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SOME UNIFORM IN BANDWIDTH FUNCTIONAL RESULTS
FOR THE TAIL UNIFORM EMPIRICAL AND QUANTILE
PROCESSES

Institute of Statistics, Catholic University of Louvain

By DAVIT VARRON
For fixed t € [0,1) and h > 0, consider the local uniform empirical

process

Dn,h’g{s) =12 [Z 1[!,t+ha!(UI') - hs] , 8 €0, 1],
i=1
where the U; are independent and uniformly distributed on [0, 1]. We inves-

tigate the functional limit behaviour of D, s ¢ uniformly in hn < h < hn

when nhn/loglogn — oo and hn — 0.

1. Introduction. Let (U;)i>1 be an independent, identically distributed (i.i.d.)
sequence of random variables that are uniformly distributed on [0, 1]. Define the
empirical distribution function based on (Uy,...,U,) by Fu(t) = n"'#{l < i <
n, U; < t}, t € [0,1] and denote by F,; (t) the left-continuous inverse of F,, namely
Fo(t) = inf{s > 0, F,(s) > t}. We also define the empirical (resp. quantile) pro-
cess by an(t) i= VA(Fa(t) — 1),t € [0,1] (resp. Ba(t) := VAL (8) = t), t € [0,1]).
The framework of this paper is the almost sure behaviour of the local empirical
and quantile processes. Namely, given ¢ € [0, 1) we focus on studying the following

processes, as n — oo and h — 0.
(271 Dnht(8) i=an(t + hs) — a,(t), s €[0,1],
(1.2) D} e(5) =Ba(t +hs) = Balt), s € [0,1].

Mason (1988) was the first to establish a functional law of the iterated logarithm for

the local empirical process (see also Einmahl and Mason (1997) for a generalization
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of this result to empirical processes indexed by functions). To cite this result, we
need to introduce some further notations first. Write log, (u) := log(log(u Vv 3)). We
say that a sequence (h,)n>1 of strictly positive constants satisfies the local strong

invariance conditions when, ultimately as n — oo,
(1.3) hn | 0, nh, 1 oo, nh,/logon — oc.

Given a sequence (z,)n>1 of elements of a metric space (E, d), we say that z, ~ K
when K is non void and coincides with the set of all cluster points of (z,)n>1. In our
framework, (E,d) is the space B([0,1]) of all real bounded CADLAG trajectories
on [0, 1], endowed with the usual sup norm, namely || g ||:= sup{| g(s) |, s € [0,1]}.
Consider the space AC|0, 1] of all absolutely continuous functions on [0, 1]. For any

g € AC|0,1], we define the usually called Hilbertian norm of g as

1
(14) I g |B= f #(z)dz,
0

where g is any version of the derivative of g with respect to the Lebesgue measure.

The usually called Strassen ball can be defined as follows:

(1.5) §:={ge Ac(o,1)), 9(0) =0, /| g llu< 1}.

As a corollary of a strong approximation result, Mason (1988) showed that, given

a sequence (hy)n>1 fulfilling (1.3) and given ¢ € [0, 1), we have, almost surely

Dn h, t
1.6 e s S
(1.8} (2hn log, n)1/2

In the particular case where ¢ = 0, Einmahl and Mason (1988) showed that D}, ,, ,
also satisfies (1.6). They showed that result by making use of a local Bahadur Kiefer
representation (see their Theorem 5). The almost sure limit behavior of D}, ,
when ¢ € (0,1) has been investigated by Deheuvels (1997), who showed that the
above mentioned process may obey functional limit laws that are different from

(1.6). The aim of the present paper is the following: given two sequences b, < h,
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fulfilling (1.3), does (1.6) still hold uniformly in b, < h < h,? Namely, do we have
almost surely

ik li ﬂht HmO,
(17) Jimsup i || et g

(1.8) Vg € S, liminf sup Dnht 7 g||=0?

n—o0 §. <h<hn H (2hlogy n)

The remainder of this paper is organised as follows. In §2, we state our main re-
sults on Dy, 5, ;. We then show how this results lead to a local Bahadur-Kiefer type
representation that holds uniformly in h. The proofs of our main results follow in

83, 4 and 5.
2. Mains results. Our first result is a weaker form of assertion (1.7).

THEOREM 1. Let (hn)n>1 and (hn)n>1 be two sequences satisfying (1.3) as well

as hp < %hn. Then, given t € [0,1), we have, almost surely:

Grl lim  sup inf N Dn st
el n—co g <h<h,, gevas |1 (2hlogy n)1/2

-9f| =0

The proof of Theorem 1 is written in §3.
Remark: Condition h,, < h,/2 is just technical, as this result is really interesting
when (hn)n>1 and (hn)n>1 are sequences that tend to 0 at different rates (typically
n~% and n™%2, 0 < a; < ay < 1). Clearly, Theorem 1 seems unsatisfactory, as

one would expect the limit set to be S instead of v/28. As it will be pointed out in
the proof of Theorem 1 (see §3.2), it is possible to prove (1.7) when

(2.2) VA >0, lim log(hn/bn)/(logn)’ =0

However, (2.2) is a very restrictive condition, imposing (hn)n>1 and (hn)n>1 to have
rates of convergence to zero that are very close one to each other. In §3, we shall try
to point out the main difficulty that imposes us to weaken (1.7) to (2.1). Showing
that (1.7) is true or false without imposing (2.2) remains an open problem.

The second step of our investigation is to determine the validity of (1.8). This
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A local Bahadur-Kiefer representation
A consequence of Theorem 1 is the following local Bahadur-Kiefer representation,
which is very largely inspired from Einmahl and Mason (1988, Theorem 5). For
0<h<1andn>1 weset ay(h) := (hlogyn/n)/2, b,(h) := log(nh), dn(h) :=
210gy 7 + b (h), 7 (h) := (an(h)dn(h))"/2 and

Ru(h) := |

Dn,h,o 3 D:—;,h,ot ‘ ¢

THEOREM 3. Under the conditions of Theorem 1, with t = 0, we have, almost
surely

(2.7) limsup sup 7,(h) 'R, (h) < 2V/2.
hn

n—oo h,<h<

The proof of Theorem 3 is provided in §5.
Remark: In view of Theorem 5 of Einmahl and Mason (1988), Theorem 3 seems to
be non optimal since a factor 2!/4 can be drop when h,, = b,,. This is a consequence

of the fact that we were only able to prove (2.1) instead of (L.7).

3. Proof of Theorem 1. OQur proof is divided into two subsections. In 93.1,
we establish a large deviation result which holds uniformly in b, < h < hy. Then

we make use of that (uniform) large deviation principle to prove Theorem 1 in §3.2.
3.1. A uniform large deviation principle.

3.1.1. Definitions. Large deviation results are commonly used when proving
functional laws of the iterated logarithm such as (1.6). As a uniformity in b, <
h < h, appears in Theorem 1, we shall make use of a large deviation principle
that holds uniformly in h. This tool was first used by Mason (2004). From now on,
(€ni)n>1, i<p, will denote a triangular array of strictly positive numbers satisfying
maxi<i<p, €n,i — 0 as n — co. We call a rate function in a metric space (E,d) any
positive real function J on E such that, for each a > 0, the set {9 €E, J(g) <a}

is a compact set of (E, d).
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DEFINITION 3.1. Let(E,d) be a metric space and let Ty be a o-algebra included
in the Borel a-algebra of (E,d). Let (Xn i)n>1, i<p, be a triangular array of random
variables that are measurable for (E,Ty). We say that (Xn,i)n>1, i<p, Satisfies the
uniform large deviation principle (ULDP) for (€n i)n>1, i<p,, @ rate function J and

To whenever

1. For each closed set F € Ty we have

(Bl lim sup max e, ; log (P(Xn,i “ F)) < —=J(F),

n—oo t:Pn

2. For each open set O € Ty we have

(3.2) lim inf min € ; log (nr(xn,,- €0)) 2 -J(0).

n—oo i<pn

Remark: In this definition, we introduce a sub c-algebra 7y because we will
consider repeatedly (E, d) as the metric space (B([0,1],]| - ||). As the Dy » ¢ are not
Borel measurable in that space, we shall consider 7; as the o-algebra spawned by the
open balls of (B([0,1],]| - ||). We will sometimes take (E,d) as a finite dimensional
vector space, in which case Ty will denote the Borel o-algebra. Another way to avoid
measurability problems is to consider inner and outer probabilities (see, e.g.,Van
der Vaart and Wellner (1996), Chapter 1).

The next result is a consequence of the work of Arcones (2003).

PROPOSITION 3.1.  Let (Xp i)n>1, i<p, be a triangular array of random variables
taking values in B([0,1]) and measurable for To. Let (€n i)n>1, i<p, be a triangular

array of strictly positive real numbers. Assume that the following conditions hold:

1. For each p > 1 and (sy,...,5,) € (0,1)P satisfying s; # s; for each i # j,
the triangular array (Xn,,-(sl), e ,Xn,i(sp))nﬂ i<p satisfies the ULDP in
RP for (€ni)n>1, i<p, and a rate function I, . s, -

2. For any T > 0 we have

. 2 g — . = -
!élfn lim sup max log (P( sup | Xni(s') — Xn,i(s) |> 1')) 00.

n—oo 1=Pn |s—s'|<é
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Then (Xﬂ,,')nzl_ i<pn 3atisﬁe.s the ULDP in (B([O, 1}, || . ||) for (Eﬂ,i)nzl‘ i<Pn> Ty

and the following rate function:

I(‘g) i SUp Iax.-'-,sp(g(sl),--'19(31:))1 g = B([O, 1]}
P21, (81,...,8p)€(0,1)P

Now consider the following rate function on B([0,1]) that is known to rule the

large deviation properties of a Wiener process:

g3, whenge AC[0,1];
00, when g ¢ AC|0,1].

(3.3) J(g) =

Notice that S = {g € B([0,1]), g(0) =0, J(g) < 1}. The main tool that will be

used to achieve our proof of Theorem 1 is the following ULDP.

PROPOSITION 3.2.  Let (hn)n>1 and (hn)n>1 be two sequences satisfying con-
ditions of Theorem 1 and let (hy i)n>1, i<p, e a triangular array satisfying b, <

hn,i < hn for each n > 1, i < p,. Then the triangular array

) W ~Ap .
(( n,i ngn) n'h"'"t)ngl,is;pn

satisfies the ULDP in (B([0,1]),|| - ||) for To, the rate function J given in (3.3)

and the (constant in i < p,) triangular array (1/logy n)p>1, T

Proof of Proposition 3.2: We shall make use of Proposition 3.1, and we hence
have to show that conditions 1 and 2 of this proposition are satisfied. This verifi-
cation will be a consequence of two separate lemmas. The next proposition, which
shall be useful to prove our first lemma, follows directly from the arguments of Ellis

(1984). Here < -, > denotes the usual scalar product on R?.

ProOPOSITION 3.3. Let (Xn,i)n>1, i<p, be a triangular array of random vectors
taking values in RP, and let (€ni)n>1, i<p, be a triangular array of strictly positive
real numbers. Assume that there exists a positive real function € (which may take

infinite values) on RP such that the following conditions are satisfied.
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1. £ is convez and lower semi continuous on RP.

2. The definition set D(£) := {\ € RP, ¢()\) < oo} has an interior that contains
the null vector.

3. ¢ is differentiable on the interior of D(£) and, for each sequence (An)n>1
converging to a boundary point of D(£) we have || VE(A,) ||re— oo. Here
|| - ||re denotes the usual Euclidian norm.

4. For each A € D(£), we have

lim max
n—o0 i<pn

5. For each A ¢ D(£), we have

en,i10g (E(exp (673 < A, Xni >))) - z(,\)] 0.

lim min e, ;log (E(exp (s b Mg > ))) = 00,

n—0o0 i<pn
Then (Xn,i)n>1, i<p, Satisfies the ULDP in RP for (€n i)n>1, i<p, with the following
rate function:

J(s) := sup < A, 5> —£(}), s € RP.
AERP
We now state our first lemma.

LEMMA 3.1. Letp > 1 and (s1,...,5,) € [0,1]7 be arbitrary, with s; < s2 <
... < 8p. Under the assumptions of Proposition 3.2, the triangular array of RP-

valued random vectors

((2hn.i 10g2 ﬂ')—llz (Dﬂ.hn.i,t(sl)s o ’Dﬂ,hn,ht(sp)))ﬂZI’ iy
satisfies the ULDP for (€n i)n>1, i<p, with the following rate function (with sq := 0).
P 2
T — X
Ja;,...,sp(xl, cany Ip) = Z(SH,} - s,)(—"ﬂ—-‘-) i (.’El, . W .'L‘p) € RP.
i=0 S

PrROOF OF LEMMA 3.1.

We shall make use of Proposition 3.3. Fix A = (A1,..., ;) € RP and and write

the Dy, p, ;¢ as sums of i.i.d. random variables, namely

P n
(34)  (2hnlogyn) 23" AjDpp,.t(85) = (2nhologyn)~ 2y 2K,
j=1 k=1



where
P

i Z (Lt,t4hn o) (Uk) = Bngiss), k=1,...,n

These n random variables are i.i.d with mean 0 and variance-covariance matrix
given by hy, ;A"Ep, i A, with B, i(1,1) := min(s;, spr) —hp is151. Now define the matrix
X(1,1) := min(s;, sp). Clearly, as hy, ; < h,, — 0 we have ¥n,i — X uniformly in 4

as n — oo. By standard computations we have, for each n > 1 and i < p,:

P
(logyn) ™! log (]E( exp ( log, n(2h, ; log, n) /2 Z AiDn k., ‘t(sj))))

j=

SR 71
(B:6) = ogan log (]E exp (Tn.:Zn.hn,.-.t))*

where 1y, ; 1= (logy n/2nh, ;)'/2. Recall that maX;<p, 'ni — 0 as n — oo, since b,
satisfies (1.3), and notice that the Z,'f‘h“ ..+ are centered and almost surely bounded
by pmax;_; | A; |. This ensures that the following Taylor expansion is valid, for

each n > 1, i < p, (here £ denotes a real function satisfying e(u) — 0 as u — 0):
3 szl.ihn'i ’

(3.6) ]E( exp (rﬂ,,-wn,hn_ht)) = 1+ BERNTL A+ ().

Combining (3.5) and (3.6), we get

P
log (E(exp (ﬁﬁf 21 /\J"Dn,h,,,,,t(sj))))
, =

= 0.
logy n

lim max
n—o0 i<pn

1
- =N
4

As the function £()) := X(X/4)\ obviously satisfies conditions of Proposition 3.3,

the proof of Lemma 3.1 is concluded by noticing that

2 L]
sup < t,z> —€(t) =2'S 7z = Z(st-u - s‘)(ﬂhﬂ 121) O

teRP rrd Si+1 — i

Our next lemma shows that condition 2 of Proposition 3.1 is fulfilled.

LEMMA 3.2, Under the assumptions of Proposition 3.2, we have, for each 7 > 0

IDﬂ,hn.i,t(s) = Dﬂv"m‘-‘(s')l > -r)) = —oo0.

I log (P
1§n lim sup max og( ( i (2hn,i logy n)1/2

n—soo iSPn |s—s’|<é
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Proor OoF LEMMA 3.2.

Fix 7 > 0 and introduce a parameter § > 0 that will be chosen small enough
in the sequel. The proof of this lemma relies on an exponential inequality for the
oscillations of the local empirical process, which is due to Einmahl and Mason

(1988) (see their Inequality 1). For positive numbers a,b with a + b < 1, write

(2.7 wn(a,b) := sup |an(s+s)—an(s)].
0<s<b,
0<s'<a
FacT 1 (Einmahl, Mason, 1988). Fiz 0 < ¢ < 1/2. There exists K(g) < oo

such that, for anyn >1, A>0,a>0, b> 0 fulfillinga+b<1and 0 <a < 1/4,

(38)  P(wn(ab)>2) < K(e)ba exp (- ( ‘2?"2\::( \/Aﬁa))

Here we write ¥(u) := 2u~2((1 + u) log(1 + u) — u).
Applying (3.8) t0 b = hn;, @ = hpni, € = 1/2 and A = 7(2hy ; logyn)'/? we get,
for all large n and ¢ < p, (so that h, ; < h, <1/4)

= ; 1 2
]P( wis Da i t(8) 'Dn,h]n,;.t(s )I > 1_) SK(Q) 5 ( o5 logzn\p(-r1/2log2n))
|J—5’|<6 (2hﬂ“ 10g2 'n.) / 6 26 Jﬁn_,i
K(3) r2logy,n
b o= ol )

The last inequality holds for all large n and i < p,, since ¥(u) — 1 as u — 0, and

since

(3.10) L e

Now taking the logarithm in (3.9) concludes the proof of Lemma 3.2, then lemmas

3.1 and 3.2 in combination with Proposition 3.3 conclude the proof of Proposition

3.2 5]

3.2. Proof of Theorem 1. We shall invoke usual blocking arguments along the

following subsequence:

(3.11) Ny = [exp (kexp (- (logk)1/2))], k> 5.
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Clearly, ny satisfies, as k — oo,

(3.12)

— 1, logy(nk) = log k(1 + o(1)).
k41

Now define the blocks Ny := {ng_1,...,nx — 1} for k > 6. Fix € > 0 and consider
a parameter p > 1 that will be chosen small enough in the sequel. For any k > 5,

consider the following discretisation of [hy,, hn,_,]
(3.13) Bag, By 5= Py s Py g =0 B0 rib=0, ..., By — 1,

where Ry := [(log(hn,_,/bn,))/l0g(p)] + 1, and [u] denotes the only integer ¢
fulfilling ¢ < u < g + 1. Clearly, as k — oo, we have

(3.14) Ry = O(log ng).

Our aim is to show that the following probabilities are summable in k so as the

Borel-Cantelli lemma would complete the proof of Theorem 1.

3.15 P =P 'f’—_—"i‘*— ’>3.
@019 PP e it [t |2
Clearly we have
Dn h t
P <]P a f ” kaibng 1y " H>
e (02}3%1196\/_8 (Zhnk.lk’gznk)l/z oy
Dn h i
P ” nht kiflng 1y H>2
S (nGM o<iEhy-1 Ry 1<Sh§ph.. . 11(2hlogyn) 172~ (2hy, (log, ny) /2 ;

= ]Pl,k F P2|k.

To show that Py  is summable, we shall make use of Proposition 3.2. Consider the

following subset of B([0, 1]):

Fi={reB(O1), nf |If-gl2¢}.

Since the rate function J given in (3.3) is lower semi continuous on (B([0,1], ]| - ||),

there exists a > 0 satisfying J(F) = 2 + 2. Hence, for all large k we have

(3.16) Py < (R +1)exp (= (2+ aq) logy nk).
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Recalling (3.12) and (3.14), we conclude that P; ; is summable in k. It remains to

show the summability of (P x)x>1. First notice that

nD — /D
Pox < P( max max sup H\/‘ it = VR n.h“k,,,t” g f)
ISRk—1n€Nk b, 1 <h<phn, . (2”khnk,!10g2nk)”2
+P( max max sup B(n,h)” VnDy h ¢ ]2” >£)
ISRk—1n€Nk h,  <h<phn,, (2ngphn, 1 logs ng)l/
(317) =4 ]P3|k + P‘;’k,
where
hniizl
(3.18) B(n,h) :;[ Mﬂ_k—li, PSRy o FRTR

nhlogyn

We shall require a maximal inequality due to Montgomery-Smith (1993) (see also
Latala (1993)).

FACT 2 (Montgomery-Smith, Latala, 1993). There exists a constant ¢ > 0 such
that, given a Banach space (E,|| - ||) and a finite sequence (Xi)i<i<n of i.i.d.

random variables taking values in (E,d) we have, for each A > 0:

(3.19) (1<;<n Zx H > ,\) < clP( )

Applying inequality (3.19), we get

Ri—1
vnDypt — /Dy
Beif. > ( sup H Bhe 1/k2'1'tH > c)
=0 “EN" hny 1 ShSphn, (2nkh’ﬂk.f lOgZ nk)

(3.20) gcﬂilp( sup “\/_Dn,,,m—\/—pm.nnk:. H>e/c).
=0

B 4 Sh<phoy i (2nihn, 1 logy n)/2

As hpyy € hn,_, — 0, each term of (3.20) can be bounded by inequality (3.8),
provided that h,,_, < 1/4. In inequality (3.8), we repeatedly choose b = hy, 1, a =
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hoyi(p = 1), € = 1/2, X = (2hn, 1 logy, nk)'/2¢/c. Hence, for all large k we have

T
Py <c i:lK_(%). p( ¢* logy g 'Il( €+/log, 1y, ))

ex -
£ -1 2c2(p = 1)2 " \c(p — 1)y/nphn, i
Ri—1 1
K(3) ( €? log, nk )
3.21 <c foamn| — saio
(3:21) ,% p—1° P\ IE(p—1)
(3.22) CK( )R b

Inequality (3.21) is true for all large k since ¥(u) — 1 as u — 0, and since

logy n
(3.23) lim max —o2lk
k—oo ISRk=1 fighp, |

- 0_

Inequality (3.22) takes in account the fact that log, nz = log k(1 +0o(1)) as k — 0.
Hence for any choice of 1 < p < 1+ y/¢/2c the general term (3.22) is summable in
k and so are the Py (recall (3.14)). Showing that 3P4 < oo will be done in a

similar way. First notice that, as ny/ng_; — 1l and 1 < Phn, 1/h < p we have

= =8 I g 1)
(3.24) klingo err(%): 1152%.'),(, Bh,n)=p"?-1< 2(p—1)

Hence, for all large k we have

Py <P max max
0<ISRi—1 neNy

V1'Dn ph,, 1.t H )
-1)

(2nphn, i logy ny)1/2

Nk,phn, 1.t €
o Z P(H(2phn,‘:log;;nk)1/2H o 2¢(p — 1))

A szl Lat ( e 5 phn, 1) log, nkq’(e(l = phn, 1)v/2log, nk))

=0 802(p G 1)2 2C\/ nkphnk,l
(1 — phn, 1) log, ng
: < = 2y :
(3.26) < 2cRpexp ( 162(p - 1)2 )

Here, (3.25) is a consequence of Inequality 2 in Shorack and Wellner (1986, p. 444),
with p = php, 1, A = €(1 — phay 1) (2phn, 1 log, ng)'/2/4e(p — 1). Recalling (3.23),
we see that (3.26) holds for all large k, as ¥(u) — 1 when u — 0. Now choosing
p > 1 small enough leads to he summability of (P4 x)x>1, which concludes the proof

of Theorem 1.0J
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Remark: If we had replaced the limit set /28 by S in Theorem 1, then (3.16)

would become

Py < (Rk+1)exp (= (1+ ) logyng).

Hence, we would be able to conclude that IP; ; is summable if the cardinality R +1
of the grids were smaller than (logny)? for any 8 > 0. When constructing the hy,
as in (3.13), the just mentioned condition is violated as soon as b, and h, have
"really” different rates of convergence to zero (typically when b, = h=% < n=%
with 0 < B3 < 1 < 1). It seems however impossible to reduce the cardinality Ry +1
of our grids, since the oscillations between two consecutive hy, ; become hardly
controllable and hence the corresponding probabilities P ;. might not be summable.
One could expect some improvements of this proof, since the RHS of (3.16) is
crudely obtained, but this turns out to be non trivial, as Proposition 3.2 would
have to be improved to more accurate large deviation rates for the Dy, 4, ¢, 0 <
| < Ry. Another possibility would be to " poissonize” the D, j; and then make use
of strong approximation of a centred Poisson process by a Wiener process W (see
Komlos et al., 1977), which would reduce the problem to studying the summability
of

(321) PV =P(Ipe (3’-’“— 1), p~Y2W () ¢ (2log, ni)/2(S + o))

and then try to make use of the isoperimetric properties of a Gaussian measures
(here By denotes the unit ball of B([0,1])). This however fails to work by making
brute use of the isoperimetric inequality, as long as b, /hn,_, is not negligible with
respect to log, ny as k — co. We hope however, that (3.27) may be better controlled

and we thus leave an open question to specialists in Gaussian measures.

4. Proof of Theorem 2. To avoid lengthy notations, we shall prove Theorem
2 only with k = 2 with no loss of generality. The key of our proof of Theorem 2 is

the following lemma.
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LEMMA 4.1, Under the assumptions of Theorem 2, foranyp>1,0< 3(1)

s sj(;,l) <1land0 < 3(12) G 3},2) < 1, the sequence of R*P-valued random
vectors
X, = (Donat(l)  Dunstl?)  Dansa(6®)  Dapas(s?)
"7 \(2hn,1l0gy n)1/2" """ (2h,, ; logy n)1/2’ (2hn 2 logyn)1/2° """ (2h, 5 logy n)1/2

satisfies the large deviation principle for the sequence (logyn)~! and the following

rate function (writing sgl) - sgz) =0).

(1) m 1)1 95“) . (2) (z) (+)1 *“’(2) :

b 3 1

T, o o2 (@) —~Z(81+1 )(—m——m’) ko )(—m_@“)
z+1 ‘l+1

(4.1) = :c(l]), ,z](pl),xgz), o .,3:;2) € (0,1)%

PROOF OF LEMMA 4.1.

The proof follows the same lines as the proof of Lemma 3.1. Choose A :—
(/\(1”,.. A /\(2) ...,A?’ ) € R arbitrarily and set (recall that U; is uniform
on [0,1]).

Xn,1 _Z,\(l) [t,t+hn, “’I(U‘)‘ "13(1))
j=1

2 2
Xn 1= Z ’\§ )(l[t,t+hn,,s§’)] (1) - hn 23( ))
=1

By independence we have

(log2 n)~!log (]E(exp (logan < A\ X, > )))
log2 log( (GXP (rnaXn1+ Tn.zxng))),

with rp 1 = y/logy n/2nh,; and r, 5 = Viogan/2nhy, 5. As X, (resp X, 2) is

centered and almost surely bounded by 2pmax;j_1, . 9p | A; |, the following Taylor

expansion is valid by the dominated convergence theorem (here : I}iiﬁl : e(a,b) = 0):
al,|o|—

log (]E(eer (rnaXn1 + 7‘n.2Xﬂ.2)))

1
=5 (721 Var(Xp 1) + 2 ,Var(Xn,2) + 21 17 2C0v (X1, Xn2)) (1 +&(rn1,7n.2)).
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Now, writing A; 1= (Am ,A,(,,l)) and A\ = {,\52), S /\,(,2)) we can write Var(X, ;) =
Al Em)\; and Var(X, ;) = /\529))\2, where

B (i, §) :=hp,1 min(s! ,3“)) K2 sV, and

SP(i, j) :=hpz min(s{?, ;.2)) h2 55 (J
Hence, setting

£M(4, 5) := min(s El),s(l)) and £ (i, 5) := min(s fz)’sgz))

we obtain
2 2 Iogz“ ry(1) @)
(4.2) (ra Var(Xn1)+r72aVar(X,2)) = —2— (MEZWA; + 255@ %) (1 + 0(1)).

In a similar way, we can write Cov(Xy, 1,Xn2) = M)z, where £,(i,j) =
min(hy, ]s( ) b 23(2)) hn1hn 2 3(1) (2) . Now recalling that hﬂ 1/hn2 — 0 we have

En(i,5) = hn 15(1)( s§2)hn,2) for all large n, whence

l n
(4-3) [Tﬂ‘lrn'QCOV(XH,I,anz)I & O_g;-l’i #_z;_gi(l +0(1)) i O(loiz ﬂ,)

Combining (4.2) and (4.3) we get

lim (logyn)~!log (]E(exp(logzn 0 ))) = %(,\;2“))\1 +A,5@),).

n—o0

Then applying Proposition 3.3 leads to the claimed result.[J
We shall now show that Lemma 4.1 is sufficient to infer a large deviation principle for

the couples of processes (2hn,1logyn)~Y2D, 1. | ¢ and (2hn 2 log, n)~1/2D,, 4

nﬂs

Consider the following processes on [0,2] that are obtained by concatenation of

(2hy 1 log, n)_1/2'Dﬂ,h.‘,|,t with (2h, 2 log, n)~V/2D,

vhn,2 vt:

(2hn,1 logy n)t
'D,-.‘p,ﬂ 2,.(5—1)
(2h,, 2 log, n) VER]

D,

(s) Mﬂﬁ, when0<s<1;
8=
when 1 <s<2.

Combining Lemma 4.1 with Lemma 3.2 we conclude that conditions of Proposi-

tion 3.1 are fulfilled, and thus D, satisfies the large deviation principle for €, :=
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(logy n)~! and for the following rate function:

JT(9)

P (1) )y, 2 () 1+ 5.2

3% ) ay, £ 9(8541) — 9(s;") @ _ 2 g(1+s74,) —9(1+5;7)

-—E“P{Z(Sm pah )(_“ P S ) ) + (8541 - 85 )( @ _ @ ) :
j=0 J+1 4] Jj+1 ]

p>1, 0<s§”<...<s§,1)<1<1+s‘12)<...<1+s§,2’<2}
2
=l g 1% + 11 6 1D,

where g(!)(s) := g(s), ¢?(s) := g(1 + ), s € [0,1]. The remainder of the proof of
Theorem 2 is a routine use of usual techniques in local empirical processes theory

(refer, e.g., to Deheuvels and Mason (1990)). We omit details for sake of briefness.

O

5. Proof of Theorem 3. We shall proceed in three steps. Recall that a,(h) =
(hlogyn/n)" /2, by(h) := log(nh), dn(h) := 2log, n+bn(h), Tn(h) = (an(h)ds(h))"/?
and Ru(h) := an,h_g 4 D;,MH.

LEMMA 5.1. Under the assumptions of Theorem 1, we have almost surely

F(h
(5.1) limsup sup l—!—M =l
n—=00 fn<h<hn h

Proor oF LEMMA 5.1.

First notice that, almost surely, foreach p > 1, h >0, n > 1,

1/2

— Dn ph,0 nh
Crp ey WNOILYE pit i
Fr(h) < 'Oh(2h log, n)1/2 Nk l)(210g2 n)

Now, for fixed p > 1 we have (p— 1) inf{nh/logyn, hn < h < hp} — o0o. Moreover,

by a straightforward use of Theorem 1 and (1.6),

e . Dh,ph0 1/2
(5.2) hﬂn_l. lotéf L er”:fS o W > —(2p)*/* almost surely.

This shows that (5.1) holds with < instead of =, while the converse inequality triv-
ially holds by Kiefer (1972), Theorem 6.0
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LEMMA 5.2. Under the assumptions of Theorem 1 we have almost surely

|| Dy po ll
limsup sup —0 < 91/2
n—'oepnnsrwghn (2hlogyn)t/2 —

Proor orF LEMMA 5.2.

From Inequality (2.23) in Einmahl and Mason (1988) we have, for each n > 1

and h > 0,
|| Dr po Il o l| Dn,F(ny,0 |l 1
(2hlogyn)1/2 = (2hlogyn)l/2 * (2nhlogyn)l/2’

The second term can be drop since nh,, — co. Fix p > 0. By Lemma 5.1 we have

almost surely, for all large n and for all b, < h < h,,

| Dr, F- (h),0 I < p1/2 || Pnpno |l
(2hlogyn)t/2 — (2phlog, n)1/2’

from where we readily obtain, by Theorem 1,

T ]

n

limsup su — B0 T 95)1/2 almost surely.
. E, @b = ) :

As p > 1 was arbitrary, Lemma 5.2 is proved. [

The expression w, appearing in the next lemma has been defined in (3.7).

LeEMMA 5.3. Under the assumptions of Theorem 1, and given n > 0, we have

almost surely

(5.3) limsup sup wn(nan(h), h) 8 et
n—00 hp<h<hn Tn(h)

PROOF OF LEMMA 5.3.

This proof is largely inspired from the proof of Lemma 6 in Einmahl and Mason
(1988). Fix € > 0 and consider the sequence (ny) the sets Ny and the grids hy, 1, 0 <
l < Ry, as in §3.2. Also define, for each k > 5 and [ < Ry,

ak,t :=n(phn, 1 1ogy ni/nk-1)"/? and

T =(ar,1(2logy ng + log(nikhn, 1)) "2,
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As ay > an(h) for each n € Ni and h € [hy, 1, phn, 1], we have

P w—-—-m"("a";h) b 5 24 3e))
neN., n,,<h<h mn(h)
Rk 1
S P U (ﬂ'k hphnk I) n1/2(1+3€)
rn(h)
I 0 neNJ= h,‘k 1<h<ph

Ryt
(5.4) <1P( i s “’—————“(a“"‘ph’“‘") >n1/2{1+2e))

r
=0 neN kil

(5.5) =:Py,

where (5.4) holds for any choice of p > 1 small enough, ultimately as k — oo, which
is a consequence of the easily checked fact that

rﬂ(
Tkl

(5.6) lim lim max max sup
p—1lk-—00 NnEN ISRi-1 helhnk‘hﬂhnk,!]

3 1|
By Bonferroni’s inequality we can write

e wn(@k,1, phny 1) 1/2
P, < Z P U ——e 2 > 4 (1 4 2€)

Tkl

Some straightforward verifications show that the blocking arguments of Inequality
2 in Einmahl and Mason (1988) can be used simultaneously to each ﬁk'h for all

large k and hence, by Fact 1,

Py, _<,2]P(Wm,(ak,bphm,,!) > 0! r(1+ 6))

L 2
Q—Ml—nrﬁ,ﬂ’(m,a)),

€ phn i %)
<2K(2)~—-~—--—exp( s

T Q1
where Ay := (1 + e)nl/zrk,m;lﬂa;} converge to 0 uniformly in [ < Ry — 1 when
k — oco. Since ¥ (given in Fact 1) satisfies ¥(u) — 1 as u — 0 we obtain, for all

large k and for each | < Ry — 1,

s €y [ni—1phn 1-£)%(1+¢)?
Py, 52K(§) T;%kl);m_nk: exp ( = L—L;——)—(Mc)gz ng + !og(nkphm“;)))

2 €f8
()( ) (nk—1hn, 1) "% (logg n) "2 (log ng_1)~1/4,
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for all large k and for each 0 <! < Ry — 1, which entails by (5.7)

5 €/8 Ry—-1
P]_k SZK(E)(%) (10g2 nk)"”]»/z(lognk_l)—l—E/dn’:i/lsh;:/g Z p—IE/B
1=0
/8
A
< =) (Hio
k(D)

1 s b 3
m(logz Vil 1% S e PO, 0 B
from where Py is summable in k. O
The proof of Theorem 3 is concluded as follows. First, it is well known that, almost

surely,

(5.8) |l an + Bn + (@n(Fy) — an) |I=n""/2,
whence, almost surely, for allm > 1 and h > 0,

(5.9) Rn(h) € sup || an(s+n"'"2u(s)) — an(s) || +n7'72,

0<s<h

from where
a(R) T Ra(h) < rn(h) " wn(n™Y2 || Dppo ||, h)+(nhlogy n)~1/4(21og, n+log(nk)) =172,

which conecludes the proof by combining lemmas 5.2 and 5.3 (with the choice of n =
2), as the second term of the RHS of 5.10 converges to 0 uniformly in §, < h < h,

as n — oo.[J
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