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Abstract: Following the works of Berthet [2, 3], we first obtain exact dus-

tering rates in the functional law of the iterated logarithm for the uniform

empirical and quantile processes and for their incréments. In a second time,

we obtain functional Chung-type limit laws for the local empirical process

for a class of target functions on the border of the Strassen set.
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1. Introduction

Define the uniform empirical process by an(t) != n1/2(i?n(t) — t), where Fn(t) :==

n G {1, • ■ • ,n}, Ui < t}, t G [0,1], and (Ui)n>i are independent, identi-

cally distributed (i.i.d) random variables uniformly distributed on [0,1]. Define
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the quantile process by

Pn{t) ^ n1/2(Fn\t) - t), te [0,1],

where F^1(i) := inf{w : Fn(u) > tj. In a metric space (8,d) we write un ^ H

whenever un is relatively compact with limit set TC (see, e.g., [17]). The two above

mentioned processes hâve been extensively investigated in the literature (see,

e.g., [20] and [24] and the references therein). In a pioneering work, Finkelstein

[10] has established the functional law of the iterated logarithm (FLIL) for an.

Namely, the author showed that, writing log2 u - log(log(w V e)) and &njjj

\/2log2 n, we hâve :

^ -a.S. <52, (1.1)071

in the metric space (F?[0,1], || • ||), where B[0,1] stands for the set of bounded

functions on [0,1] and || • || is the sup-norm over [0,1]. The set £2 in (1-1) is

given by

S2:={f(t)eSu f(1) = 0}, (1.2)
where

1

5! := (/ 6 B[0,1], 3/' Borel, /(•) := J f'(i)dt, J f'2(t)dt < l). (1.3)
0 0

Note that S2 (resp. <Si) is the unit bail of the reproducing kernel Hilbert space

of the Brownian bridge (resp. of the Wiener process) on [0,1]. In the spirit of

[10], Mason [17] has obtained the following FLIL for the local empirical process :
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oo. Deheuvels and Mason [8] hâve established a related uniform functional limit

law for the following collections of random trajectories.

©« - , |
V 2an log(l/aT

They showed that, with probability one :

t G [0,1 - an]|.

lim sup inf II gn — / 11= 0,
n->°° gneenf£Si

lim sup inf \\gn — f 11=0, (1.5)
nB'fO fçSi 9n£®n

where an is a sequence of constants fullilling an j 0, nan -f oo, nan/ log n —»

oc. log(l/an)/log2 n —» oo. Berthet [2] refined (1.5) under slightly stronger

conditions imposed upon an. Making use of sharp upper bounds for Gaussian

measures due to Talagrand [22], he proved that for any e > eo (where eo is a

universal constant), we hâve almost surely for ail n large enough :

0n C Si + elog(l/o„) 2/3B0. (1.6)

Here Bq = {/ G B[0,1] : || / j|< 1}. The first aim of the présent article is to

show that the techniques employed in the just-mentioned resuit can be adapted

to some other random objects than that used for that given in (1.6) (see The-

orems 1 and 2 in the sequel). Results of this kind are usually called clustering

rates. Another related problem is finding rates of convergence of such random

sequences to a specified function belonging to the cluster set. Such results are

known under the name of functional Chung-type limit laws. We now focus on

the local empirical process an(an•), where an j, 0 as n —> oo. The works of Csâki
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[5], de Acosta [1], Grill [12], Gorn and Lifshits [11], and Berthet and Lifshits [4]

on small bail probabilities for Wiener processes provide some crucial tools to es-

tablish such limit laws for (an(an-))n>i, as these are expected to asymptotically

mimic their gaussian analogues (see Mason [17]). Along this line, Deheuvels [6]

established Chung-type limit laws for (<an(an-))n>i, by showing that, if an is a

sequence of constants satisfying nan f oo, an [ 0 and nan/(log2 n)3 —> oo, we

î

hâve, almost surely, for each / g <5>i satisfying || f \\2H'-= f f,2(t)dt < 1 :

lim inf (log2 n) /
4\A3 || f \\h

The proof of this theorem relies on strong approximation methods in combi-

nation with the results of de Acosta [1]. The latter provides useful exponential

bounds for

W
< e

with a small e > 0 and a large T. Here, W is a Wiener process on [0,1] and

f satisfies || / ||#< 1. The study of related probabilities when || / \\h= 1 has

required different arguments. In [12], rough estimâtes are given. In [11] and [4],

some exact rates are given, but only for functions with first dérivatives having

a variation either bounded or locally infinité. The sets of ail functions of this

type are called <5^ and S[lv respectively. In the présent paper, we shall make

use of the latter results to extend the work of Deheuvels [6] to the case where

f G S\v U S[lv. The remainder of our paper is organized as follows. Our main

results are stated in §2, Theorem s 1, 2 and 3. In §3, the proofs of these theorems

are provided.
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2. Main Results

Our first resuit gives clustering rates in Finkelstein’s FLIL [10].

Theorem 1. There exists a universal constant eq >0 such that, for any choice

of e > fo we hâve almost surely, for ail large n

i /■/ £ <S2 + e(log2 n) 2/3H0, (2.1)
(2 log2 n)1'2

—-L G S2 + e(log2n)“2/3^0. (2.2)
(2 log2 n)1'2

Remark 2.0.1. The uniform Bahadur-Kiefer représentation (see [13]) asserts

that, almost surely :

limsupn1/4(logn)“1/2(log2 n)-1//4 || ocn + (3n ||= 2-1/4,
n—»oo

from where (2.2) is readily implied by (2.1).

Our second theorem concerns the FLIL for local incréments of the empirical

process.

Theorem 2. Let an be positive real numbers satisfying, as n —»• oo,

nan , s

nan î oo, Lty7ô' -“>oo, an I 0. (2.3)(log2 n)1/6

Then there exists a universal constant e\ > 0 such that, for any choice of e > e\

we hâve almost surely, for ail large n,

GII e(log2 n) 2/3Bq.
v/2an log2 n

(2.4)

If moreover nan/(log2n)11'3 —> oo then we hâve, almost surely, ultimately as

n —> oo,

\/2an log2n
= G + e(log2 n) 2/3Bq. (2.5)



Remark 2.0.2. We shall use the fact (see e.g. [9], Theorem 5) that, under

(2.3), we hâve almost surely

limsup (n/an)1/4(log2n)H/4(21og2n+log(nan)) 1/2 || an(an-)+/5n(an-)ll< 2g|1/4,
n—kx)

from where (2.5) is implied by (2-4) after straightforward computations.

In order to state our last resuit, we need to give some définitions. Recall that

/ G SM whenever f has a dérivative with bounded variation and f f,2(t)dt = 1.
o

Results on small bail probabilities for a Wiener process when / G hâve been

established by Gorn and Lifshits [11]. For such a function /, we shall write

V/(L) := L2'3, L > 0 and we dénoté by Xf the constant which is the unique

solution of équation (3.1) in [11] (we refer to the just mentioned paper for more

î

details). The case where / G S[tv (i.e. where f f2{t)dt — 1 and the dérivative of
o

f admits a version with locally infinité variation) has been treated by Berthet

and Lifshits [4]. For such a function /, we set Xf 1 and we dénoté by V/(L)

the unique solution of équation (2.1) in [3]. Our third resuit is stated as follows.

Theorem 3. Let f G Siv U be arbitrary and let an be a sequence of real

numbers satisfying, as n —> oo,

nan î oo, an { 0, an log2 n -* 0, (2.6)

(2.7)

Then we hâve, almost surely :
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Remark 2.0.3. The conditions (2.6) and (2.7) imposed upon an turn ont to be

the best possible with respect to the methods used in the proof of Theorem 3. The

latter combines poissonization techniques with strong approximation arguments.

Deheuvels and Lifshits [7] and Shmileva [19] hâve provided new tools to estimate

probabilities of shifted small balls for a Poisson process without making use of

strong approximation techniques. These results show up to be powerful enough

to investigate Chung-Mogulskii limit laws for an(an.) without making use of

strong approximation techniques, and thus relaxing condition (2.6). However,

the just-mentioned results do not cover the case where f G S[lv.

3. Proofs

3.1. Proof of Theorem 1

Select an e > 0 and consider the sequence en := e(log2 n)-2//3. The main tool to

achieve our goal is the exponential inequality stated in the following fact, which

follows directly from Talagrand [21]. Recall that Bq is the unit bail for || • ||.

Fact 3.1. Let B be a Brownian bridge. There exists three constants K, Lq and

Uq >0 such that, for any 0 < u < Uq and c> 0, we hâve :

P{B<f:cS2 + uBa) <Jfexp(l§-y-d). (3.1)

Let W be a Wiener process on [0,1]. There exist two constants u\ and L\ such

that, for any 0 < u < u% and c> 0, we hâve

P{W^cS1+uB0)<exp^-^~Çy (3.2)
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In the proof of Theorem 1, we will make use of blocking techniques (see,

e.g., [8] and [2]). For any real umber a, set [a] as the unique integer q fulfilling

q < a < q + 1, and set

nk B exp k > 1.

Set Nk := {n/c,... ,nk+i — 1} for k > 5. Given an integer n > 1, we set k{n)

as the unique integer k such that n G Nk. We shall first study the following

sequence of fonctions

gn := (n/c+i) 1/2bnl+lHn, k = k(n),

with Hn(t) := n(Fn(t) — t) and bn (21og2 n)1/2. Let p\ and q\ be two conju-

gates numbers (such that l/p\ + l/qi — 1) with 1 < p\ < oo. Set, for k > 1,

TTLpiik • lïlfo Fl x i /27 II -ffofc+i Hn ||^ €rifc+1neNk VK+l)1/2^nfe+1 Pl +

A standard blocking argument based upon Ottaviani’s inequality (see, e.g., [8]

Lemma 3.4) yields

1

U
n£Nk (nfe+i)V26n

Hn y ^2 -f enfc+j.0o

<
1 1

* 52 + $Kf° '•
Let k be integer and select n G Nk. By the Dvoretsky-Kiefer-Wolfowitz inequal-



ity (see, e.g., [23]) we hâve :

{nk+1y/2b„k,I
H, TlHn ||> —1

m
nk+1

< ank+1-n 11“ enfe.| 1
Jr 1

( 1 ÏH ^1 V i _ nk J unk+i J
nk+1 '

< 3 exp ( —
4e2log2(nfc) 1/3 for large enough k,

(x -

whence mPljk > 1/2 for ail large k by routine analysis. Now let P2,Q2 > 1 be

two conjugate numbers. For k > 1 we hâve, /infcfl denoting a Brownian bridge,

•W-i

5.

^2 + — tnk+1Bo ) < P( || ank+1 — B.«fc+i II —

P2Çl

Wfc+i ^
Ç2Ç1

j>KMT _j_ jpTal

Making use of the Komlôs-Major-Tusnàdy approximation (see, e.g., [14])), we

can choose a sequence {Bnk)k> 1 satisfying, for some universal constants C2, C3

and for ail k large enough,

PfMT < C2 exp ( - C3(nk+1)1/2~-^-6nk+1bnk+,
On the other hand, by applying assertion (3.1) of Fact 3.1 we hâve, for ail large

k,

■nTal < K exp
•^0(51^2)" (log2 Hl)1/3 - !°g2 nk+î

,qiq2 2e2

Routine analysis shows that both Pj[fMT and ]?kal are sumable in k for any

choice of e > (Lo/2)1/3 =: eo, provided that q\,q2 are chosen close enough to 1.

Now an application of (1.1) in combination with elementary properties of the
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sequence shows that, almost surely, as n —> oo,

gn - b^1 an ||= o((log2 n) 2/3)

3.2. Proof of Theorem 2

Recall that bn := (21og2 n)1/2, n > 1. Let pi, q\ > 1 be two conjugate numbers.

Set, for k > 1 :

mPl>k := mm
iSiVfe V (n/e.). 1 Ann

The same blocking argument as in §3.1 yields

Hn(ank 11 ■) Hnk+1 (anfe+1 •) j|< (:nfc ; j
Pi '

U (rtnfcx '

{nk+lank+1 )1//2^nfe+i enfe+iRo

<

n£Nk

HD+l /

))
W l 7 \i /o» y + —enfe 230

^h>i,k '\nk+iank+1) ' bnk+1 qi

Now, for any integer k > 5 and n G Nk, we hâve

z ; - Il H-nk..\.\ B Hn(arik+^ •) ||> ~~cnk+ibnk H
V^fc+i Pi

C^nfc+i—n(^) | _ 1<P sup ' > —enfe+Hül, 1-B Pi 'nfe+i^nfcnt+find /

It is well known (see, e.g., [20], Proposition 1, p. 133) that for each n, the process

(î-t)-1an(t) is a martingale in t. The Doob-Kolmogorov inequality yields :

P?( 1 - «nfe+1)(l - ^7)(log^+i)1/31 - mPl < 2e2

Hence for ail k large enough we hâve mPltk > 1/2- Now set for each integer

n > 1,

:=nW1/2(X1W<0 -*)’ tS M'
i=l
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where r]n is a Poisson variable with expectation n, which is independent of

Let II dénoté a standard centered Poisson process on R+ and let W

be a Wiener process that we assume to be constructed on the same underlying

probability space as n. Notice that Iïn (•) and n 1/2n(n-) are equal in distri-

bution as processes on [0,1]. Now let P2,q2 > 1 be two conjugate numbers.

By making use of Poissonization techniques (see, e.g., [8], Lemma 2.1 or [25],

Proposition 2.1 for a more general form) we see that, for ail sufficiently large k :

< 2P

- 2P

lnk.k

a1/2 bunk+iurik+i

nnfc+1 {ank+1 ')
a1/2 bunk+1unk+1

^ <Sl H enk+i^O
qi fc+1

^ <Si H enk+1Bo
Qi

^(nk+lank+1') A c , 1 ^
7- 7777 £ Ol i Cnfc £>0
(2nfc+ianfe+1 log2 nfc+1)1/2 2i

< 2P( J] W(nfc+ianfc+1-) - n(rifc+ian •) ||> (nk+lank+1)1/2b\ a i üo

W(nfc+1a„fc+1-)

Wfc + l c™fc+ l

2P
K+l«nfe+1)1/2&

«Si
'nk+1

'Wfc+i

DKMT _|_ jpTaZ

Now, making use of the strong approximation theorem of Komlôs-Major-Tusnàdy

[15], we can assume that the process W involved in the former expression sat-

isfies, for some universal constants Ci, C2, C3 > 0, and for ail T > 0, 2 > 0,

P( ||n(T-)-VP(-) ||> 2 + Ci logT^ < C2 exp ( — C2z). (3.3)

Notice that, as k 00 :

ink+lank+i) ^ ^nfc+i€nfc+i
log(nfc+i

OO.
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Thus, we hâve, ultimately as k —» oo,

PfMT < C2exp ( - (nfc+iaTCfc+1 )1/2 (log2 nfc+i)~1/6). (3.4)v V2qiP2 '

Recalling the assumption nan/(log2 n)7'3 —» oo we see that PkMT is sumable

in k. Now, making use of assertion (3.2) of Fact 3.1 we hâve, for ail large k,

fÊ = Hw £bnwS1 + -±-tn„+lbnMB0)' QlQ2 '

< exp ^ - t-jr- - (log2 nfc+i)1/3 - log2 nk+^.
Now if e > (Li/2)1/3 =: ei and if çi, g2 > 1 are chose sufficiently small, then

Ÿ^al is sumable in k. By the Borel-Cantelli lemma, we see that for any e > e\

we hâve almost surely, for ail large n,

9n ^ $1 + enk+i^O)

where gn := (n/c+ianfc+1)_1/26“^1+iiïrn(anfc+1-), n G iVfc. To conclude the proof
of Theorem 2, it remains to control the distance between an1^26“1û;n(an-) and

gn, which is the purpose of the following lemma.

Lemma 3.1. We hâve almost surely :

limsup (log2n)2'3
n—» oo

®-n (an-)
(2an log2 n)1/2 9n 0.

Proof : Set Tn := 1 - (n/nfc+i)1/2(an/onfc+1)1/2(log2 njlog2 nfc+i)1/2. The
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triangle inequality yields

^n(®n‘) < C^n(®n') p
Bnifln"') Bn{(lnk^l •)

(2an log2 n)1/2 (2an log2 n)1/2
+ •:

M—1 log2 anfc+1)1/2
Hh

An + Bn.

Clearly we hâve, as k oc,

max
nENk

(iog2nfc+i)2/3 rn 1 (1* (iogv y nfc+1 log2 nfc+i J
lfc+i)2/3 - 0.

Now, by applying (1.4) we hâve almost surely

Ûn^n')lim sup
(2an log2 n)1/2

Obviously (3.6) implies that, almost surely :

= 1. (3.6)

lim (log2 nfc+i) 7 max Ar
n—>&o n£Nk

0.

We now focus on controlling £n. Set := anfe/anfcjj and notice that

Hn(®n') Bn(0-nk.. x ')
max (log9 n)27
B9 (2nfc_iaM,41 log2 û,,,.,)1/2

> e

< F max sup (log2
\n£Nk l<p<pfc, 0<jffll

“n(anH1^) ~Û!n(anfc+1i)
(2an log2 nfc+i)1/2

> e

Now consider the Banach space B([0,1] x [0,2]) of ail real bounded functions

on [0,1] x [0, 2], endowed with the usual sup norm ]| • 11 [o,i]x [0,2] - We shall now

make use of the powerful maximal inequality of Montgommery-Smith. For fixed

k > 1, we apply the just mentioned inequality to the finite sequence (Xi)ieNk>

with Xi(t,p) := 8 pt, t G [0,1], p G [1 , pk], pt < 1 and Xi(t, p) m 0

elsewhere. Hence, by a combination of Theorem 1 and Corollary 3 in [18], we
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hâve :

max sup (log2 nfc+i)2/3
neivfe 1 <p<pk, 0<i<l

Rb') ®n(®n*;xi^)

<9P

< 18

sup (log2nfc+i)2/3
1 <p<pk, 0<t<l

(2anfe+1 log2 nfc+i)1/2
^^fc+i (aWfc-)-iP^) ~ Oînfc+i (anfc+1^)

> e

> e/30

II(nfc+ianfe-) - W(rik-\ \a

w(PkI - H
«fc ; II —

(2anfc+1 log2 nfc+i)1/2
e (2nfc+ianfe+1 log2nfc+i)1/2

240 (log2(nfc+i))2/3

>
(2 log2 nk+i)1/2 120(log2 nfc+i)2/3/ (3.7)

In the last expression (which is the combination of usual poissonization tech-

niques with the triangular inequality), Il and W dénoté respectively a centered

Poisson process and a Wiener process based on the same underlying probability

space. By the Komlôs-Major-Tusnàdy construction (see [15]), W can be con-

structed to satisfy (3.3). By making use of the same arguments as those invoked

to obtain (3.4), we conclude that the first term in (3.7) is sumable in k. To con-

trol the second term in (3.7), we shall make use of a well known inequality (see,

e.g., [20], p. 536), with a := — 1, À := (pk - l)-1/2(log2nfc+i)~1/6(\/2e/120)

and 6 := 1/2, to get

p / _ / _ V
v y/2 log2 nk+1

^ l)“1/2((log2nfc+i)1/6exp |- nk+
This expression is sumable in k, and hence maxnejvfc Bn 0 almost surely as



17

3.3. Proof of Theorem 3

Recall that Xfi V/, S\v and S[tv are defined in §2. The main tool to achieve the

proof of Theorem 3 is the following inequality (see Berthet [3]), which sums up

different results from Gorn and Lifshits [11], Berthet and Lifshits [4] and Grill

[12] (see also de Acosta [1]).

Inequality 3.1. For any f 6 Sfv U SiIV and ô > 0, there exist 7+ =

7+(à, /) > 0 and 7— = 7~(ô, /) > 0 such that for T sufficiently large :

V/l
T2

vT
W

Y ~ f - (1 + 5)X/J >exp(^- — +7
T' V2f(T2/2K+ V/

■a w

Y -f

rp2

72 (rp2I
, T2 _ Vj (T2/2)

< (!f s)Xf ) < exp ( - — -7 Y2

Select / G Sfv U SiIV. We remind the two following properties of V/ (see

[16]), namely lim sup^^ L_ 1V/(L) < 00 and liminf£_*oo L_2/3V/(L) > 0.

We shall first show that, almost surely :

lim inf V / (log2 n) û;n(û'n') -/ > Xf■(2an log2 n)1/2

Let us fix e > 0. We start by applying poissonization techniques in combination

with the Komlôs-Major-Tusnàdy approximation.

P(V/(log2n

<2P(V/(log2 n)

Ûn(®n')
(2on log2 n)1/2

W(nan-)

-/ < X/( 1 - 2e)

(2nan log2 n)1/2 -/ I x/C1!6)

2P W(na„-) - II(nan-) > X/e(2nan log2 n)1/2
V / (log2 n)

These two terms are sumable along the subsequence n*,, the second term being

controlled by the Komlôs-Major-Tusnàdy approximation while the first one is
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controlled by Inequality 3.1. Now the control between Uk and rik+1 follows the

same line as in Lemma 3.1. We omit details for sake of brevity.

We now focus on showing that, almost surely,

lim inf V / (log2 n)
n—>oo (2an log2 n)1/2

< Xf■

Set rik '■= k2k, Vk — rik+1 — n*, and

^ __ y/nk+1 ank+1(Qnfc+1 • ) \Z^kank (ank+1’)
^2vfcanfe+1 log2(ufc) (3.8)

Notice that the hk are mutually independent processes, and that each hk is dis-

tributed like (2aUk+1 log2 Vk)~1^2aVk(ank+1-). We now make use of the following

"depoissonization" lemma. Recall that II(-) dénotés a centered standard Poisson

process on [0, oo).

Lemma 3.2. Under assumptions (2.6) and (2.7), there exist two sumable pos-

itive sequences (ck)k>î, {bk)k>î and an integer ko > 1 such that, for any set

A C S([0,1]) that is measurable for both empirical and Poisson processes and

for ail k > ko,

F(n(?;Â;ttnfe).1-) e À) - ck || bk < 2P(vl/2aVk(ank+1-) e A^.
Proof : Set Uk := (41og2(ufc)/nfc+ianfe 1)1'2. By assumption (2.7) we hâve

Uk —* 0 as k —> oo. Now set U(t) := U(t) +1, E [0,1] and R\^ n(ufcanfe+1),

i?2,fc := n(vfc) — n(ufcanfc+1). For fixed k, and R2,k are independent random

variables and are distributed as Poisson variables with respective expectations

Vkank+1 and ^(1 — anfc+1). Let A C B([0,1]) be an arbitrary set that we assume
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to be measurable for II and an. Define the following events :

I-'k r•) € k > 1.

We hâve, for any integer k > 1,

F(Ek) < F^Ek n Ri,k e [(1 - Uk)vkOnk+l,{ 1 + Uk)vkank+1])
i' P^./?l.fc < (1 — Uk)Vk(lnk^ x^ + P^Rl.fc > (1 + Uk)'CkCnk__1^j ■

Dénoté by Ck and bk the two last ternis of the RHS of the preceding inequal-

ity. We shall show that these two sequences hâve hnite sums. Making use of

Chernoff’s inequality, we hâve :

ck < exp f - vkank+1 ((1 + Uk) log(l + uk) - ukJ J.

Since (1 4- u) log(l + u) — u ~ \ as u —» 0, it follows that for ail large k,

. / B|
ck — exP (pi Vkank+i 2 )

= exp ^ — 21og2 nk).
We make use of a similar method to show that (bk)k>i is sumable. It remains

to show that, for ail k > ko (with ko independent of A), we hâve

P(Ek n Ri,k e [(1 - uk)vkank+i: (1 + Uk)vkank+1ŸJ < 2F (^Ek | Iï(i’fc) : vk^j ■

Now set

Kk inf {Pp^n^fc) = nfcf J 6 ^ ~ Ufe^fean*+1' (1|lwfcHanfe+1] j- (3.9)
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We hâve

P[Ek n e [(1 - uk)vkan
[{1+Uk)vkank+1}+1

< ^2 ^iEk n Ri,k hl j)
j'=[(l—ufc)t;feanfc+1V]|£f>

[(l+uk)vkank.J+l WÊHH P(F n R - 'k = Vk ~ ÏÏ
- k.

,(1 VM1W

Kl

j=[{\-uk)vkarlk+1\
[(l+uk)vkan, ,,]+l

P{Ek n Ri,k = j n ^2,fc = Vk — j)

j—[(l-uk)vkank+1]

< Kk1F(Ek | n(vfc) = vk).

p(n(ufc) = üfe)

Hence, it suffices to show that Kk —> 1. For clarity of notations, set v'k :=

vk(l—ank+1), recalling that i?2,fc is a Poisson variable with parameter v'k. Setting

l — vk — j in (3.9) we hâve, as k —> oo,

ry
_ f IP(^2,fc = 0 IHÜ ilKk - mf ^ Vk) ’ ^ P’fc Vkukank+i j + vkukank+1 J J •

Now, by Stirling’s formula, we hâve P(n(vfc) = vk) ~ (27rufc)_1/2 as k —>■ oo. A

routine study of the finite sequence

l € [uj. - ufeufcanfc+1,Ufc + ufcnfcanfc+1]J

shows that

P(n(ufc) = nfc)ATfc = min(Pi!/c,P2,fc) , where

Pi.fc := P(^2,fc = Il - ^a„wMfc]), and

P2,fc := P(^2,fcjj| + vkünk+1uk] + !)•



21

We set u'k — ank+1ukvk/v'k ~ ukank+1. Stirling’s formula yields, ultimately as

k -> oo,

,[vk'-vkank Uk]

-iïexp(-«fe')Wfel'

expÇ-VL
exp(—Vfc' + vku'k) V

exp(-'yfe/ufe/)

= y/27rvk exp f - î/fc'((l - Ufc')l°g(l - wfc) +uk'Ÿj.

[^fc Vkdnk^1'i

f V \W'(l g ufc')/
~ a/27iW1 - nfc'

Moreover, since (1 — e) log(l — e)
2

e

2 as e —> 0, we hâve, for ail large A:,

exp — 2a
! l°g2(nfc+i)^ < exp ( - 4((1 - uk')log(l - B +Ufe')j

By assumption (2.6) we hâve an log2 n 0, which ensures that P^f ~ y/2'KVk-

The control of P2tk is very similar. This achieves the proof of Lemma 3.2.D

We now apply the preceding lemma in conjunction with the Komlôs-Major-

Tusnàdy approximation. Let W be a Wiener process constructed on the same

underlying probability space as II. For an arbitrary <5 > 0, we hâve (recall tha

hk has been defined in (3.8))

(V/(log2(vfe)) || hk-f ||< (1 + 2S)Xf)
n(nfcanfc+1 •)

™lp( V/(log2K)) (2vkank+1 log2 vk)1/2
-/ < (1 + 25)xf

1

2°k 2'k

> n{vkank+1-) -W{vkank+l-)

W

> 6xf{2vkank+1 log2 v^1/2

-P Vf(log2 vk) (2 log2 Vk)1/2
~ f ||< Xf{l + <5)

V/(log2 vk)
1

2 c/c 2 bk
I 1 1 1,

dk 2^^ 2°k I 2k
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Since vk ~ nk+-\ it is easy to conclude that dk is sumable in k, by making use

of the strong approximation (see [15]). Hence, making use of Inequality 3.1, we

hâve asymptotically

P/c > exp ( - log2 vk J •

But log2 Ufc = iog(Â.' 1) + log2 k + o(k~~2 (log k)' "1) and hence

5ZP(V/(log2(vfe)) | hk - / jf< (1 + 2<5)xA = oo.
fe>i

Applying the second half of the Borel Cantelli lemma, we deduce that, almost

surely :

liminf V/(log2 vk) \\ hk - f ||< Xf-
K—* OO

To conclude the proof, it is enough to show that, almost surely (recall that

lini£, ->00 L~1 V/(b) > 0),

lim (log2 nk+i)
fc—XX)

Routine algebra shows that

(l°g2 nkfi) h

< (log2nfc+i)

+ (log2 nk+1)

B Ak + Bk.

<xnk+i ‘)
(2nk+iank+1 log2(nfc+1))1/2

0.

lnk+1 (ûnfe+1 ')
(2anfe+1 log2(nfc+1))i/2

nk+1 log2 nfc+ixi/2
_

vklog2(vk)
1/2 ■ I

nk V®nfc+i')

ank+1 (anfc+i I
(2anfc+1 log2 Tlfc+l)1/2

(2ufcanfe+1 log2 nfc+1)i/2

Applying theorem of Mason (1.4) we get Ak $jl q almost surely as k -»• oo. We
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now apply Doob’s inequality for positive submartingales to obtain

n (i°g2 Bl]

sup

nk
Oink (ank+1 ')

((2vka log2 nk+1))1/2
> e

an(t) F e(2ufcanfe+1 log2 n^+i))1/2
1 -t

>

nfc2 loë2 nfc+l

< — (1 - «nfc+1 ) log2 nk+1 —.
vk2e2

Since nk/vk ~ 1 /e2k2 as A: —> oo, we conclude the proof of the lower bound in

Theorem 3 with the Borel-Cantelli lemma. □

Acknowledgements: The author would like to thank P. Berthet and E. Shmil-
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