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aUniversité Grenoble Alpes, bGrenoble Institute of Technology, Gipsa-lab, Grenoble, France
cFaculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland

ABSTRACT

Endmember variability has been identified as one of the main lim-
itations of the usual Linear Mixing Model, conventionally used to
perform spectral unmixing of hyperspectral data. The topic is cur-
rently receiving a lot of attention from the community, and many
new algorithms have recently been developed to model this variabil-
ity and take it into account. In this paper, we review state of the
art methods dealing with this problem and classify them into three
categories: the algorithms based on endmember bundles, the ones
based on computational models, and the ones based on parametric
physics-based models. We discuss the advantages and drawbacks of
each category of methods and list some open problems and current
challenges.

Index Terms— Spectral Unmixing, Endmember variability,
Spectral Bundles, Extended Linear Mixing Model

1. INTRODUCTION

Spectral Unmixing (SU) is one of the most important and most stud-
ied topics in hyperspectral imaging. As a matter of fact, the fine
spectral resolution provided by these images allows the accurate
identification and characterization of the materials found in the ob-
served scene. However, the spatial resolution is conversely coarser
than in standard RGB or multispectral images. Thus, many pix-
els are mixed, meaning that the acquired spectral signature results
from the combination of the spectral signatures of the different ma-
terials present in the resolution cell during the acquisition. For a
given image, SU aims at extracting the signatures of the different
involved materials (called “endmembers”), and at estimating their
relative proportions (called “fractional abundances”) in each pixel of
the image, allowing a refined understanding of the scene [1]. Over
the last decades, many algorithms have been designed for this appli-
cation. Most of these methods assume that the mixing process link-
ing the signature of the pure materials and their proportions is linear.
While this is very often a good approximation, nonlinear interactions
are sometimes not negligible (for instance in the case of multiple re-
flections of the light in its path from the ground to the sensor, or
indirect lighting, or intimate mixtures...). Many algorithms taking
this type of phenomena into account have also been developed over
the last few years [2]. However, another implicit hypothesis is often
assumed when performing SU: each material is usually represented
by one single spectral signature, that is used for the whole image.
In practice, there often exists a non negligible intra-class variability,
which can have many different causes. For example, the illumination
conditions can vary along the observed scene, because of a nonflat
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topography or because of changes in the lightning conditions in the
scene. The intrinsic variability of the materials (due to the varia-
tion of a hidden parameter, such as the concentration of chlorophyll
or the hydric stress for green vegetation) can also considerably in-
fluence the spectral signature of the corresponding material, even if
a pixel is pure. This issue was neglected for a long time, but has
recently received a growing attention in the community, with mile-
stone reviews on the subject [3, 4]. Taking the spectral variability
into account has now become an important challenge in spectral un-
mixing.

In the remainder of this paper, we formalize the spectral variabil-
ity problem in SU in its most general form, by considering variability
inside an image (in the spatial domain). We also connect this general
form with the multitemporal and the multiangular points of view re-
garding variability. Then we present and classify different existing
methods. We eventually point at future research avenues.

2. A GENERAL FRAMEWORK FOR SPECTRAL
VARIABILITY

In this section, we introduce the spectral variability problem in its
most general form. Usually, once a mixing model (linear or not) has
been chosen, the “blind” SU problem boils down to: 1) estimating
the number of endmembers to consider, then 2) extracting the spec-
tral signatures of these endmembers (usually by resorting to one of
the many available algorithms [1]), before 3) estimating the corre-
sponding relative abundances. Once the first two steps have been
performed, the abundances have to be estimated from the following
model:

X = f(S,A) +E (1)

where X ∈ RL×N is the data matrix (L is the number of spec-
tral bands,N is the number of pixels), S ∈ RL×P is the endmember
matrix (containing the P spectral signatures of the P endmembers
considered in its columns), A ∈ RP×N is the abundance matrix,
and f is a function, linear or not and possibly parametrized, of the
previous two variables, which represents the actual mixing model.
E ∈ RL×N is an additive noise. The abundances are usually inter-
preted as percentages, which constrains them to be nonnegative and
to sum to one. These properties of the abundances are fundamental
since they constrain the data to lie inside a simplex spanned by the
endmembers, providing a clear geometric interpretation to the prob-
lem (see Fig. 1 in the case of P = 3 endmembers). In the linear
case, Eq. (1) becomes

X = SA+E (2)

In this case, once the endmembers’ signatures have been esti-
mated, the abundances (constrained in each pixel to lie in the unit



Fig. 1. Linear Mixing Model in the case of three endmembers.
The endmembers are the red dots, and the data lie inside the sim-
plex spanned by those dots. The abundances of a data point are its
barycentric coordinates in the simplex.

simplex, which we denote by A ∈ splx) are extracted under the
positivity and sum-to one constraints by:

Â = argmin
A∈splx

||X− SA||2F (3)

Dealing with spectral variability can be seen as considering that
the source matrix S is not constant in space, time or, more gener-
ally, between different datasets. Mathematically, let us consider a
dataset, which is partitioned into K subsets indexed by k, and the
corresponding endmember signatures:

X = {Xk} and S = {Sk} for k = 1, ...,K. (4)

The index k can denote a partition in the spatial domain (mostly
at the pixel scale, but also possibly at the scale of larger spatial re-
gions), or denote several datasets if we deal with a sequence of im-
ages acquired over the same scene at different time dates (temporal
variability), or with different acquisition angles (angular variability),
or, more generally, between distinct datasets (which are supposed to
share at least one endmember).

In each subset, we have:

Xk = f(Sk,Ak) +Ek (5)

Of course, the different subsets may not be independent: there
are usually relationships and some sort of continuity between certain
parameters, be it in time, space.... This advocates for a joint process-
ing of the data rather than a totally separate processing of each subset
[5].

The remainder of this paper will focus (unless stated otherwise)
on spectral variability in the spatial domain, but works dealing with
temporal variability will also be reviewed, as well as other aspects
in the perspectives. Note that most of the presented methods can be
easily extended to other types of variability (temporal in particular).
Likewise, most of the of methods below apply primarily in a linear
mixing model framework.

3. DIFFERENT CLASSES OF METHODS

The different methods dealing with spectral variability can be clas-
sified into three categories (c.f. Fig. 2 (a), where all three cases are
represented in the case of a linear mixing model). The first category
resorts to “spectral bundles”, that is to say each material is repre-
sented by a finite number of signatures which hopefully capture most
of its variability. The second class (Fig. 2 (b) uses reference sources
and uses models to characterize and constrain possible local evolu-
tions of the endmembers, typically using statistical descriptions. The

(a) Bundles (b) Fluctuations around a reference

(c) Simple parametric model (d) Complex parametric model

Fig. 2. Different approaches to handle spectral variability during
linear SU (in the case of three endmembers).

third one (Fig 2 (c) and (d)) mostly corresponds to physics-guided
models: in this case the evolution of each material is governed by
a parametric model, whose parameters have to be estimated in each
pixel, along with the abundances.

In all three cases, the mathematical tools used range from ma-
chine learning to Bayesian estimation and mathematical optimiza-
tion.

3.1. Spectral bundles and associated methods

The key idea in this category of methods consists in extracting sev-
eral instances of each endmember in order to build a dictionary,
which is then used for SU, offering more than one representative
spectral signature per material (Fig.2 (a)). The simplest method
to build those bundles [6] consists in extracting endmembers in
randomly chosen subsets of the image. Many endmember extrac-
tion algorithms assume that there is at least one pure (abundance
coefficient equal to 1) pixel per material in the image. Here, there
has to be at least one pure pixel of each material in each subset.
Once the extraction has been carried out, the signatures have to be
grouped into classes through a clustering algorithm (e.g. k-means).
Then, the dictionary is used to estimate the abundances. In order to
get the total abundance of one given material, one has to sum the
contributions of every representative of the corresponding class. As
the dictionary may contain a lot of signatures, it can be useful to
enforce different types of sparsity during the SU process, so as to
select in each pixel the few signatures that actually best explain the
variability. This sparsity can be global, or can be refined by taking
into account the group structure of the dictionary [7].
Other works use a slightly different but related approach, in which
the whole unmixing is performed locally, in spatially correlated
subsets (sliding windows or segmentations of the image). In this
case, the abundances are estimated locally, based on the idea that
in smaller regions, variability (and some nonlinear) effects are mit-
igated with respect to an entire image. An example using sliding
windows can be found in [8], whereas the work of [9] goes further



by proposing to build a segmentation of the image which is optimal
in terms of local spectral unmixing performance.
Other types of methods are more machine learning-oriented (using
for instance Support Vector Machines [10], or Gaussian Processes
[11]). These algorithms allow to learn the function linking the end-
members available in the dictionary (or in a supervised fashion using
an a priori available dictionary). The training can be performed for
instance by simulating mixed pixels with endmembers from the
dictionary in different proportions [10], or simply by assigning an
abundance of 1 for the material corresponding to the entries of the
dictionary [11]. These methods can relatively easily model spectral
variability, but they have the drawbacks of not explicitly model-
ing the variability, and to be very dependent on the quality of the
extracted bundle.

3.2. Computational Models

For this class of methods, the mixing model takes explicitly distinct
sources into account for each pixel. Most of the times, the idea is to
allow the sources to vary around a known (or extracted from the data)
reference. These techniques are relatively powerful since they theo-
retically allow to capture all kinds of variabilities, but this also harms
the interpretation of the obtained results. We can cite the Bayesian
approaches such as the Normal Compositional Model (NCM) [12],
or the Beta Compositional Model [13], which assume that the end-
members follow a Gaussian or Beta distribution (with the advantage
of being defined between 0 and 1 per construction, which is physi-
cally sound for reflectance data). These distributions are centered at
reference endmembers. However, more recent methods are capable
of estimating both the means and variances of the distribution (e.g.
[14] which uses a generalized version of the NCM), increasing the
robustness against the potential absence of pure pixels in the image.
For instance, the model proposed in [14] is written as follows:

xk =

P∑
p=1

akpskp + ek,

with ek ∼ N (0, ν2nIL), skp ∼ N (µp, diag(σp)) (6)

where k = 1, ..., N is a pixel index, ν2n is the noise variance
in the considered pixel, and diag(σp)) is a diagonal covariance ma-
trix, whose elements are variances of each endmember for the con-
sidered material, in each spectral band. Moreover, in this version
of the model, the means µp of the endmembers follow a Gaussian
distribution themselves (the mean of this Gaussian distribution is a
reference), which allows to adjust the value of the mean with respect
to the basic NCM. In a Bayesian framework, the a posteriori density
of the parameters is generally complex and has to be sampled using
Monte-Carlo methods in order to allow the use of the Maximum A
Posteriori (MAP) and Minimum Mean Squared Error (MMSE) esti-
mators.

Even more recently, the Perturbed Linear Mixing Model (PLMM)
[15] was proposed in order to explicitly model spectral variability
using an additive term acting on the sources to perturb the endmem-
bers:

xk =

P∑
p=1

(sp + dskp)akp + ek (7)

The term dskp accounts for an additive perturbation for each
endmember, in each pixel, and for each wavelength. The parame-
ters of this mixing model are then estimated through an optimization

problem, in which different constraints and regularizations (spatial
regularization on the abundances, proximity of the sources to a ref-
erence, limitation of the norm of the additive perturbation...) are
added in order to make this Nonnegative Matrix Factorization prob-
lem better posed and more suited to the expected properties of the
solution. The algorithm iteratively updates the abundances, the end-
members and the perturbations to converge to a stationary point of
the objective function (the problem is globally not convex, but each
subproblem is). The numerous constraints and regularizations sug-
gest the use of the now popular Alternating Direction Method of
Multipliers (ADMM) [16]. This model was recently adapted to es-
timate temporal variability in the case of sequences of hyperspectral
images [17]. A similar model is presented in [18], but is this time
derived in a Bayesian framework, with slightly different constraints.
In particular, this model assumes that the additive perturbations are
spectrally smooth. However, contrary to the other Bayesian algo-
rithms presented above, the MAP estimator is here obtained through
an optimization algorithm, which makes the algorithm significantly
faster than standard Bayesian approaches, where the whole posterior
distribution needs to be sampled. Finally, we can cite the recent ap-
proach based on tensor decomposition which has been successfully
used in the case of multitemporal [19] and multiangular [20] images,
which allows to track the changes of the sources along the concerned
modality.

3.3. Parametric Models

In this category, the sources are also allowed to vary according to a
specific model, but in a more constrained way than in the previous
category. The variations of the sources are now only allowed along
a limited number of free parameters (typically much less than the
number of spectral bands). Fig. 2 (c) (resp. Fig. 2 (d)) shows
an example of this type of model, where here one (resp. two) real
parameter(s) delimit(s) the accessible domain of the sources, which
is in fact a parametrized manifold (of dimension 1 (resp. 2) in this
example). These models are usually physics driven.

In the physics community, the Hapke model [21] is used to
model the relationship between albedo and reflectance, by taking
into account the geometry of the acquisition (incidence angle of the
light source and viewing angle of the sensor, which vary locally
with the topography of the scene), and the photometric parameters
specific to the materials. In the context of macroscopic mixtures,
the mixing process remains linear. By assuming that the albedo is
known (or extracted by inverting the model) for a material, the model
defines a (rather complex) manifold in which the endmembers can
live. The model is very complex and comprises many parameters in
its most general form. It is hence cumbersome to use directly in a
SU context. However, as a first approximation, it can be simplified
to provide the following mixture model [22], the so-called Extended
Linear Mixing Model (ELMM):

xk = S0ψkak + ek (8)

where ψk is a diagonal matrix, comprising P scaling factors on
its diagonal, which weigh each source in an identical way for all
wavelengths, and S0 is a reference endmember matrix. This equa-
tion explicitly models the variation of the endmembers (allowed to
vary in a one dimensional manifold), where scaling factors locally
absorb contrast and illumination effects in the image. [22] shows
that if the scaling factor is assumed identical for each material, it
can be estimated from the result of Eq. (3), by only considering the
positivity constraint of the abundances. Indeed, the estimated quan-
tity can be written as the product of an abundance coefficient and



a scaling factor (see [22] for details). The algorithm proposed in
[23, 24] is specifically designed to estimate the parameters of this
model through a nonconvex optimization problem with various con-
straints and regularization terms, and was validated using synthetic
data based on the full Hapke model. In its most simple version, the
optimization problem writes:

(Â, Ŝ, ψ̂) = argmin
A,S,ψ

1

2

N∑
k=1

(
||xk − Skak||22 + λS ||Sk − S0ψk||

2
F

)
(9)

In the version of [24], spatial information is taken into account
through spatial regularizations since abundances and geometric vari-
ability effects are known to be spatially correlated. Such regulariza-
tions also enforce a joint processing of the data rather than a pixel-
wise processing ignoring spatial relationships. This algorithm is ac-
tually a hybrid approach between the last two categories of methods,
since there is an explicit parametric model to explain the variation
of the endmembers (along straight lines linking the origin and the
reference endmembers), but the estimated sources are actually free
to drift away from this exact model, in order to explain other types
of variability which are not explicitly modeled (for instance intrinsic
variability). Nevertheless, the scaling factors are easily physically
interpretable and vary with changes in the geometry of the scene.
This model (in the case of identical scaling factors for all materials)
was recently adapted to address a case where the mixing model is bi-
linear rather than linear, showing that it is possible to simultaneously
estimate parameters related to both spectral variability and nonlinear
mixtures [18].

In [25], two parametric models (one is affine, the other expo-
nential) are proposed to explain the variations in the spectrum of
soil under different moisture conditions. Wavelength-dependent
parameters of these two models are estimated by linear regression
on in-situ measurements for two wavelengths. By assuming these
parameters have been estimated for every wavelength (or at least
for different wavelength ranges), the relationship between moisture
and reflectance defines in each case a one-dimensional manifold
(parametrized in each pixel by a real value accounting for the mois-
ture level), which enables the local estimation of this parameter in
the image.

4. DISCUSSION

In this section we summarize the previous considerations and pro-
vide a critical discussion of the different strategies.

Spectral bundles are probably the easiest way to deal with
spectral variability in SU. They allow to simply represent the intra
class variations of a material by a set of signatures incorporating its
variability. Even when the bundles are extracted randomly in the
image data, the unmixing performance usually surpasses that of the
conventional linear SU. Bundles can also serve as a training set for
machine learning approaches which aim at learning the relationship
between the bundles and the abundances. This approach is also
very sound when a spectral library is available a priori. The main
drawback is that the performance of these methods highly depend on
the quality of the extracted bundles. Besides, if the used endmember
extraction algorithms make use of the pure pixel assumption, it has
to remain valid in each used subset, which can be too strong a hy-
pothesis when dealing with small datasets. Also, there is no explicit
modeling of the variability, which can make the interpretation of the
results harder.

More advanced bundle extraction algorithms, in particular using
spatial information (e.g. [26] and references therein) could be used
in this framework in order to improve the quality of bundle-based
SU.

Computational models go further than spectral bundles be-
cause spectral variability is explicitly modeled in the mixing model
used. These models usually approximate variability as a deviation
w.r.t. the Linear Mixing Model, and hence can theoretically explain
any type of variability. They generally only require a reference end-
member to be known or extracted beforehand, and are thus relatively
robust to the absence of pure pixels. Nevertheless, their flexibility
can also be a drawback since, once again, the results cannot always
be interpreted in a more thorough way than to detect areas where a
linear mixture is not sufficient to explain the data. It is probable that
other phenomena such as nonlinearities and missing endmembers
could be interpreted as spectral variability within the framework of
these models.
An a posteriori analysis of the extracted sources (e.g. to try to isolate
“typical” sources for each material) could be a way to take advan-
tage of the flexibility of these techniques.

The last category also resorts to parametric models to extract
variability, but the key difference here is that a limited number of
parameters provide rules for the spectral variation of the endmem-
bers. Besides, these parameters are usually physics-based. Thus this
type of models usually has an immediate physical interpretation.
This has been recently validated in particular for illumination-based
models [24]. Illumination conditions effects are correlated between
materials, and hence the same model can as a first approximation be
used for each of them. However, by definition, intrinsic variability
is material specific, and modeling the variability of a material must
be done through ad hoc models, limiting their applicability. Besides,
physical modeling can lead to complex models which can be im-
possible to use in practice for SU, therefore requiring simplifying
hypotheses.

Finally, most methods focus on considering varying endmem-
bers in the spatial domain. However, modern hyperspectral sensors
make more and more multimodal datasets available. The typical
additional modalities are multitemporal and multiangular datasets.
A majority of the methods listed here could be easily adapted to a
different variability framework, be it temporal, angular, spatial, or
any combination of those, as explained in Section 2. The works
of [5],[17], and [19] are examples of algorithms for multitemporal
spectral variability extraction in a joint way, rather than an indepen-
dent analysis of each time frame [8].

5. CONCLUSION

We have presented a review of the most recent methods to take spec-
tral variability into account for spectral unmixing. We have cate-
gorized these methods in three main types of approaches and de-
scribed their specificities, before suggesting some research avenues
for each of them. We believe that extending some of these methods
to a nonlinear mixture model is possible (an encouraging step in this
direction was recently made in [18]) and would definitely enrich the
analysis of remote sensing images through spectral unmixing. We
think that the design of models and algorithms to further refine the
existing models dealing with illumination, as well as the design of
new models taking into account various material specific physical
phenomena is a promising research avenue for the community.
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