sδ(~t)n
≤ dim(V (nδ)).

Since dim(V (nδ)) is polynomial in n, necessarily Sδ(~t) = Sδ(~τ ). �

The proof of the injectivity uses the combinatorics of Littelmann paths. We recall that
B(δ) denotes the set of Littelmann paths obtained from a path π0 in ∆ of weight δ. We
introduce moreover the following decomposition of a δ-admissible subset S′ ⊂ S.

Definition 5.8. Let S′ ⊂ S be δ-admissible. A Dynkin subchain of type α and length r is a
sequence (α1, . . . , αr) of simple roots in S′ such that α1 = α, 〈αr, δ〉 6= 0 and 〈αi, αi+1〉 6= 0
for 1 ≤ i ≤ r−1. The depth dS′,δ(α) of α relatively to S′ is the smallest integer corresponding
to the length of a Dynkin subchain of type α.
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Note that any simple root of a δ-admissible subset admits at least one Dynkin subchain,
since it belongs to an indecomposable root system which is not orthogonal to δ.

Lemma 5.9. Let λ ∈ P+ and α ∈ S be such that 〈λ, α〉 6= 0. Then there exists (µ, n) ∈ P̂+
λ

such that nλ− µ = α.

Proof. Suppose that 〈λ, α〉 > 0, and thus λ− α ∈ Πλ. We denote by π0 the Littelmann path
of B(λ) with weight λ. Then, wt(fα(π0)) = λ − α. Moreover, since fα(π0) = π0 − vα with
v : [0, 1] −→ [0, 1], we have

〈fα(π0)(t), α〉 = 〈π0(t), α〉 − v(t)〈α,α〉 ≥ −〈α,α〉,

and for all simple root α′ 6= α and t ∈ [0, 1], we have

〈fα(π0)(t), α
′〉 = 〈π0(t), α

′〉 − v(t)〈α′, α〉 ≥ 0,

because π0 lies in the Weyl chamber ∆ and 〈α,α′〉 ≤ 0. Consider an integer n ≥ 2 such

that 〈(n − 1)λ, α〉 ≥ 〈α,α〉. Then, from the two previous inequalities, π
∗(n−1))
0 ∗ fα(π0) lies

in ∆: thus, wt(π
∗(n−1)
0 ∗ fα(π0) = (n − 1)λ + (λ − α) is the highest weight of an irreducible

component of V (λ)⊗n, and ((n − 1)λ + (λ − α), n) = (nλ− α, n) ∈ P̂+
λ : setting µ = nλ− α

gives the result. �

The latter result can generalized along a Dynkin subchain in order to get the following
Lemma:

Lemma 5.10. Let S′ ⊂ S be δ-admissible and let α0 ∈ S′. There exists (λ, n) ∈ P̂+
δ such

that nδ − λ = α0 +
∑

α′∈S′

d(α′)<d(α0)

kα′α′.

Proof. Let S′ ⊂ S be a δ-admissible subset. We will prove the result by induction on the
depths of the simple root. For d(α) = 1, the result is given by Lemma 5.9. Let i ≥ 2.
Suppose that the result is proven for all root of depth at most i − 1, and let α be a root in
S′ of depth i. Let (α,α2, . . . , αi) be a Dynkin chain of minimal length for α: by minimality,

αj has depth i − j + 1 for 2 ≤ j ≤ i. Since d(α2) = i − 1, there exists (λ′, l) ∈ P̂+
δ such

that lδ − λ′ = α2 +
∑

d(α′)<d(α2)
kα′α′. If α′ is such that d(α′) < d(α2), then necessarily

〈α,α′〉 = 0 (otherwise, there would exist a Dynkin subchain of type α and length smaller
than i); likewise, since d(α) ≥ 2, 〈δ, α〉 = 0. Thus,

〈λ′, α〉 =

〈

lδ − α2 −
∑

d(α′)<d(α2)

kα′α′, α

〉

= −〈α2, α〉 > 0.

Let π be a Littelmann path in B(δ)⊗l lying in ∆ and having weight λ′. We consider π as the
Littelmann path of highest weight for the irreducible representation V (λ′). Since 〈α, λ′〉 > 0,
λ′ − α is a weight of V (λ′). Applying Lemma 5.9 yields the existence of m ≥ 1 such that
π∗m ∗ fα(π) lies in the Weyl chamber. Thus, π∗m ∗ fα(π) correspond to a highest weight
vector in (V (δ)⊗l)⊗m. On the other hand,

wt(π∗m ∗ fα(π)) = mλ′ − α = lmδ − α−mα2 −
∑

d(α′)<d(α2)

kα′α′ = lmδ − α−
∑

d(α′)<d(α)

k′α′α′,

with k′α ≥ 0. Setting λ = lmδ − α −
∑

d(α′)<d(α) k
′
α′α′ and n = lm, we get an element

(λ, n) ∈ P̂δ
+
satisfying the hypothesis of the Lemma. �

Corollary 5.11. Let (t1, . . . , td), (τ1, . . . , τd) ∈ [0, 1]δ and 1 ≤ i ≤ d be such that ti = 0 and
τi 6= 0. Then, Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd).
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Proof. Note that 0c~t and 0c~τ are δ-admissible subsets by definition of [0, 1]δ . Since τi 6= 0, i ∈

0c~τ . Thus, by Lemma 5.10, there exists (λ, n) ∈ P̂+
δ such that λ = nδ−αi −

∑

α∈Sτ

d(α)<d(αi)
kαα.

Since τj > 0 for all j ∈ 0cτ ,

Ψ(τ1, . . . , τd)(sλ, n) =
Sλ,nδ(~τ)

Sδ(~τ )n
≥

~τnδ−λ

Sδ(~τ )n
=

1

Sδ(~τ)n
τi

∏

j∈0c
~τ

d(αj )<d(αi)

τ
kαj

j > 0.

On the other hand, any weight of V (λ) has the form λ−
∑

α∈S rαα for some integer coefficients
rα ≥ 0; thus, since ti = 0, for any weight µ = λ−

∑

α∈S rαα of V (λ) we have

~tnδ−µ = ti
∏

j∈0c
~τ

d(αj)<d(αi)

t
kαj

j

∏

αj∈S

t
rαj

j = 0.

Thus, Ψ(t1, . . . , td)(sλ, n) = 0 6= Ψ(τ1, . . . , τd). This yields that Ψ(t1, . . . , td) 6= Ψ(τ1, . . . , τd).
�

Proposition 5.12. The map Ψ+ is injective.

Proof. Let (t1, . . . , td), (τ1, . . . , τd) ∈ [0, 1]δ be such that Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd). In this
case, Corollary 5.7 yields that Sδ(~τ) = Sδ(~t). By Corollary 5.11, we can assume that 0c~t = 0c~τ ,

and we will denote this set S′: we recall that the set of simple roots is identified with {1, d},
so that S′ corresponds to a δ-admissible subset of S. We will prove by induction on the
depth of the simple root αj with respect to S′ that tj = τj. Suppose that αj ∈ S′ is such

that d(αj) = 1. By Lemma 5.10, there exist n ≥ 1 such that (nδ − αj, n) ∈ P̂+
δ . Thus,

(nkδ − kαj , kn) ∈ P̂+
δ for all k ≥ 1. Since Ψ(t1, . . . , td) = Ψ(τ1, . . . , τd), we have

1

Sδ(~t)kn
Sknδ−kαj ,knδ(~t) =

1

Sδ(~τ)kn
Sknδ−kαj ,knδ(~τ),

which simplifies into Sknδ−kαj ,knδ(~t) = Sknδ−kαj ,knδ(~τ ) because Sδ(~t) = Sδ(~τ). By Lemma
5.6, we have

1 ≤
Sknδ−kαj ,knδ(~t)

tkj
≤ dimV (knδ − kαj) and 1 ≤

Sknδ−kαj ,knδ(~τ )

τkj
≤ dimV (knδ − kαj).

Thus,

1

dimV (knδ − kαj)
≤

tkj

τkj
≤ dimV (knδ − kαj).

Since dimV (knδ − kαj) is polynomial in k, necessarily tj = τj. Let i ≥ 2, and suppose that
we have proven that tj = τj for all j such that d(αj) < i. Let αl be such that d(αl) = i. By

Lemma 5.10, there exists (λ, n) ∈ P̂+
δ such that nδ−λ = αl+

∑

α′∈S′

d(α′)<d(α)

kα′α′, with kα′ ≥ 0.

Thus, for all k ≥ 1, (kλ, kn) ∈ P̂+
δ . As in the initial case, this implies that

Skλ,knδ(~t) = Skλ,knδ(~τ),

yielding together with Lemma 5.6 the inequality

(7)
1

dimV (kλ)
≤

~tnkδ−λ

~τnkδ−λ
≤ dimV (kλ)
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But nkδ − kλ = kαl + k
∑

j∈0c
~t

d(αj )<d(αl)

kαj
αj , and by the induction hypothesis, tj = τj for all

j ∈ 0c~t
, d(αj) < d(αl). Thus

~tnkδ−λ

~τnkδ−λ
=

tkl
τkl

.

Since dimV (kλ) is polynomial in k, (7) yields that tl
τl

= 1. This concludes the proof of
Proposition 5.12. �

Corollary 5.13. The map Ψ+ is a bijection from [0, 1]δ to Mult(T̂+
δ )+. In particular,

∂H∞(∆, 0) is isomorphic to [0, 1]δ .

6. Drift of a path following a central measure

In this section, we identify the set {(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)} with K(δ) in order to
complete the proof of Theorem 3.1: this identification is done by considering the mean vector
of the random walk given by the map Ψ.

6.1. The mean vector ~M . Let us introduce the map

~M :

{

{(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)} −→ K(δ)
~t× w 7→ MΨ(~t,w)

,

where the mean vector Mf has been introduced in Section 3.2 for any multiplicative map

f ∈ Mult(T̂δ)
+. For I ⊂ {1, . . . , d}, denote by WI the parabolic subgroup generated by the

simple roots αi for i ∈ I.

Lemma 6.1. Let (~t, w) ∈ {(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)}. Then MΨ(~t,w) ∈ w′−1(∆) if and

only if w′ ∈ W
1(~t)w.

Proof. Let αi ∈ S. We have

MΨ(~t,w) =
1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−w(γ)γ.

Thus,

〈MΨ(~t,w), w
−1(αi)〉 =

1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−w(γ)〈γ,w−1(αi)〉 =

1

Sδ(~t)

∑

γ∈Πδ

Kδ,w(γ)
~tδ−w(γ)〈w(γ), αi〉

=
1

Sδ(~t)

∑

γ∈Πδ

Kδ,γ~t
δ−γ〈γ, αi〉 =

1

Sδ(~t)

∑

γ∈Πδ

〈γ,αi〉>0

~tδ−γ(1− t
2

〈γ,αi〉

〈αi,αi〉

i )〈γ, αi〉.

Since ti ∈ [0, 1], 〈MΨ(~t,w), w
−1(αi)〉 ≥ 0. Moreover, 〈MΨ(~t,w), w

−1(αi)〉 = 0 if and only if

ti = 1. Therefore, w(MΨ(~t,w)) ∈ w′(∆) if and only if w′ is a product of reflections sαi
such

that ti = 1. Applying w−1 to the latter result yields the proof of the Lemma. �

Proposition 6.2. The map ~M is injective.

Proof. Let (~t, w) and (~t′, w′) be two elements of {(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)} such that
~M(~t, w) = ~M(~t′, w′). We simply denote by M this common value. Lemma 6.1 implies that
W

1(~t)w = W
1(~t′)w

′. Thus, W
1(~t) = W

1(~t′), which implies that 1(~t) = 1(~t′); since w and w′

are both a minimal right coset representative of W
1(~t′)w, we have w = w′. Let F be the

dominant face corresponding to the δ-admissible set 0c~t and let F ′ be the one corresponding

to the δ-admissible set 0c~t′
. By the results of Section 3.3, ~M(~t, w) ∈ w−1(

◦
F ) (with

◦
F the
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interior of the face F ) and ~M(~t′, w) ∈ w′−1(
◦

F ′). Since w = w′, we must have F = F ′ and
thus 0c~t = 0c~t′

. Let (Xl)l≥0, (X
′
l )l≥0 be two random walks with initial position X0 = X ′

0 = 0
and respective transition matrix

P(Xl+1 = γ|Xl = γ′) = Kδ,γ−γ′

~tδ−w(γ−γ′)

Sδ(~t)
,P(X ′

l+1 = γ|X ′
l = γ′) = Kδ,γ−γ′

~t′δ−w(γ−γ′)

Sδ(~t′)
.

Both random walks have mean M , thus it follows by the local limit theorem for large devia-
tions (see for instance Theorem 4.2.1 in [11]) that for any sequences of weights (γl)l≥1, (γ

′
l)l≥1

such that γl − lM = o(l2/3), γ′l − lM = o(l2/3), and P(Xl = γl) 6= 0,P(Xl = γ′l) 6= 0, we have

(8) P(Xl = γl) ∼ P(Xl = γ′l),

and the same relation holds for (X ′
l)l≥1. Let i ∈ 0c~t

. For l ≥ 1, let γl be an element of Pδ ∩ lF

at minimal distance from lM and set γ′l = γl − αi. Then, P(Xl = γl) 6= 0. Since M belongs
to the interior of M , γ′l ∈ Pδ ∩ lF for l large enough: thus, P(Xl = γ′l) 6= 0 for l large enough.
The sequences (γl − lM)l≥1 and (γ′l − lM)l≥1 are bounded, thus the local limit Theorem
applies and

(9) P(Xl = γl) ∼ P(Xl = γ′l)

as l goes to infinity. Since X comes from a central measure,

(10) P(Xl = γl) = ml
γl

~tnδ−γl

Sδ(~t)
,

where ml
γl

is the number of paths of length l going from 0 to γl.

Using (8) with (10) yields that
ml

γl

ml
γ′
l

∼ ~tγ
′
l−γl = t−1

i . But the same holds for X ′, yielding

that
ml

γl

ml
γ′
l

∼ ~t′γ
′
l−γl = t′−1

i . Finally, ti = t′i. �

We can now prove the main result of this subsection:

Proposition 6.3. The map ~M is a bijective map from {(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)} to

K(δ) such that ~M([0, 1]δ × Id) = K(δ)+.

Proof. The injectivity of ~M has already been proven in Proposition 6.2. Let us prove that ~M is
surjective. Recall that Ψ is a restriction of the map Φ◦θ−1 : [0, 1]d×W −→ Mult(T̂δ)

+ defined
at the end of Section 3.2, and that both maps have the same image; thus, it is enough to prove

that the map ~M extended to the domain [0, 1]d ×W by the formula ~M(~t, w) = MΦ◦(θ−1(~t),w)

is surjective. Let us first prove that ~M|[0,1]d×Id is surjective onto K(δ)+. Let 1 ≤ i ≤ d be

such that 〈δ, αi〉 6= 0: then, αi is a δ-admissible set, and the dominant face associated to
αi is one-dimensional. Let xi = Fi ∩ ∂∆ (that is, xi is the projection of δ on α⊥

i ). Then,
K(δ)+ is a convex polytope whose extreme points are the elements δ, 0 and {xi} 1≤i≤d

〈αi,δ〉>0

. Let

Σ : (R+)d −→ R be the function defined by

Σ(~u) = log(Sδ(e
u1 , . . . , eud)) = log(

∑

γ∈Πδ

Kγ,δe
~u.(δ−γ)).

Then,

∇Σ(~u) =





1

Sδ(eu1 , . . . , eud)

∑

γ∈Πδ

Kγ,δ(δi − γi)e
~u.(δ−γ)





1≤i≤d

= δ − ~M((eu1 , . . . , eud), Id).
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Moreover, we can show that Σ is a convex function: introduce the random variable X such

that P(X = δ − γ) =
Kγ,δ

Sδ(e
u1,...,e

ud )
e~u.(δ−γ). The Hessian matrix of Σ at ~u is exactly the

covariance matrix of the random variable X, which is non-negative: since this is true for all
vector ~u ∈ (R+)d, Σ is indeed convex. Since Σ is a convex function and (R+)d is convex, the set

∇Σ(R+)d) is a convex set. We have thus proven that the set {δ− ~M(eu1 , . . . , eud)|~u ∈ (R+)d) =
~M(]0, 1]d, Id) is convex. Note first that M(1, Id) = 0, yielding that 0 ∈ ~M(]0, 1]d × Id). Let
1 ≤ i ≤ d be such that 〈αi, δ〉 6= 0. Since the map Sδ is continuous and non-zero on [0, 1]d,

the map ~M is continuous on [0, 1]d × Id: thus, if (~tl)l≥1 is a sequence of ]0, 1]d such that
~tl → (δij)1≤j≤d as l goes to infinity, then ~M(~tl, Id) converges to ~M((δij)1≤j≤d, Id). But for

1 ≤ l ≤ (δ, αi), Kδ,δ−lαi
= 1; thus, writing (αi, δ) =

2〈αi,δ〉
〈αi,αi〉

, we have

~M((δij)1≤j≤d, Id) =
1

Sδ((δij)1≤j≤d)

(αi,δ)
∑

l=0

Kδ,δ−lαi
(δ − lαi)

=
1

∑(αi,δ)
l=0 Kδ,δ−lαi





(αi,δ)
∑

l=0

δ − (

(αi,δ)
∑

l=0

lαi)





=
1

(αi, δ) + 1

(

((αi, δ) + 1)δ − (
(αi, δ).((αi, δ) + 1)

2
αi)

)

=δ −
(αi, δ)

2
αi = xi,

and xi belongs ~M(]0, 1]d × Id), the closure of ~M(]0, 1]d × Id). Similarly, if (~tl) is a sequence

of [0, 1]d converging to 0, then ~M(~tl, Id) converges to ~M(~0, Id). Since ~M(~0, Id) = δ, δ ∈
~M(]0, 1]d × Id). Hence, 0, δ and {xi} 1≤i≤d

〈αi,δ〉>0

are in the closure of ~M(]0, 1]d × Id). Since

~M(]0, 1]d × Id) is convex, this yields K(δ)+ ⊂ ~M(]0, 1]d × Id). Since [0, 1]d is compact,

~M([0, 1]d, Id) is compact and thus ~M(]0, 1]d × Id) ⊂ ~M ([0, 1]d, Id): this yields K(δ)+ ⊂
~M([0, 1]d, Id). By Lemma 6.1, ~M([0, 1]d, Id) ⊂ K(δ)+, so that finally ~M([0, 1]d, Id) = K(δ)+.

Since ~M(~t, w) = w−1 ~M(~t, Id), ~M([0, 1]d ×W ) =
⋃

w∈W w(K(δ)+) = K(δ). �

6.2. Proof of Theorem 3.1. We give the proof of Theorem 3.1 by gathering the differ-
ent results of the paper. Let us prove the result only for ∂H∞(0,Rd), since the proof for
∂H∞(0,∆) is similar.

• By Corollary 4.1, ∂H(0,Rd) is homeomorphic to Mult(T̂ )+ through the map i :

Mult(T̂δ)
+ −→ ∂H∞(0,Rd) defined by i(f)(Γ(τ)) = f(γ, n) for any path τ ∈ Γ(0,Rd)

of length n ending at γ. Since Mult(T̂δ)
+ is compact, ∂H∞(0,Rd) is a compact space.

• By Proposition 4.12 the map Ψ : {(~t, w) ∈ [0, 1]δ × W |w ∈ W 1(~t)} −→ Mult(T̂δ)
+

given by Ψ(~t, w)(γ, n) = 1
Sδ(~t)n

~tlδ−w(γ) is a bijection.

• Finally, by Proposition 6.3, the map ~M : {(~t, w) ∈ [0, 1]δ ×W |w ∈ W 1(~t)} −→ K(δ)

given by ~M(~t, w) = 1
Sδ(~t)

∑

γ∈Πδ
Kδ,γ~t

δ−w(γ) is bijective.

Therefore, the map P : K(δ) −→ ∂H∞(0,Rd) given by P = i ◦ Ψ ◦ ( ~M−1) is a bijection.
Note that from the previous results, for m ∈ K(δ),

Pm(Γ(τ)) =
1

Sδ(~tm)n
~tlδ−w(γ)
m ,
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for all paths τ of length n ending at γ. It remains to show that P is indeed an homeomorphism.
Since K(δ) and ∂H∞(0,Rd) are compact, it suffices to prove that P or P−1 is continuous.
But for P ∈ ∂H∞(0,Rd),

P−1(P ) =
∑

τ∈B(δ)

P (τ)τ(1).

Thus P−1 is continuous, which concludes the proof of Theorem 3.1. The same proof holds
for ∂H∞(0,∆) with K(δ)+ and the map P+ introduced in the statement of the Theorem.
For a metric space X, denote by M1(X) the set of probability measures on X with respect
to its Borel σ−algebra; we consider M1(X) as a topological space with the weak conver-
gence topology. As a straightforward corollary of Theorem 3.1, we get the following integral
representation of H∞(0,Rd) and H∞(0,∆).

Corollary 6.4. The topological spaces H∞(0,Rd) and H∞(0,∆) are homeomorphic to M1(K(δ))
and M1(K(δ)+), respectively through the maps

P :

{

M1(K(δ)) −→ H∞(0,Rd)
µ 7→

∫

K(δ) Pmdµ(m)

and

P :

{

M1(K(δ)+) −→ H∞(0,∆)
µ 7→

∫

K(δ)+ P+
mdµ(m) .

We end this section by proving that a random path in Γ(0,∆) following the harmonic
measure P+

m admits a law of large numbers with drift m. In the case of a random path in
Γ(0,Rd) following the harmonic measure Pm, the result is clear from the definition of Pm and
the classical law of large numbers for random walks. The case of P+

m is more complicated,
since the random path is constrained to remain in a domain. However, the result is still true:

Proposition 6.5. Let γm be a random path in Γ(0,∆) following the harmonic measure P+
m.

Denote by τm(n) the position of the path after n steps. Then, almost surely,

1

n
τm(n) −→ m,

as n goes to infinity.

Proof. Denote by τ̃m the random path in Γ(0,Rd) following the harmonic measure Pm. By
[13, Theorem 4.12], we have the equality in law

τm = Pαi1
. . .Pαir

(τ̃m),

where w0 = sαi1
. . . sαir

is a minimal length decomposition of the longest element of W , and
each operator Pα is the Pitman transformation associated to the root α. We recall that the
definition of the operator Pα on a path τ ∈ Γ(0,Rd) is given by

Pα(τ)(t) = τ(t)− ( inf
s∈[0,t]

2〈τ(s), α〉

〈α,α〉
)α.

By a large deviation principle,

‖
1

t
(τ̃m)|[0,t] −mId|[0,t]‖∞ −→

t→+∞
0

with probability one. Thus, for s ∈ [0, t] and α ∈ S,

1

t

∣

∣

∣

∣

2〈τ̃m(s), α〉

〈α,α〉

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

t

2〈τ̃m(s), α〉

〈α,α〉
−

2〈ms,α〉

〈α,α〉

∣

∣

∣

∣

+ s

∣

∣

∣

∣

2〈m,α〉

〈α,α〉

∣

∣

∣

∣

≤ ǫ(t) + s

∣

∣

∣

∣

2〈m,α〉

〈α,α〉

∣

∣

∣

∣

,
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with ǫ(t) converging to 0 when t goes to infinity. Since m ∈ K(δ)+, 〈m,α〉 ≥ 0. Thus,

infs∈[0,t] s
2〈m,α〉
〈α,α〉 = 0. Hence,

∣

∣

∣

∣

1

t
inf

s∈[0,t]

2〈τ̃m(s), α〉

〈α,α〉
α

∣

∣

∣

∣

≤ ǫ(t)|α| −→
t→+∞

0,

and finally 1
tPα(τ̃m)(t) ∼ 1

t τ̃m(t) −→ m as t goes to +∞, with probability one. Iterating this
result for Pαi1

, . . . ,Pαir
yields that

1

t
P(τ̃m)(t) −→

t→+∞
m

with probability one. Since P(τ̃m) is equal in law to τm, the proof is done. �
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