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Abstract: Following the works of Berthet |2, 3], we first obtain exact clus-
tering rates in the functional law of the iterated logarithm for the uniform
empirical and quantile processes and for their increments. In a second time,
we obtain functional Chung-type limit laws for the local empirical process
for a class of target functions on the border of the Strassen set.
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1. Introduction

Define the uniform empirical process by a,,(t) := n'/2(F,(t)—t). where F, (t) :=
'n_lt_{'.!' Ei 4l s n}, Uy < f}. t € [0,1], and (U;),>1 are independent, identi-

cally distributed (i.i.d) random variables uniformly distributed on [0, 1]. Define



the quantile process by

Ba(t) = n,'/z(F’l{f,) = f) t € [0,1],

n

where F/1(t) := inf{u: F,(u) >t}. In a metric space (£, d) we write u, ~ H
whenever wu,, is relatively compact with limit set H (see, e.g., [17]). The two above
mentioned processes have been extensively investigated in the literature (see,
e.g.. [20] and [24] and the references therein). In a pioneering work, Finkelstein
[10] has established the functional law of the iterated logarithm (FLIL) for a,,.

Namely, the author showed that, writing log, v = log(log(u V €)) and b, =

v/ 2log, n, we have :

Oy

Tn S e O (1.1}
in the metric space (B[0,1],]| - ||), where B[0, 1] stands for the set of bounded
functions on [0,1] and || - || is the sup-norm over [0,1]. The set Sy in (1.1) is
given by

e {f(r) €8, f(1)= ()}. (1.2)

where
. 1
= {f € B[0,1], 3f' Borel, f(-) := [f’(l:)df, /f’z(f)fif 2 1}. (1.3)
0 0

Note that S (resp. §1) is the unit ball of the reproducing kernel Hilbert space
of the Brownian bridge (resp. of the Wiener process) on [0.1]. In the spirit of

[10], Mason [17]| has obtained the following FLIL for the local empirical process :

{:;(—;;') aig. ‘SI- {11)
Ay O




0o. Deheuvels and Mason [8] have established a related uniform functional limit

law for the following collections of random trajectories.

0, = {O’n(i + an:) — an(t)

= ,te[0,1— a“‘]}.
2a, log(1/a,)

They showed that, with probability one :

lim sup inf ||gn—f||=0,
n—oo 4 @, fES

lim sup inf || gn— f|/=0, (5 )
n—o feg,) gn €On

where @, is a sequence of constants fulfilling a,, | 0, na, T oo, na,/logn —
oo, log(1/a,)/logan — oco. Berthet |2] refined (1.5) under slightly stronger
conditions imposed upon a,,. Making use of sharp upper bounds for Gaussian
measures due to Talagrand [22|, he proved that for any ¢ > ¢ (where ¢ is a

universal constant), we have almost surely for all n large enough :
8, C 81 + elog(1/a,)"%By. (1.6)

Here By := {f € B[0,1] : || f ||< 1}. The first aim of the present article is to
show that the techniques employed in the just-mentioned result can be adapted
to some other random objects than that used for that given in (1.6) (see The-
orems 1 and 2 in the sequel). Results of this kind are usually called clustering
rates. Another related problem is finding rates of convergence of such random
sequences to a specified function belonging to the cluster set. Such results are
known under the name of functional Chung-type limit laws. We now focus on

the local empirical process o, (ay, ), where a,, | 0 as n — oo. The works of Csaki



[5], de Acosta [1], Grill [12], Gorn and Lifshits [11], and Berthet and Lifshits [4]
on small ball probabilities for Wiener processes provide some crucial tools to es-
tablish such limit laws for (cv, (a,-)),>1, as these are expected to asymptotically
mimic their gaussian analogues (see Mason [17]). Along this line, Deheuvels [6]
established Chung-type limit laws for (c,(a,-)),>1, by showing that, if a,, is a
sequence of constants satisfying na, 1 0o, a, | 0 and na, /(log, n)* — oo, we

1
have, almost surely, for each f € &) satisfying || f ||7,:= [ f2(H)dt <1 :
0

™

Al W= F

The proof of this theorem relies on strong approximation methods in combi-

onlan:)

V U‘l'!. b“

lim inf (log, n) —

n—oo

nation with the results of de Acosta [1|. The latter provides useful exponential

bounds for

[; = fH < 6),

7]

with a small € > 0 and a large T. Here, W is a Wiener process on [0, 1] and

f satisfies || f ||3;< 1. The study of related probabilities when || f [|z= 1 has
required different arguments. In [12], rough estimates are given. In [11] and [4],
some exact rates are given, but only for functions with first derivatives having
a variation either bounded or locally infinite. The sets of all functions of this
type are called SYY and S respectively. In the present paper, we shall make
use of the latter results to extend the work of Deheuvels [6] to the case where
f e S u S, The remainder of our paper is organized as follows. Our main
results are stated in §2, Theorems 1, 2 and 3. In §3, the proofs of these theorems

are provided.




2. Main Results

Our first result gives clustering rates in Finkelstein’s FLIL [10].

Theorem 1. There exists a universal constant eg >0 such that. for any choice

of € > ey we have almost surely, for all large n

O o/ ¢
W = SQ =l E(l()gg T'.L) 2/38(;. (21)
o T
Bn - —2/3 5
€ S +e(logyn) By. (2.2)

(2log, n)1/2
Remark 2.0.1. The uniform Bahadur-Kiefer representation (see [13]) asserts

that, almost surely :

lim sup n"/‘i(logw.)’”z(]ogg )= [k B, =0,

n—oa

from where (2.2) is readily implicd by (2.1).

Our second theorem concerns the FLIL for local increments of the empirical

process.

Theorem 2. Let a,, be positive real numbers satisfying, as n — oo,

n,
O 9
it (e TEENNTE — 00, an ) 0. (2.3)

Then there exists a universal constant e, > 0 such that. for any choice of € > €,
we have almost surely. for all large n,

ﬂn,(”-n )
v/ 20, log, n

11/3

€ 81 + e(log, n) 23 B,. (2.4)

If moreover na, /(logs n) — o0 then we have, almost surely, ultimately as

T, — 00,

ﬁn ({ln )

v 20, logs n

€ 8; + e(log, n)~2/3B,. (2:5)



Remark 2.0.2. We shall use the fact (see e.g. [9], Theorem 5) that, under

(2.3), we have almost surely

limsup (n/a,)"*(logyn) /42 log, n+log(nay,)) Y2 || an(an:)+08n(an-) ||< 2714,

n—oo

from where (2.5) is implied by (2.4) after straightforward computations.

In order to state our last result, we need to give some definitions. Recall that

[ € 8" whenever f’ has a derivative with bounded variation and [ f/*(t)dt = 1.
0

Results on small ball probabilities for a Wiener process when f € S} have been
established by Gorn and Lifshits [11]. For such a function f, we shall write
V(L) := L*3, L > 0 and we denote by X s the constant which is the unique
solution of equation (3.1) in [11]| (we refer to the just mentioned paper for more
details). The case where f € Sl (i.c. where f f t)dt = 1 and the derivative of
" admits a version with locally infinite variation) has been treated by Berthet

and Lifshits [4]. For such a function f, we set y; := 1 and we denote by V(L)

the unique solution of equation (2.1) in [3]. Our third result is stated as follows.

Theorem 3. Let [ € S{”' U S be arbitrary and let a,, be a sequence of real

numbers satisfying, as n — oo,

nay T 00, an 10, aplog, n — 0, (2.6)

na
linx 4_’.;4__ — 0 AT
i log., nV? 7(logy n) - G

Then we have, almost surely :

111111:1[ V r(log, n

‘ ‘ n ””
n—

sloal
2a, log, n J




Remark 2.0.3. The conditions (2.6) and (2.7) imposed upon a,, turn out to be
the best possible with respect to the methods used in the proof of Theorem 3. The
latter combines poissonization techniques with strong approvimation arguments.
Deheuvels and Lifshits [7] and Shmileva [19] have provided new tools to estimate
probabilities of shifted small balls for a Poisson process without making use of
strong approzimation techniques. These results show up to be powerful enough
to investigate Chung-Mogulskii limit laws for a,(a,.) without making use of
strong approximation techniques. and thus relaxing condition (2.6). However,

the just-mentioned results do not cover the case where f € Si.

3. Proofs

3.1. Proof of Theorem 1

Select an € > 0 and consider the sequence ¢, := ¢(log, 7) 2%, The main tool to
achieve our goal is the exponential inequality stated in the following fact, which

follows directly from Talagrand [21]. Recall that By is the unit ball for || - ||

Fact 3.1. Let B be a Brownian bridge. There erists three constants K, Lo and

ug >0 such that, for any 0 < u < ug and ¢ > 0, we have :

. Ly cu o
P(B¢(62+II.B(;) Shexp(—_——— ,—). (3L
g w2
Let W be a Wiener process on [0,1]. There exist two constants wy and L, such

that, for any 0 < uw < wy and ¢ > 0, we have

P(W ¢ ¢Sy + uBy) < exp (i—j L % - ‘7) (3.2)



In the proof of Theorem 1, we will make use of blocking techniques (see,
e.g., [8] and [2]). For any real umber a, set [a] as the unique integer ¢ fulfilling

g <a<qg+1, and set

ny 1= [exp (krexp ( — (log;’»f)l/ﬁ))], k>,

Set Ny := {ng,...,npq1 — 1} for k > 5. Given an integer n > 1, we set k(n)
as the unique integer k such that n € Nj,. We shall first study the following

sequence of functions

On = (nag1) Y207 Hy, k= k(n),

Np+1

with H,,(t) :== n(F,(t) — t) and b, := (2log, n)'/2. Let p; and ¢; be two conju-

gates numbers (such that 1/p; +1/g; =1 ) with 1 < p; < 0o. Set, for k > 1,

. 1i 1
My, k= min Pl ———— || Hp,., — Hp ||€ —€n,, |-
P1, T k41 v — k41
neNy ((I]'R:+l)]/2b7?ﬁ~.+] D1

A standard blocking argument based upon Ottaviani’s inequality (see, e.g., [8],

Lemma 3.4) yields

I
I P - 8 Bl C. B,
P( { ('”-k'-%— 1 ) Uzbn.;HI IJ” é 'SZ Era 0})

ne Ny

1 1 1
< L ‘S o n-.1B .
= P((??.'.-+l)1/213m._,H'“] ¢S+ Q’lf k4 U)

M, k

Let k be integer and select n € Ni. By the Dvoretsky-Kiefer-Wolfowitz inequal-




11

ity (see, e.g., [23]) we have :

it i
]P ST e Hn. = H = —€nq
((nk+l)1/2bﬂk+1 || g a Hi P1 A+I>
il 1 12n
SP('lC]f?Jk+1'n. “2 ;)TG,“._H(——l_ ”:ii ) ()7:;.+1>

4_62 logy(ng) '/

< 3exp ( - ——) for large enough k.,
7 el ags)
whence my, , > 1/2 for all large k by routine analysis. Now let pa, g2 > 1 be

two conjugate numbers. For k > 1 we have, B, | denoting a Brownian bridge,

(2o 1 i
P(ﬁ $ SQ S *fn;\.HBU> S P( ” ('y'l‘l.k+1 == Bnk,l HZ —Fr:g‘-+f)nnk._,])

bn;,‘+1 q1 P2

! ,
= IP(BR;.-_+1 §é bn“]Sg s 67?-:\-+;bﬂk+1‘6”)
24

.— pKMT 4 pTal,

Making use of the Komlos-Major-Tusnady approximation (see, e.g., [14])), we
can choose a sequence (3, )r>1 satisfying, for some universal constants 'y, C'3
and for all k large enough,

1

]P;:(AIT < C‘z exp ( iy C’:{(ﬂk+| )UJW
«pPaq]

F”J’.-H.b“k+l)'

On the other hand, by applying assertion (3.1) of Fact 3.1 we have, for all large

k.

€ Lo(qige)?
7142 2¢2

Pi* < Kexp [_ ( )(l(’c‘%'z 1)/ * —logy ‘”A-H}

Routine analysis shows that both Pi.“_"”"" and P} are sumable in k for any
choice of € > ([4)/2)]/3 =: €y, provided that g;.gs are chosen close enough to 1.

Now an application of (1.1) in combination with elementary properties of the
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sequence (ng)r>1 shows that, almost surely, as n — oo,

H 9n — bglan ”: O((IOgQ n)_2/3)-

3.2. Proof of Theorem 2

Recall that b, := (2log,n)"/2, n > 1. Let p1,q1 > 1 be two conjugate numbers.

Set, for k>1:

1 1
My, t= i IF’( : J)— == )
p1.k ]}2}% (”k+1ﬂn;,.+1)1/2l)nk+1 ” H‘n(a’ftk+l ) Hﬂk+1(aﬂk+1 ) ”_ D L=

The same blocking argument as in §3.1 yields

]P’( U { Halls) ¢81+61Lk+,30})

1/2
nENk (”"f““"kﬂ) / by

Il i5 k. {a ; ) 1
& ]P’( k1 \ gy & e ]B )
Mok (RO B # 5 g

Now, for any integer k£ > 5 and n € Ny, we have

i 1
P( || HHA-H(G?'U.-‘H') o Hn(aﬂ—;.-+1') ||2 T}_1€”k+lbnk+l)

IVALISS |

<P{ sup
ST

| oy —nl?) | 1 Ng410n, 1/
LooncaOly Lo (22

m Npy1 — Nk )
It is well known (see, e.g., [20], Proposition 1, p. 133) that for each n, the process

(1 —t) "o, (t) is a martingale in . The Doob-Kolmogorov inequality yields :

1/3

p.lz(]‘ — Onpyy )(1 o )(l()gﬂk+1)

41
2e2

if My, & <

Hence for all k large enough we have my,, = 1/2. Now set for each integer

mu=e

In

ﬁn{t) = '”_1/2(211{[?,&} - t)’ t € [0,1],

i=1




where 1, is a Poisson variable with expectation n, which is independent of
(Us)iz=1. Let T denote a standard centered Poisson process on RT and let W
be a Wiener process that we assume to be constructed on the same underlying
probability space as II. Notice that ﬁn(v) and n~"/ 212'[{71») are equal in distri-
bution as processes on [0,1]. Now let ps,g2 > 1 be two conjugate numbers.
By making use of Poissonization techniques (see, e.g., [8], Lemma 2.1 or [25].

Proposition 2.1 for a more general form) we see that, for all sufficiently large & :

ot (P 1
p(CmnOnnl) g5 1 B,
a / 1
Mp+1 YTk 41

IA

Mo At e 1
QP(L’}‘}%SL‘) ¢ S5 + —anlB”)
an&+lbﬂ-k-|-l .

( ﬁ(T'-'thrlam.-Jrl )
(

214410, , 10g3 Niy1)

1
QP 1/2 é S] = q—lan !B[;)

~ 1 ;
< 2P( “ W(Rk+1(£,,,k+1 ) o H(nkﬂLla"f?;\- 2y ) ||2 m(”fﬂ»luw;\.ﬂ )1/25”“ |(nk¢l)
1

Wil r10n,., ") ; )
" - 1 N1
(n-.h:-ir-la-nk.ﬂ ) I/'zb?z K1 q192

+2p(
= Pf MT 4 PEGI,
Now, making use of the strong approximation theorem of Komlos-Major-Tusnady

[15], we can assume that the process W involved in the former expression sat-

isfies, for some universal constants C,Cy,Cy > 0, and for all 7" > 0, z > 0,
P( || I =) || z+ C) log T) < Caexp (— C22). (B:3)

Notice that, as k — oo :

; i
(”L‘-&-lan;_.+1) / b?lg‘_"_|€’nk+]

log(ng41n, )
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Thus, we have, ultimately as k — oo,

]P’fMT < Chexp ( — f;_ii);(ﬂ’k+lanh.+l)l/2(log2 nk_,.l)*l/&"). (3.4)
Recalling the assumption na,/(log,n)7/® — oo we see that PEMT is sumable
in k. Now, making use of assertion (3.2) of Fact 3.1 we have, for all large k,

plal — [P(W i e ﬁenmbnwso)

€ Li(q1g2)? 1/3 )
ex - ( — ) log, ny — log, n )
P( P 9z ) (1082 Tkt1) 2 Mk+1

I

Now if € > (L1/2)"/3 =: ¢; and if q;,q2 > 1 are chose sufficiently small, then
PTal i sumable in k. By the Borel-Cantelli lemma, we see that for any € > ¢

we have almost surely, for all large n,
gn € ‘51 o5 En,,‘+1807

where g, 1= (-n‘;t.Jrlan‘kH)*1/211,*‘:+I H,(an,,,"), n € Ni. To conclude the proof

: ; : i
of Theorem 2, it remains to control the distance between a, / b= lae,,,(an-) and

G, which is the purpose of the following lemma.

Lemma 3.1. We have almost surely :

= 0.

lim sup (log, 71.}2/3‘ l( e o In

n— oo 2(.1” 10g2 ﬂ)1/2

Proof : Set T, := 1 — (n/ng41)"?(@n/@n,,, ) /*(logy n/ logs nx+1)'/2. The




triangle inequality yields

(I,,.(CL,,')

o < || Gaiogeny "™
= (2a,log, n)1/2""

H (2a, logy n)' /2 .

= An. = Bu.-

Clearly we have, as k — o0,

Holan ) — H.,(HHHl

+|Iz
|| (2ny,

T i W
max (logy 1 1) =

Now, by applyving (1.4) we have almost surely

. anlan-)
lim sup
n—0oo

Obviously (3.6) implies that, almost surely :

lim (logy ng41)?/3

ny: log, 1y,
Npy1 logs Ny

== i,
(2a, log, n) 1/3 H

max A — O
N

n— 00 ne N

1y o 108 G ]

)(logg Mg )4 =

We now focus on controlling B,,. Set py, := ay, /@y, , and notice that

n(n'rl ) 1{"((“%4 1

P( max(logyn) 2/3
(nENl,( gz

H (2nk41@ny ., lOZ Any )

Oy, (”-m\.- | )”")

>
/H f)

< P| max sup (logs M1 R
neNy 1<p=<pr, D<t<1

(3.6)

— ¥y, ((1‘_,,,‘_ . f,)
T ‘ =€ |-

(2an, ., logs ng4q)t/2

Now consider the Banach space B([0,1] x [0.2]) of all real bounded functions

on [0.1] x [0,2], endowed with the usual sup norm || -

[[0.1)x[0,2)- We shall now

make use of the powerful maximal inequality of Montgommery-Smith. For fixed

k = 1, we apply the just mentioned inequality to the finite sequence (X;)ien, .

with X;(t, p) := L oq(Us) — pt, t € [0,1], p € [1,p1], pt <1 and X;(t,p) =0

elsewhere. Hence, by a combination of Theorem 1 and Corollary 3 in 18], we
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have :

afl(a?tk+lpt) Qn a'n k+1 ‘ )

]P( max sup (logy ng41)%/3 (% e
Tk 41 2 +1

neENk 1<p<py, 0<t<1

2 1 i i I i
<9]F)( sup (10g2 nk+l)2/3’ m..+1( n 1 P ) ru+11(7; k+1 )| o 6/30
1<p<py, 0<t<1 (2an,,, logg nk+1)

p 1/2
€ (2n+18n,,, log, np1) )

< I8P( || M{ngs1an,-) = W(nkr1an,) |2 5=
< ( (nk41@n, ") (Mkt1@n,0) |2 240 (logy (ng41))2/3

e .
+ 18P H || :
( 210g2m+1 1172 || = 120(logy nir1)?72 ) (3.7)

In the last expression (which is the combination of usual poissonization tech-
niques with the triangular inequality), 11 and W denote respectively a centered
Poisson process and a Wiener process based on the same underlying probability
space. By the Komlos-Major-Tusnady construction (see [15]), W can be con-
structed to satisfy (3.3). By making use of the same arguments as those invoked
to obtain (3.4), we conclude that the first term in (3.7) is sumable in k. To con-
trol the second term in (3.7), we shall make use of a well known inequality (see,
e.g., [20], p. 536), with a := pr, — 1, A := (px — 1)~ ?(log, ne+1)2/%(v/2¢/120)

and § := 1/2, to get

e
V2logy iy 11T 120(logy ngg1)?/3
3()72()
e

2
\ € = o
(P 1)'1/2((10g2-n,,e,.H)'/bcxp(— 19200(;4.—1) '(logy k1) 1/3).

This expression is sumable in &, and hence max,cy, B, — 0 almost surely as

k — o00.0d
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3.3. Proof of Theorem 3

Recall that x5, Vy, St and 8! are defined in §2. The main tool to achieve the
proof of Theorem 3 is the following inequality (see Berthet [3]), which sums up
different results from Gorn and Lifshits [11], Berthet and Lifshits [4] and Grill
[12] (see also de Acosta [1]).

Inequality 3.1. For any [ € SPV U SV and § > 0, there exist vt =

vH(8, f) > 0 and y— = v (8, f) > 0 such that for T sufficiently large :

P(VI(I:)HT“” 1+5\f)2(.‘xp(j[:+,}+zj'(;ﬂ).

p(vi(5)II% s ek

—7fH< 1-6}X{)<E‘;\])(7T*Af 72
Select f e SPY USHY. We remind the two following properties of Vy (see

[16]), namely limsup; . L'V (L) < oo and liminfy .o L=**V (L) > 0.
We shall first show that, almost surely :

an(a
lim inf V ¢ (log, n H B
n—oo f 62 2(1,, l();,z n I/z

*fHE\f—

Let us fix € > 0. We start by applying poissonization techniques in combination

with the Komlos-Major-Tusnady approximation.

Ap Oy .
P(Vf(logg n) ‘———(20. l()(gz 13)1/2 = fH < xp(1— 2r))
! Wna,,
S2H”(V;(log2 n) m = fH = h= f‘))

1/2

+ QP(HW(TE‘(L” ) ~ 10 ('H(J.,, ) ‘ \ > .'\-_f-F{Z?J‘(I.w 1(3{-‘;2 T'j«)

V ¢ (log, n) ) )

These two terms are sumable along the subsequence ny,, the second term being

controlled by the Komlos-Major-Tusnady approximation while the first one is



controlled by Inequality 3.1. Now the control between ng and nyy, follows the
same line as in Lemma 3.1. We omit details for sake of brevity.

We now focus on showing that, almost surely,

lim 1nf V ¢ (logs n)

n—oo

vy lay) ||
L Omidni) &
H (2a5 logy n)1/? i = Xy

Set ng 1= k2*, vy = Ng+1 — Nk and

"/r”‘"‘]ﬂ“#kl a,,Hl — Mo ”m+1

hk ==
\/2?)‘[‘“(1”*%1 logg (‘UA.)

(3.8)

Notice that the hj are mutually independent processes, and that each hy. is dis-
tributed like (2ay, ., log, v )~/ %a,, (ay, w1 -)- We now make use of the following
"depoissonization" lemma. Recall that T1(-) denotes a centered standard Poisson

process on [0, oc).

Lemma 3.2. Under assumptions (2.6) and (2.7), there exist two sumable pos-
itive sequences (cg)i>1, (bi)k>1 and an integer kg > 1 such that, for any set
A B([0,1]) that is measurable for both empirical and Poisson processes and

for all k > ky,
P(l:[('r.’,;,.(z.,,kH-) € A) —cp — by < QEP’( : (ku(ﬂm -) € A).

Proof : Set uy := (4log,(vk)/nk+1an,,,)" % By assumption (2.7) we have
up — 0 as k — oo. Now set II(¢) := II(t) + ¢, € [0,1] and Ry := I ( vk @,y )
Ry j o= (vg) — I{vgay, ). For fixed k, Ry ;, and Raj, are independent random

variables and are distributed as Poisson variables with respective expectations

Ugln,,, and vp(1 —a,, ., ). Let A C B([0,1]) be an arbitrary set that we assume

D
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to be measurable for I and a,. Define the following events :
T e {ﬁ('t';,,ank“ e A}. k=
We have, for any integer k > 1,

P(Ey) < P(Ek IR T — iy (1 u.k)-a.aka,,,_m})
+ ]P’(Rl_k < (1 — wp)viay, 1) + P(Rl‘;\. > (1+ u.,\.)z.r,\.u.,,ﬂl).
Denote by ¢ and by the two last terms of the RHS of the preceding inequal-

ity. We shall show that these two sequences have finite sums. Making use of

Chernoff’s inequality, we have :
cp < exp ( — e ((1 + u) log(1 4 uy) — U‘,,z.-)).

Since (1 + u)log(1 4+ u) — u ~ % as u — 0, it follows that for all large k,

42

ty.
Ck SeXp | — Ukln, 5

— ex ( — 2log, n;,.).

We make use of a similar method to show that (b )= is sumable. It remains

to show that, for all & > kg (with ky independent of A), we have
P(Ek. mn Rl!k e [(1 — ?J.R-)’{}k(LT,HI . (1 + ‘“'-"‘)T"r'i‘aﬂ-:\-.Jr1}) = ‘ZIP(PJA | [I(ve) = ""L-)-

Now set

= inf{ 3 € [(1 — ug)vron, ., (1+ ?1,;,.)'11.(1.,“,“}}. (3.9)

k Vi
P(IT(vx) = vk
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We have

P(Ee N Ruk € [(1 = u)ontng o (1 + wi)vkain, ., )
[(Itup)vran, ]+1
< > B(ENRix=j)
J=[A—ui)vran, ]
[(14ur)vkan, ]+1
= K" > P(Ex MRz =4)

j:[(lfuk)‘”’c“nk+1]

P(Rop = v — j)
P(H(Uk) = 'L’k)

[(4ur) okaing [ +1 . ,
- K Z P(Ex N Ry =jNRop = vk — )
i P(II(vx) = vk)

j:[(lfuk)‘uka'ﬂp.%] ]

< K 'P(Bx | T(vg) = vg).

Hence, it suffices to show that Ky — 1. For clarity of notations, set v} :=
vi(1=ap, ), recalling that Ry is a Poisson variable with parameter v},.. Setting

[ =, — 7 in (3.9) we have, as k — oo,

P(Roy = 1)

)

/ /
l € [v}, — VRO, U + vkukam+,]}.

Now, by Stirling’s formula, we have P(TI(v},) = vg) ~ (27vx) /2 as k — 0o, A

routine study of the finite sequence
(P(Rok) =1, L€ [vf — Vittktin, ., ¥ + Vhtian, ,,])
shows that

P(II(vg) = v) Ky = min(Py 4, Ps i) , where
P,k := P(Rax = [V — Vk@n,,,Ux]), and

By = PR = [0+ ke oton] + 1)
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We set ul = @y, UpUp /UL ~ Upay, .. Stirling’s formula yields, ultimately as
k k41 K k1 -

k — oo,
vk’ —vrtn, ,q wE]
Vi i
Py = 7 5 exp(—vz')
[k — Vk@ny,, Uk)!
o' vk (1—ug') exp(—vg’) o
D= o — 1 7ot ZWT“A'
vi' (1 — ug') exp(—vr’ + vyu})
~ A 2mup(l —ug')” vy (l=tan’ pr(—u;,."u.,‘.’)
= 21 exp ( — o' (1 — ug') log(1 — ug) + u;\.’)).
Moreover, since (1 —€)log(l —¢€) + € ~ ‘7 as € — (0, we have, for all large k,

exp ( — 2an,,, 108y (nk41 )) < exp ( — 0 (1 — u") log(1 — ug) + uk’)).

By assumption (2.6) we have a,, log, n — 0, which ensures that Py . ~ /27vy.
The control of Ps ;. is very similar. This achieves the proof of Lemma 3.2.[]

We now apply the preceding lemma in conjunction with the Komlos-Major-
Tusnady approximation. Let W be a Wiener process constructed on the same
underlying probability space as II. For an arbitrary ¢ > 0, we have (recall tha

Iy has been defined in (3.8))

P(V s (log (ui) || b — f lis 1+ 26)x; )

1 Un'su"u,\+| J o = 1 " l
3 (Vf( QUi 7~ 1] < (20 ) = 5o = 3

L logs v)
(5,-Yf(2-.1:,z..(r‘,,_L ” 1()g2 ”A»)l/z)
vlf(log.‘z v )

1 ~
= = QP(HH(I’R:"HWJA') a IV('““;(L”"+l.)H <

A
(2log, vi)1/2

1 . 5 i 1
+ §P(Vf(10g2 vg) || FlS xp(1+ (5)) — 5% — 5!’);\.

] 1 1
=g P
a+2 k50 bk
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Since vy ~ ngqy it is easy to conclude that dj is sumable in k, by making use
of the strong approximation (see [15]). Hence, making use of Inequality 3.1, we
have asymptotically

P > exp ( —log, ka).

But log, v = log(k + 1) + logy k + o(k™%(log k) ~') and hence

> B(Vyllogs(w)) | b — £ 1< (1 +20)x5) = oo
k>1
Applying the second half of the Borel Cantelli lemma, we deduce that, almost

surely :

11111 mf V(log, ve) || Ar — F || x5-

To conclude the proof, it is enough to show that, almost surely (recall that

limig e - M 200

Q’nk+1 (an;,.+1 ')

(2Nk 4180y, 1083 (Mgt1))1/2 H

Jc]im (logg nget1) Hhk -

Routine algebra shows that

Mgy (""“!1;.-4-1 ) ’ |
(2ay, ., logs(ngi1))/2

Uoggnk+1)’hk-—

nk+1logs ”k+1 /2 )H Xnpy am+x H
v logy (vk) (2an,, , logy ngt1) )1/2
1/2
‘ Ny Oy (an;,.;l ) ‘ }
; o 1
(2vkan, ., 10gs k1) 2

< (log, nk-{-l)((

+ (logy n+1)

= A B

Applying theorem of Mason (1.4) we get A; — 0 almost surely as k — oo. We
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now apply Doob’s inequality for positive submartingales to obtain

cutas)
((2”1\-0‘““1 logs mgyq )2 11—

y

IP’((log2 ’”-k+1)an

lr-]fn(t) €(2’t’k:(1'll.;-4 1 10g2 '”k+1))
P sup F = 172

0<t<an, ., 11—t ny ~ logs ngy
s
—(l —a log, Ny —.
2e2 ( i1 ) 1082 i1 Uk

IA

Since ng /v ~ 1/e%k? as k — oo, we conclude the proof of the lower bound in
Theorem 3 with the Borel-Cantelli lemma. []
Acknowledgements: The author would like to thank P. Berthet and E. Shmil-

eva for many fruitful conversations and advices on the subject.
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