Some uniform in bandwidth functional results for the tail uniform empirical and quantile processes

Davit Varron

To cite this version:

Davit Varron. Some uniform in bandwidth functional results for the tail uniform empirical and quantile processes. Annales de l'ISUP, 2010, L (1-2), pp.83-103. hal-01358240

HAL Id: hal-01358240

https://hal.science/hal-01358240

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pub. Inst. Stat. Univ. Paris
L, fasc. 1-2, 2006, 83 à 103

SOME UNIFORM IN BANDWIDTH FUNCTIONAL RESULTS FOR THE TAIL UNIFORM EMPIRICAL AND QUANTILE PROCESSES

Institute of Statistics, Catholic University of Louvain

By Davit Varron

For fixed $t \in[0,1)$ and $h>0$, consider the local uniform empirical process

$$
\mathcal{D}_{n, h, t}(s):=n^{-1 / 2}\left[\sum_{i=1}^{n} 1_{[t, t+h s]}\left(U_{i}\right)-h s\right], s \in[0,1],
$$

where the U_{i} are independent and uniformly distributed on $[0,1]$. We investigate the functional limit behaviour of $\mathcal{D}_{n, h, t}$ uniformly in $\mathfrak{h}_{n} \leq h \leq h_{n}$ when $n b_{n} / \log \log n \rightarrow \infty$ and $h_{n} \rightarrow 0$.

1. Introduction. Let $\left(U_{i}\right)_{i \geq 1}$ be an independent, identically distributed (i.i.d.) sequence of random variables that are uniformly distributed on $[0,1]$. Define the empirical distribution function based on $\left(U_{1}, \ldots, U_{n}\right)$ by $F_{n}(t):=n^{-1} \sharp\{1 \leq i \leq$ $\left.n, U_{i} \leq t\right\}, t \in[0,1]$ and denote by $F_{n}^{\leftarrow}(t)$ the left-continuous inverse of F_{n}, namely $F_{n}^{\leftarrow}(t):=\inf \left\{s \geq 0, F_{n}(s) \geq t\right\}$. We also define the empirical (resp. quantile) process by $\alpha_{n}(t):=\sqrt{n}\left(F_{n}(t)-t\right), t \in[0,1]$ (resp. $\left.\beta_{n}(t):=\sqrt{n}\left(F_{n}^{\leftarrow}(t)-t\right), t \in[0,1]\right)$. The framework of this paper is the almost sure behaviour of the local empirical and quantile processes. Namely, given $t \in[0,1)$ we focus on studying the following processes, as $n \rightarrow \infty$ and $h \rightarrow 0$.

$$
\begin{align*}
& \mathcal{D}_{n, h, t}(s):=\alpha_{n}(t+h s)-\alpha_{n}(t), s \in[0,1], \tag{1.1}\\
& \mathcal{D}_{n, h, t}^{\prime}(s):=\beta_{n}(t+h s)-\beta_{n}(t), s \in[0,1] . \tag{1.2}
\end{align*}
$$

Mason (1988) was the first to establish a functional law of the iterated logarithm for the local empirical process (see also Einmahl and Mason (1997) for a generalization

AMS 2000 subject classifications: Primary 62G20, 62G30
Keywords and phrases: Empirical processes, Strassen laws of the iterated logarithm
of this result to empirical processes indexed by functions). To cite this result, we need to introduce some further notations first. Write $\log _{2}(u):=\log (\log (u \vee 3))$. We say that a sequence $\left(h_{n}\right)_{n \geq 1}$ of strictly positive constants satisfies the local strong invariance conditions when, ultimately as $n \rightarrow \infty$,

$$
\begin{equation*}
h_{n} \downarrow 0, n h_{n} \uparrow \infty, n h_{n} / \log _{2} n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

Given a sequence $\left(x_{n}\right)_{n \geq 1}$ of elements of a metric space (E, d), we say that $x_{n} \rightsquigarrow K$ when K is non void and coincides with the set of all cluster points of $\left(x_{n}\right)_{n \geq 1}$. In our framework, (E, d) is the space $B([0,1])$ of all real bounded CADLAG trajectories on $[0,1]$, endowed with the usual sup norm, namely $\|g\|:=\sup \{|g(s)|, s \in[0,1]\}$. Consider the space $A C[0,1]$ of all absolutely continuous functions on $[0,1]$. For any $g \in A C[0,1]$, we define the usually called Hilbertian norm of g as

$$
\begin{equation*}
\|g\|_{H}^{2}:=\int_{0}^{1} \dot{g}^{2}(x) d x \tag{1.4}
\end{equation*}
$$

where \dot{g} is any version of the derivative of g with respect to the Lebesgue measure. The usually called Strassen ball can be defined as follows:

$$
\begin{equation*}
\mathcal{S}:=\left\{g \in A C([0,1]), g(0)=0,\|g\|_{H} \leq 1\right\} . \tag{1.5}
\end{equation*}
$$

As a corollary of a strong approximation result, Mason (1988) showed that, given a sequence $\left(h_{n}\right)_{n \geq 1}$ fulfilling (1.3) and given $t \in[0,1)$, we have, almost surely

$$
\begin{equation*}
\frac{\mathcal{D}_{n, h_{n}, t}}{\left(2 h_{n} \log _{2} n\right)^{1 / 2}} \rightsquigarrow \mathcal{S} \tag{1.6}
\end{equation*}
$$

In the particular case where $t=0$, Einmahl and Mason (1988) showed that $\mathcal{D}_{n, h_{n}, t}^{\prime}$ also satisfies (1.6). They showed that result by making use of a local Bahadur Kiefer representation (see their Theorem 5). The almost sure limit behavior of $\mathcal{D}_{n, h_{n}, t}^{\prime}$ when $t \in(0,1)$ has been investigated by Deheuvels (1997), who showed that the above mentioned process may obey functional limit laws that are different from (1.6). The aim of the present paper is the following: given two sequences $\mathfrak{h}_{n}<h_{n}$
fulfilling (1.3), does (1.6) still hold uniformly in $\mathfrak{h}_{n} \leq h \leq h_{n}$? Namely, do we have almost surely

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} \inf _{g \in \mathcal{S}}\left\|\frac{\mathcal{D}_{n, h, t}}{\left(2 h \log _{2} n\right)^{1 / 2}}-g\right\|=0, \\
\forall g \in \mathcal{S}, \liminf _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}}\left\|\frac{\mathcal{D}_{n, h, t}}{\left(2 h \log _{2} n\right)^{1 / 2}}-g\right\|=0 ? \tag{1.8}
\end{array}
$$

The remainder of this paper is organised as follows. In $\S 2$, we state our main results on $\mathcal{D}_{n, h, t}$. We then show how this results lead to a local Bahadur-Kiefer type representation that holds uniformly in h. The proofs of our main results follow in §3, 4 and 5.
2. Mains results. Our first result is a weaker form of assertion (1.7).

THEOREM 1. Let $\left(h_{n}\right)_{n \geq 1}$ and $\left(\mathfrak{h}_{n}\right)_{n \geq 1}$ be two sequences satisfying (1.3) as well as $\mathfrak{h}_{n}<\frac{1}{2} h_{n}$. Then, given $t \in[0,1)$, we have, almost surely:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} \inf _{g \in \sqrt{2} \mathcal{S}}\left\|\frac{\mathcal{D}_{n, h, t}}{\left(2 h \log _{2} n\right)^{1 / 2}}-g\right\|=0 . \tag{2.1}
\end{equation*}
$$

The proof of Theorem 1 is written in $\S 3$.
Remark: Condition $\mathfrak{h}_{n}<h_{n} / 2$ is just technical, as this result is really interesting when $\left(\mathfrak{h}_{n}\right)_{n \geq 1}$ and $\left(h_{n}\right)_{n \geq 1}$ are sequences that tend to 0 at different rates (typically $n^{-\alpha_{1}}$ and $n^{-\alpha_{2}}, 0<\alpha_{1}<\alpha_{2}<1$). Clearly, Theorem 1 seems unsatisfactory, as one would expect the limit set to be \mathcal{S} instead of $\sqrt{2} \mathcal{S}$. As it will be pointed out in the proof of Theorem 1 (see $\S 3.2$), it is possible to prove (1.7) when

$$
\begin{equation*}
\forall \beta>0, \lim _{n \rightarrow \infty} \log \left(h_{n} / \mathfrak{h}_{n}\right) /(\log n)^{\beta}=0 \tag{2.2}
\end{equation*}
$$

However, (2.2) is a very restrictive condition, imposing $\left(h_{n}\right)_{n \geq 1}$ and $\left(h_{n}\right)_{n \geq 1}$ to have rates of convergence to zero that are very close one to each other. In $\S 3$, we shall try to point out the main difficulty that imposes us to weaken (1.7) to (2.1). Showing that (1.7) is true or false without imposing (2.2) remains an open problem.

The second step of our investigation is to determine the validity of (1.8). This

A local Bahadur-Kiefer representation

A consequence of Theorem 1 is the following local Bahadur-Kiefer representation, which is very largely inspired from Einmahl and Mason (1988, Theorem 5). For $0<h<1$ and $n \geq 1$ we set $a_{n}(h):=\left(h \log _{2} n / n\right)^{1 / 2}, b_{n}(h):=\log (n h), d_{n}(h):=$ $2 \log _{2} n+b_{n}(h), r_{n}(h):=\left(a_{n}(h) d_{n}(h)\right)^{1 / 2}$ and

$$
R_{n}(h):=\left\|\mathcal{D}_{n, h, 0}+\mathcal{D}_{n, h, 0}^{\prime}\right\|
$$

Theorem 3. Under the conditions of Theorem 1, with $t=0$, we have, almost surely

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} r_{n}(h)^{-1} R_{n}(h) \leq 2^{1 / 2} . \tag{2,7}
\end{equation*}
$$

The proof of Theorem 3 is provided in $\S 5$.
Remark: In view of Theorem 5 of Einmahl and Mason (1988), Theorem 3 seems to be non optimal since a factor $2^{1 / 4}$ can be drop when $h_{n}=\mathfrak{h}_{n}$. This is a consequence of the fact that we were only able to prove (2.1) instead of (1.7).
3. Proof of Theorem 1. Our proof is divided into two subsections. In §3.1, we establish a large deviation result which holds uniformly in $\mathfrak{h}_{n} \leq h \leq h_{n}$. Then we make use of that (uniform) large deviation principle to prove Theorem 1 in §3.2.

3.1. A uniform large deviation principle.

3.1.1. Definitions. Large deviation results are commonly used when proving functional laws of the iterated logarithm such as (1.6). As a uniformity in $\mathfrak{h}_{n} \leq$ $h \leq h_{n}$ appears in Theorem 1, we shall make use of a large deviation principle that holds uniformly in h. This tool was first used by Mason (2004). From now on, $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ will denote a triangular array of strictly positive numbers satisfying $\max _{1 \leq i \leq p_{n}} \epsilon_{n, i} \rightarrow 0$ as $n \rightarrow \infty$. We call a rate function in a metric space (E, d) any positive real function J on E such that, for each $a \geq 0$, the set $\{g \in E, J(g) \leq a\}$ is a compact set of (E, d).

Definition 3.1. Let (E, d) be a metric space and let \mathcal{T}_{0} be a σ-algebra included in the Borel σ-algebra of (E, d). Let $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array of random variables that are measurable for $\left(E, \mathcal{T}_{0}\right)$. We say that $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ satisfies the uniform large deviation principle (ULDP) for $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$, a rate function J and \mathcal{T}_{0} whenever

1. For each closed set $F \in \mathcal{T}_{0}$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \max _{i \leq p_{n}} \epsilon_{n, i} \log \left(\mathbb{P}\left(X_{n, i} \in F\right)\right) \leq-J(F) \tag{3.1}
\end{equation*}
$$

2. For each open set $O \in \mathcal{T}_{0}$ we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \min _{i \leq p_{n}} \epsilon_{n, i} \log \left(\mathbb{P}\left(X_{n, i} \in O\right)\right) \geq-J(O) \tag{3.2}
\end{equation*}
$$

Remark: In this definition, we introduce a sub σ-algebra \mathcal{T}_{0} because we will consider repeatedly (E, d) as the metric space $\left(B([0,1],\|\cdot\|)\right.$. As the $\mathcal{D}_{n, h, t}$ are not Borel measurable in that space, we shall consider \mathcal{T}_{0} as the σ-algebra spawned by the open balls of $(B([0,1],\|\cdot\|)$. We will sometimes take (E, d) as a finite dimensional vector space, in which case \mathcal{T}_{0} will denote the Borel σ-algebra. Another way to avoid measurability problems is to consider inner and outer probabilities (see, e.g.,Van der Vaart and Wellner (1996), Chapter 1).
The next result is a consequence of the work of Arcones (2003).

Proposition 3.1. Let $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array of random variables taking values in $B([0,1])$ and measurable for \mathcal{T}_{0}. Let $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array of strictly positive real numbers. Assume that the following conditions hold:

1. For each $p \geq 1$ and $\left(s_{1}, \ldots, s_{p}\right) \in(0,1)^{p}$ satisfying $s_{i} \neq s_{j}$ for each $i \neq j$, the triangular array $\left(X_{n, i}\left(s_{1}\right), \ldots, X_{n, i}\left(s_{p}\right)\right)_{n \geq 1, i \leq p_{n}}$ satisfies the ULDP in \mathbb{R}^{p} for $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ and a rate function $I_{s_{1}, \ldots, s_{p}}$.
2. For any $\tau>0$ we have

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} \max _{i \leq p_{n}} \log \left(\mathbb{P}\left(\sup _{\left|s-s^{\prime}\right|<\delta}\left|X_{n, i}\left(s^{\prime}\right)-X_{n, i}(s)\right|>\tau\right)\right)=-\infty
$$

Then $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ satisfies the ULDP in $\left(B([0,1],\|\cdot\|)\right.$ for $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}, \mathcal{T}_{0}$ and the following rate function:

$$
I(g):=\sup _{p \geq 1,\left(s_{1}, \ldots, s_{p}\right) \in(0,1)^{p}} I_{s_{1}, \ldots, s_{p}}\left(g\left(s_{1}\right), \ldots, g\left(s_{p}\right)\right), g \in B([0,1])
$$

Now consider the following rate function on $B([0,1])$ that is known to rule the large deviation properties of a Wiener process:

$$
J(g):= \begin{cases}\|g\|_{H}^{2}, & \text { when } g \in A C[0,1] \tag{3.3}\\ \infty, & \text { when } g \notin A C[0,1]\end{cases}
$$

Notice that $\mathcal{S}=\{g \in B([0,1]), g(0)=0, J(g) \leq 1\}$. The main tool that will be used to achieve our proof of Theorem 1 is the following ULDP.

PROPOSITION 3.2. Let $\left(h_{n}\right)_{n \geq 1}$ and $\left(\mathfrak{h}_{n}\right)_{n \geq 1}$ be two sequences satisfying conditions of Theorem 1 and let $\left(h_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array satisfying $\mathfrak{h}_{n} \leq$ $h_{n, i} \leq h_{n}$ for each $n \geq 1, i \leq p_{n}$. Then the triangular array

$$
\left(\left(2 h_{n, i} \log _{2} n\right)^{-1 / 2} \mathcal{D}_{n, h_{n, i}, t}\right)_{n \geq 1, i \leq p_{n}}
$$

satisfies the ULDP in $(B([0,1]),\|\cdot\|)$ for \mathcal{T}_{0}, the rate function J given in (3.3) and the (constant in $\left.i \leq p_{n}\right)$ triangular array $\left(1 / \log _{2} n\right)_{n \geq 1, i \leq p_{n}}$.

Proof of Proposition 3.2: We shall make use of Proposition 3.1, and we hence have to show that conditions 1 and 2 of this proposition are satisfied. This verification will be a consequence of two separate lemmas. The next proposition, which shall be useful to prove our first lemma, follows directly from the arguments of Ellis (1984). Here $<\cdot, \cdot>$ denotes the usual scalar product on \mathbb{R}^{p}.

Proposition 3.3. Let $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array of random vectors taking values in \mathbb{R}^{p}, and let $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ be a triangular array of strictly positive real numbers. Assume that there exists a positive real function ℓ (which may take infinite values) on \mathbb{R}^{p} such that the following conditions are satisfied.

1. ℓ is convex and lower semi continuous on \mathbb{R}^{p}.
2. The definition set $D(\ell):=\left\{\lambda \in \mathbb{R}^{p}, \ell(\lambda)<\infty\right\}$ has an interior that contains the null vector.
3. ℓ is differentiable on the interior of $D(\ell)$ and, for each sequence $\left(\lambda_{n}\right)_{n \geq 1}$ converging to a boundary point of $D(\ell)$ we have $\left\|\nabla \ell\left(\lambda_{n}\right)\right\|_{\mathbb{R}^{p}} \rightarrow \infty$. Here $\|\cdot\|_{\mathbb{R}^{p}}$ denotes the usual Euclidian norm.
4. For each $\lambda \in D(\ell)$, we have

$$
\lim _{n \rightarrow \infty} \max _{i \leq p_{n}}\left|\epsilon_{n, i} \log \left(\mathbb{E}\left(\exp \left(\epsilon_{n, i}^{-1}<\lambda, X_{n, i}>\right)\right)\right)-\ell(\lambda)\right|=0
$$

5. For each $\lambda \notin D(\ell)$, we have

$$
\lim _{n \rightarrow \infty} \min _{i \leq p_{n}} \epsilon_{n, i} \log \left(\mathbb{E}\left(\exp \left(\epsilon_{n, i}^{-1}<\lambda, X_{n, i}>\right)\right)\right)=\infty
$$

Then $\left(X_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ satisfies the ULDP in \mathbb{R}^{p} for $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ with the following rate function:

$$
\left.\widetilde{J}(s):=\sup _{\lambda \in \mathbb{R}^{p}}<\lambda, s\right\rangle-\ell(\lambda), s \in \mathbb{R}^{p} .
$$

We now state our first lemma.

Lemma 3.1. Let $p \geq 1$ and $\left(s_{1}, \ldots, s_{p}\right) \in[0,1]^{p}$ be arbitrary, with $s_{1}<s_{2}<$ $\ldots<s_{p}$. Under the assumptions of Proposition 3.2, the triangular array of $\mathbb{R}^{p_{-}}$ valued random vectors

$$
\left(\left(2 h_{n, i} \log _{2} n\right)^{-1 / 2}\left(\mathcal{D}_{n, h_{n, i}, t}\left(s_{1}\right), \ldots, \mathcal{D}_{n, h_{n, i}, t}\left(s_{p}\right)\right)\right)_{n \geq 1, i \leq p_{n}}
$$

satisfies the ULDP for $\left(\epsilon_{n, i}\right)_{n \geq 1, i \leq p_{n}}$ with the following rate function (with $s_{0}:=0$).

$$
J_{s_{1}, \ldots, s_{p}}\left(x_{1}, \ldots, x_{p}\right):=\sum_{i=0}^{p}\left(s_{i+1}-s_{i}\right)\left(\frac{x_{i+1}-x_{i}}{s_{i+1}-s_{i}}\right)^{2},\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}
$$

Proof of Lemma 3.1.

We shall make use of Proposition 3.3. Fix $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \mathbb{R}^{p}$ and and write the $\mathcal{D}_{n, h_{n, i}, t}$ as sums of i.i.d. random variables, namely

$$
\begin{equation*}
\left(2 h_{n, i} \log _{2} n\right)^{-1 / 2} \sum_{j=1}^{p} \lambda_{j} \mathcal{D}_{n, h_{n, i}, t}\left(s_{j}\right)=\left(2 n h_{n, i} \log _{2} n\right)^{-1 / 2} \sum_{k=1}^{n} Z_{n, h_{n, i}, t}^{k}, \tag{3.4}
\end{equation*}
$$

where

$$
Z_{n, h_{n, i}, t}^{k}:=\sum_{j=1}^{p} \lambda_{j}\left(1_{\left[t, t+h_{n, i} s_{j}\right]}\left(U_{k}\right)-h_{n, i} s_{j}\right), k=1, \ldots, n .
$$

These n random variables are i.i.d with mean 0 and variance-covariance matrix given by $h_{n, i} \lambda^{\prime} \Sigma_{n, i} \lambda$, with $\Sigma_{n, i}\left(l, l^{\prime}\right):=\min \left(s_{l}, s_{l^{\prime}}\right)-h_{n, i} s_{l} s_{l^{\prime}}$. Now define the matrix $\Sigma\left(l, l^{\prime}\right):=\min \left(s_{l}, s_{l^{\prime}}\right)$. Clearly, as $h_{n, i} \leq h_{n} \rightarrow 0$ we have $\Sigma_{n, i} \rightarrow \Sigma$ uniformly in i as $n \rightarrow \infty$. By standard computations we have, for each $n \geq 1$ and $i \leq p_{n}$:

$$
\begin{align*}
& \left(\log _{2} n\right)^{-1} \log \left(\mathbb{E}\left(\exp \left(\log _{2} n\left(2 h_{n, i} \log _{2} n\right)^{-1 / 2} \sum_{j=1}^{p} \lambda_{j} \mathcal{D}_{n, h_{n, i}, t}\left(s_{j}\right)\right)\right)\right) \\
= & \frac{n}{\log _{2} n} \log \left(\mathbb{E} \exp \left(r_{n, i} Z_{n, h_{n, i}, t}^{1}\right)\right) \tag{3.5}
\end{align*}
$$

where $r_{n, i}:=\left(\log _{2} n / 2 n h_{n, i}\right)^{1 / 2}$. Recall that $\max _{i \leq p_{n}} r_{n, i} \rightarrow 0$ as $n \rightarrow \infty$, since \mathfrak{h}_{n} satisfies (1.3), and notice that the $Z_{n, h_{n, i}, t}^{k}$ are centered and almost surely bounded by $p \max _{j=1, \ldots, p}\left|\lambda_{j}\right|$. This ensures that the following Taylor expansion is valid, for each $n \geq 1, i \leq p_{n}$ (here ε denotes a real function satisfying $\varepsilon(u) \rightarrow 0$ as $u \rightarrow 0$):

$$
\begin{equation*}
\mathbb{E}\left(\exp \left(r_{n, i} W_{n, h_{n, i}, t}^{1}\right)\right)=1+\frac{r_{n, i}^{2} h_{n, i}}{2} \lambda^{\prime} \Sigma_{n, i} \lambda\left(1+\varepsilon\left(r_{n, i}\right)\right) \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), we get

$$
\lim _{n \rightarrow \infty} \max _{i \leq p_{n}}\left|\frac{\log \left(\mathbb{E}\left(\exp \left(\frac{\log _{2} n}{\left(2 h_{n, i} \log _{2} n\right)^{1 / 2}} \sum_{j=1}^{p} \lambda_{j} \mathcal{D}_{n, h_{n, i}, t}\left(s_{j}\right)\right)\right)\right)}{\log _{2} n}-\frac{1}{4} \lambda^{\prime} \Sigma \lambda\right|=0
$$

As the function $\ell(\lambda):=\lambda^{\prime}(\Sigma / 4) \lambda$ obviously satisfies conditions of Proposition 3.3, the proof of Lemma 3.1 is concluded by noticing that

$$
\sup _{t \in \mathbb{R}^{p}}<t, x>-\ell(t)=x^{\prime} \Sigma^{-1} x=\sum_{i=0}^{p}\left(s_{i+1}-s_{i}\right)\left(\frac{x_{i+1}-x_{i}}{s_{i+1}-s_{i}}\right)^{2}
$$

Our next lemma shows that condition 2 of Proposition 3.1 is fulfilled.

Lemma 3.2. Under the assumptions of Proposition 3.2, we have, for each $\tau>0$

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} \max _{i \leq p_{n}} \log \left(\mathbb{P}\left(\sup _{\left|s-s^{\prime}\right|<\delta}\left|\frac{\mathcal{D}_{n, h_{n, i}, t}(s)-\mathcal{D}_{n, h_{n, i}, t}\left(s^{\prime}\right)}{\left(2 h_{n, i} \log _{2} n\right)^{1 / 2}}\right| \geq \tau\right)\right)=-\infty
$$

Proof of Lemma 3.2.

Fix $\tau>0$ and introduce a parameter $\delta>0$ that will be chosen small enough in the sequel. The proof of this lemma relies on an exponential inequality for the oscillations of the local empirical process, which is due to Einmahl and Mason (1988) (see their Inequality 1). For positive numbers a, b with $a+b \leq 1$, write

$$
\begin{equation*}
\omega_{n}(a, b):=\sup _{\substack{0 \leq s \leq b, 0 \leq s^{\prime} \leq a}}\left|\alpha_{n}\left(s+s^{\prime}\right)-\alpha_{n}(s)\right| \tag{3.7}
\end{equation*}
$$

Fact 1 (Einmahl, Mason, 1988). Fix $0<\varepsilon \leq 1 / 2$. There exists $K(\varepsilon)<\infty$ such that, for any $n \geq 1, \lambda>0, a>0, b>0$ fulfilling $a+b \leq 1$ and $0<a<1 / 4$,

$$
\begin{equation*}
\mathbb{P}\left(\omega_{n}(a, b) \geq \lambda\right) \leq K(\varepsilon) b a^{-1} \exp \left(-\frac{(1-\varepsilon) \lambda^{2}}{2 a} \Psi\left(\frac{\lambda}{\sqrt{n} a}\right)\right) \tag{3.8}
\end{equation*}
$$

Here we write $\Psi(u):=2 u^{-2}((1+u) \log (1+u)-u)$.
Applying (3.8) to $b=h_{n, i}, \quad a=\delta h_{n, i}, \quad \varepsilon=1 / 2$ and $\lambda=\tau\left(2 h_{n, i} \log _{2} n\right)^{1 / 2}$ we get, for all large n and $i \leq p_{n}$ (so that $h_{n, i} \leq h_{n} \leq 1 / 4$)
$\mathbb{P}\left(\sup _{\left|s-s^{\prime}\right|<\delta}\left|\frac{\mathcal{D}_{n, h_{n, i}, t}(s)-\mathcal{D}_{n, h_{n, i}, t}\left(s^{\prime}\right)}{\left(2 h_{n, i} \log _{2} n\right)^{1 / 2}}\right| \geq \tau\right) \leq \frac{K\left(\frac{1}{2}\right)}{\delta} \exp \left(-\frac{\tau^{2} \log _{2} n}{2 \delta} \Psi\left(\frac{\tau \sqrt{2 \log _{2} n}}{\delta \sqrt{n h_{n, i}}}\right)\right)$

$$
\begin{equation*}
\leq \frac{K\left(\frac{1}{2}\right)}{\delta} \exp \left(-\frac{\tau^{2} \log _{2} n}{4 \delta}\right) \tag{3.9}
\end{equation*}
$$

The last inequality holds for all large n and $i \leq p_{n}$ since $\Psi(u) \rightarrow 1$ as $u \rightarrow 0$, and since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{i \leq p_{n}} \frac{\log _{2} n}{n h_{n, i}}=0 \tag{3.10}
\end{equation*}
$$

Now taking the logarithm in (3.9) concludes the proof of Lemma 3.2, then lemmas 3.1 and 3.2 in combination with Proposition 3.3 conclude the proof of Proposition 3.2 .
3.2. Proof of Theorem 1. We shall invoke usual blocking arguments along the following subsequence:

$$
\begin{equation*}
n_{k}:=\left[\exp \left(k \exp \left(-(\log k)^{1 / 2}\right)\right)\right], k \geq 5 \tag{3.11}
\end{equation*}
$$

Clearly, n_{k} satisfies, as $k \rightarrow \infty$,

$$
\begin{equation*}
\frac{n_{k}}{n_{k+1}} \rightarrow 1, \log _{2}\left(n_{k}\right)=\log k(1+o(1)) \tag{3.12}
\end{equation*}
$$

Now define the blocks $N_{k}:=\left\{n_{k-1}, \ldots, n_{k}-1\right\}$ for $k \geq 6$. Fix $\epsilon>0$ and consider a parameter $\rho>1$ that will be chosen small enough in the sequel. For any $k \geq 5$, consider the following discretisation of [$h_{n_{k}}, h_{n_{k-1}}$]

$$
\begin{equation*}
h_{n_{k}, R_{k}}:=h_{n_{k-1}}, \quad h_{n_{k}, l}:=\rho^{l} \mathfrak{h}_{n_{k}}, l=0, \ldots, R_{k}-1, \tag{3.13}
\end{equation*}
$$

where $R_{k}:=\left[\left(\log \left(h_{n_{k-1}} / h_{n_{k}}\right)\right) / \log (\rho)\right]+1$, and $[u]$ denotes the only integer q fulfilling $q \leq u<q+1$. Clearly, as $k \rightarrow \infty$, we have

$$
\begin{equation*}
R_{k}=O\left(\log n_{k}\right) \tag{3.14}
\end{equation*}
$$

Our aim is to show that the following probabilities are summable in k so as the Borel-Cantelli lemma would complete the proof of Theorem 1.

$$
\begin{equation*}
\mathbb{P}_{k}:=\mathbb{P}\left(\max _{n \in N_{k}} \sup _{\boldsymbol{h}_{n} \leq h \leq h_{n}} \inf _{g \in \sqrt{2} S}\left\|\frac{\mathcal{D}_{n, h, t}}{\left(2 h \log _{2} n\right)^{1 / 2}}-g\right\| \geq 3 \epsilon\right) \tag{3.15}
\end{equation*}
$$

Clearly we have

$$
\begin{aligned}
\mathbb{P}_{k} \leq & \mathbb{P}\left(\max _{0 \leq l \leq R_{k}} \inf _{g \in \sqrt{2} S}\left\|\frac{\mathcal{D}_{n_{k}, h_{n_{k}, l}, t}}{\left(2 h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}-g\right\| \geq \epsilon\right) \\
& +\mathbb{P}\left(\max _{n \in N_{k}} \max _{0 \leq l \leq R_{k}-1} \sup _{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}}\left\|\frac{\mathcal{D}_{n, h, t}}{\left(2 h \log _{2} n\right)^{1 / 2}}-\frac{\mathcal{D}_{n_{k}, h_{n_{k}}, t, t}}{\left(2 h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>2 \epsilon\right) \\
= & \mathbb{P}_{1, k}+\mathbb{P}_{2, k} .
\end{aligned}
$$

To show that $\mathbb{P}_{1, k}$ is summable, we shall make use of Proposition 3.2. Consider the following subset of $B([0,1])$:

$$
F:=\left\{f \in B([0,1]), \inf _{g \in \sqrt{2} S}\|f-g\| \geq \epsilon\right\} .
$$

Since the rate function J given in (3.3) is lower semi continuous on ($B([0,1],\|\cdot\|)$, there exists $\alpha_{1}>0$ satisfying $J(F)=2+2 \alpha_{1}$. Hence, for all large k we have

$$
\begin{equation*}
\mathbb{P}_{1, k} \leq\left(R_{k}+1\right) \exp \left(-\left(2+\alpha_{1}\right) \log _{2} n_{k}\right) \tag{3.16}
\end{equation*}
$$

Recalling (3.12) and (3.14), we conclude that $\mathbb{P}_{1, k}$ is summable in k. It remains to show the summability of $\left(\mathbb{P}_{2, k}\right)_{k \geq 1}$. First notice that

$$
\begin{aligned}
\mathbb{P}_{2, k} \leq & \mathbb{P}\left(\max _{l \leq R_{k}-1} \max _{n \in N_{k}} \sup _{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}}\left\|\frac{\sqrt{n} \mathcal{D}_{n, h, t}-\sqrt{n} \mathcal{D}_{n, h_{n_{k}}, l}}{\left(2 n_{k} h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\epsilon\right) \\
& +\mathbb{P}\left(\max _{l \leq R_{k}-1} \max _{n \in N_{k}} \sup _{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}} \mathcal{B}(n, h)\left\|\frac{\sqrt{n} \mathcal{D}_{n, h, t}}{\left(2 n_{k} \rho h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\epsilon\right) \\
(3.17)= & \mathbb{P}_{3, k}+\mathbb{P}_{4, k},
\end{aligned}
$$

where

$$
\begin{equation*}
\mathcal{B}(n, h):=\left|\sqrt{\frac{n_{k} \rho h_{n_{k}, l} \log _{2} n_{k}}{n h \log _{2} n}}-1\right|, n \in N_{k}, l \leq R_{k}-1, h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l} \tag{3.18}
\end{equation*}
$$

We shall require a maximal inequality due to Montgomery-Smith (1993) (see also Latala (1993)).

FACT 2 (Montgomery-Smith, Latala, 1993). There exists a constant $c>0$ such that, given a Banach space $(E,\|\cdot\|)$ and a finite sequence $\left(X_{i}\right)_{1 \leq i \leq n}$ of i.i.d. random variables taking values in (E, d) we have, for each $\lambda>0$:

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq i \leq n}\left\|\sum_{j=1}^{i} X_{j}\right\| \geq \lambda\right) \leq c \mathbb{P}\left(\left\|\sum_{i=1}^{n} X_{i}\right\| \geq \frac{\lambda}{c}\right) \tag{3.19}
\end{equation*}
$$

Applying inequality (3.19), we get

$$
\begin{align*}
\mathbb{P}_{3, k} & \leq \sum_{l=0}^{R_{k}-1} \mathbb{P}\left(\max _{n \in N_{k}} \sup _{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}}\left\|\frac{\sqrt{n} \mathcal{D}_{n, h, t}-\sqrt{n} \mathcal{D}_{n, h_{n_{k}}, l, t}}{\left(2 n_{k} h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\epsilon\right) \\
& \leq c \sum_{l=0}^{R_{k}-1} \mathbb{P}\left(\sup _{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}}\left\|\frac{\sqrt{n_{k}} \mathcal{D}_{n_{k}, h, t}-\sqrt{n_{k}} \mathcal{D}_{n_{k}, h_{n_{k}}, l, t}}{\left(2 n_{k} h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\epsilon / c\right) . \tag{3.20}
\end{align*}
$$

As $h_{n_{k}, l} \leq h_{n_{k-1}} \rightarrow 0$, each term of (3.20) can be bounded by inequality (3.8), provided that $h_{n_{k-1}}<1 / 4$. In inequality (3.8), we repeatedly choose $b=h_{n_{k}, l}, a=$
$h_{n_{k}, l}(\rho-1), \varepsilon=1 / 2, \lambda=\left(2 h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2} \epsilon / c$. Hence, for all large k we have

$$
\begin{align*}
\mathbb{P}_{3, k} & \leq c \sum_{l=0}^{R_{k}-1} \frac{K\left(\frac{1}{2}\right)}{\rho-1} \exp \left(-\frac{\epsilon^{2} \log _{2} n_{k}}{2 c^{2}(\rho-1)^{2}} \Psi\left(\frac{\epsilon \sqrt{\log _{2} n_{k}}}{c(\rho-1) \sqrt{n_{k} h_{n_{k}, l}}}\right)\right) \\
& \leq c \sum_{l=0}^{R_{k}-1} \frac{K\left(\frac{1}{2}\right)}{\rho-1} \exp \left(-\frac{\epsilon^{2} \log _{2} n_{k}}{4 c^{2}(\rho-1)^{2}}\right) \tag{3.21}\\
& \leq \frac{c K\left(\frac{1}{2}\right)}{\rho-1} R_{k} k^{-\epsilon / 2 c(\rho-1)^{2}} . \tag{3.22}
\end{align*}
$$

Inequality (3.21) is true for all large k since $\Psi(u) \rightarrow 1$ as $u \rightarrow 0$, and since

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{l \leq R_{k}-1} \frac{\log _{2} n_{k}}{n_{k} h_{n_{k}, l}}=0 \tag{3.23}
\end{equation*}
$$

Inequality (3.22) takes in account the fact that $\log _{2} n_{k}=\log k(1+o(1))$ as $k \rightarrow \infty$. Hence for any choice of $1<\rho<1+\sqrt{\epsilon / 2 c}$ the general term (3.22) is summable in k and so are the $\mathbb{P}_{3, k}$ (recall (3.14)). Showing that $\sum \mathbb{P}_{4, k}<\infty$ will be done in a similar way. First notice that, as $n_{k} / n_{k-1} \rightarrow 1$ and $1 \leq \rho h_{n_{k}, l} / h \leq \rho$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{0 \leq l \leq R_{k}-1} \max _{n \in N_{k}} \mathcal{B}(h, n)=\rho^{1 / 2}-1 \leq 2(\rho-1) \tag{3.24}
\end{equation*}
$$

Hence, for all large k we have

$$
\begin{aligned}
& \mathbb{P}_{4, k} \leq \mathbb{P}\left(\max _{0 \leq l \leq R_{k}-1} \max _{n \in N_{k}}\left\|\frac{\sqrt{n} \mathcal{D}_{n, \rho h_{n_{k}, l}, t}}{\left(2 n_{k} \rho h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\frac{\epsilon}{2(\rho-1)}\right) \\
& \leq c \sum_{l=0}^{R_{k}-1} \mathbb{P}\left(\left\|\frac{\mathcal{D}_{n_{k}, \rho h_{n_{k}, l}, t}}{\left(2 \rho h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2}}\right\|>\frac{\epsilon}{2 c(\rho-1)}\right) \\
&5) \quad \leq 2 c \sum_{l=0}^{R_{k}-1} \exp \left(-\frac{\epsilon^{2}\left(1-\rho h_{n_{k}, l}\right) \log _{2} n_{k}}{8 c^{2}(\rho-1)^{2}} \Psi\left(\frac{\epsilon\left(1-\rho h_{n_{k}, l}\right) \sqrt{2 \log _{2} n_{k}}}{2 c \sqrt{n_{k} \rho h_{n_{k}, l}}}\right)\right) \\
&6) \quad \leq 2 c R_{k} \exp \left(-\frac{\epsilon^{2}\left(1-\rho h_{\left.n_{k}, l\right) \log _{2} n_{k}}^{16 c^{2}(\rho-1)^{2}}\right) .}{}\right.
\end{aligned}
$$

Here, (3.25) is a consequence of Inequality 2 in Shorack and Wellner (1986, p. 444), with $p=\rho h_{n_{k}, l}, \lambda=\epsilon\left(1-\rho h_{n_{k}, l}\right)\left(2 \rho h_{n_{k}, l} \log _{2} n_{k}\right)^{1 / 2} / 4 c(\rho-1)$. Recalling (3.23), we see that (3.26) holds for all large k, as $\Psi(u) \rightarrow 1$ when $u \rightarrow 0$. Now choosing $\rho>1$ small enough leads to he summability of $\left(\mathbb{P}_{4, k}\right)_{k \geq 1}$, which concludes the proof of Theorem $1 . \square$

Remark: If we had replaced the limit set $\sqrt{2} \mathcal{S}$ by \mathcal{S} in Theorem 1, then (3.16) would become

$$
\mathbb{P}_{1, k} \leq\left(R_{k}+1\right) \exp \left(-\left(1+\alpha_{1}\right) \log _{2} n_{k}\right)
$$

Hence, we would be able to conclude that $\mathbb{P}_{1, k}$ is summable if the cardinality $R_{k}+1$ of the grids were smaller than $\left(\log n_{k}\right)^{\beta}$ for any $\beta>0$. When constructing the $h_{n_{k}, l}$ as in (3.13), the just mentioned condition is violated as soon as \mathfrak{h}_{n} and h_{n} have "really" different rates of convergence to zero (typically when $\mathfrak{h}_{n}=h^{-\beta_{1}}<n^{-\beta_{2}}$ with $0<\beta_{2}<\beta_{1}<1$). It seems however impossible to reduce the cardinality $R_{k}+1$ of our grids, since the oscillations between two consecutive $h_{n_{k}, l}$ become hardly controllable and hence the corresponding probabilities $\mathbb{P}_{2, k}$ might not be summable. One could expect some improvements of this proof, since the RHS of (3.16) is crudely obtained, but this turns out to be non trivial, as Proposition 3.2 would have to be improved to more accurate large deviation rates for the $\mathcal{D}_{n_{k}, h_{n_{k}}, t, t}, 0 \leq$ $l \leq R_{k}$. Another possibility would be to "poissonize" the $\mathcal{D}_{n, h, t}$ and then make use of strong approximation of a centred Poisson process by a Wiener process W (see Komlòs et al., 1977), which would reduce the problem to studying the summability of

$$
\begin{equation*}
\mathbb{P}_{1, k}^{W}:=\mathbb{P}\left(\exists \rho \in\left(\frac{\mathfrak{h}_{n_{k}}}{h_{n_{k-1}}}, 1\right), \rho^{-1 / 2} W(\rho \cdot) \notin\left(2 \log _{2} n_{k}\right)^{1 / 2}\left(\mathcal{S}+\epsilon \mathcal{B}_{0}\right)\right) \tag{3.27}
\end{equation*}
$$

and then try to make use of the isoperimetric properties of a Gaussian measures (here \mathcal{B}_{0} denotes the unit ball of $B([0,1])$). This however fails to work by making brute use of the isoperimetric inequality, as long as $\mathfrak{h}_{n_{k}} / h_{n_{k-1}}$ is not negligible with respect to $\log _{2} n_{k}$ as $k \rightarrow \infty$. We hope however, that (3.27) may be better controlled and we thus leave an open question to specialists in Gaussian measures.
4. Proof of Theorem 2. To avoid lengthy notations, we shall prove Theorem 2 only with $k=2$ with no loss of generality. The key of our proof of Theorem 2 is the following lemma.

Lemma 4.1. Under the assumptions of Theorem 2, for any $p \geq 1,0<s_{1}^{(1)}<$ $\ldots<s_{p}^{(1)}<1$ and $0<s_{1}^{(2)}<\ldots<s_{p}^{(2)}<1$, the sequence of $\mathbb{R}^{2 p}$-valued random vectors
$X_{n}:=\left(\frac{\mathcal{D}_{n, h_{n, 1}, t}\left(s_{1}^{(1)}\right)}{\left(2 h_{n, 1} \log _{2} n\right)^{1 / 2}}, \ldots, \frac{\mathcal{D}_{n, h_{n, 1}, t}\left(s_{p}^{(1)}\right)}{\left(2 h_{n, 1} \log _{2} n\right)^{1 / 2}}, \frac{\mathcal{D}_{n, h_{n, 2}, t}\left(s_{1}^{(2)}\right)}{\left(2 h_{n, 2} \log _{2} n\right)^{1 / 2}}, \ldots, \frac{\mathcal{D}_{n, h_{n, 2}, t}\left(s_{p}^{(2)}\right)}{\left(2 h_{n, 2} \log _{2} n\right)^{1 / 2}}\right)$
satisfies the large deviation principle for the sequence $\left(\log _{2} n\right)^{-1}$ and the following rate function (writing $s_{0}^{(1)}=s_{0}^{(2)}=0$).

$$
\begin{align*}
& \bar{J}_{s_{1}^{(1)}, \ldots, s_{p}^{(1)}, s_{1}^{(2)}, \ldots, s_{p}^{(2)}}(x):=\sum_{i=1}^{p}\left(s_{i+1}^{(1)}-s_{i}^{(1)}\right)\left(\frac{x_{i+1}^{(1)}-x_{i}^{(1)}}{s_{i+1}^{(1)}-s_{i}^{(1)}}\right)^{2}+\left(s_{i+1}^{(2)}-s_{i}^{(2)}\right)\left(\frac{x_{i+1}^{(2)}-x_{i}^{(2)}}{s_{i+1}^{(2)}-s_{i}^{(2)}}\right)^{2}, \\
& (4.1) \quad x=x_{1}^{(1)}, \ldots, x_{p}^{(1)}, x_{1}^{(2)}, \ldots, x_{p}^{(2)} \in(0,1)^{2 p} . \tag{4.1}
\end{align*}
$$

Proof of Lemma 4.1.

The proof follows the same lines as the proof of Lemma 3.1. Choose $\lambda:=$ $\left(\lambda_{1}^{(1)}, \ldots, \lambda_{p}^{(1)}, \lambda_{1}^{(2)}, \ldots, \lambda_{p}^{(2)}\right) \in \mathbb{R}^{2 p}$ arbitrarily and set (recall that U_{1} is uniform on $[0,1]$).

$$
\begin{aligned}
& X_{n, 1}:=\sum_{j=1}^{p} \lambda_{j}^{(1)}\left(1_{\left[t, t+h_{n, 1} s_{j}^{(1)}\right]}\left(U_{1}\right)-h_{n, 1} s_{j}^{(1)}\right), \\
& X_{n, 2}:=\sum_{j=1}^{p} \lambda_{j}^{(2)}\left(1_{\left[t, t+h_{n, 2} s_{j}^{(2)}\right]}\left(U_{1}\right)-h_{n, 2} s_{j}^{(2)}\right) .
\end{aligned}
$$

By independence we have

$$
\begin{aligned}
& \left(\log _{2} n\right)^{-1} \log \left(\mathbb{E}\left(\exp \left(\log _{2} n<\lambda, X_{n}>\right)\right)\right) \\
= & \frac{n}{\log _{2} n} \log \left(\mathbb{E}\left(\exp \left(r_{n, 1} X_{n, 1}+r_{n, 2} X_{n, 2}\right)\right)\right),
\end{aligned}
$$

with $r_{n, 1}:=\sqrt{\log _{2} n / 2 n h_{n, 1}}$ and $r_{n, 2}:=\sqrt{\log _{2} n / 2 n h_{n, 2}}$. As $X_{n, 1}\left(\right.$ resp $\left.X_{n, 2}\right)$ is centered and almost surely bounded by $2 p \max _{j=1, \ldots, 2 p}\left|\lambda_{j}\right|$, the following Taylor expansion is valid by the dominated convergence theorem (here $\lim _{|a|,|b| \rightarrow 0} \varepsilon(a, b)=0$):

$$
\begin{aligned}
& \log \left(\mathbb{E}\left(\exp \left(r_{n, 1} X_{n, 1}+r_{n, 2} X_{n, 2}\right)\right)\right) \\
= & \frac{1}{2}\left(r_{n, 1}^{2} \operatorname{Var}\left(X_{n, 1}\right)+r_{n, 2}^{2} \operatorname{Var}\left(X_{n, 2}\right)+2 r_{n, 1} r_{n, 2} \operatorname{Cov}\left(X_{n, 1}, X_{n, 2}\right)\right)\left(1+\varepsilon\left(r_{n, 1}, r_{n, 2}\right)\right)
\end{aligned}
$$

Now, writing $\lambda_{1}:=\left(\lambda_{1}^{(1)}, \ldots, \lambda_{p}^{(1)}\right)$ and $\lambda_{2}:=\left(\lambda_{1}^{(2)}, \ldots, \lambda_{p}^{(2)}\right)$ we can write $\operatorname{Var}\left(X_{n, 1}\right)=$ $\lambda_{1}^{\prime} \Sigma_{n}^{(1)} \lambda_{1}$ and $\operatorname{Var}\left(X_{n, 2}\right)=\lambda_{2}^{\prime} \Sigma_{n}^{(2)} \lambda_{2}$, where

$$
\begin{aligned}
& \Sigma_{n}^{(1)}(i, j):=h_{n, 1} \min \left(s_{i}^{(1)}, s_{j}^{(1)}\right)-h_{n, 1}^{2} s_{i}^{(1)} s_{j}^{(1)}, \text { and } \\
& \Sigma_{n}^{(2)}(i, j):=h_{n, 2} \min \left(s_{i}^{(2)}, s_{j}^{(2)}\right)-h_{n, 2}^{2} s_{i}^{(2)} s_{j}^{(2)} .
\end{aligned}
$$

Hence, setting

$$
\Sigma^{(1)}(i, j):=\min \left(s_{i}^{(1)}, s_{j}^{(1)}\right) \text { and } \Sigma^{(2)}(i, j):=\min \left(s_{i}^{(2)}, s_{j}^{(2)}\right)
$$

we obtain

$$
\begin{equation*}
\left(r_{n, 1}^{2} \operatorname{Var}\left(X_{n, 1}\right)+r_{n, 2}^{2} \operatorname{Var}\left(X_{n, 2}\right)\right)=\frac{\log _{2} n}{2 n}\left(\lambda_{1}^{\prime} \Sigma^{(1)} \lambda_{1}+\lambda_{2}^{\prime} \Sigma^{(2)} \lambda_{2}\right)(1+o(1)) \tag{4.2}
\end{equation*}
$$

In a similar way, we can write $\operatorname{Cov}\left(X_{n, 1}, X_{n, 2}\right)=\lambda_{1}^{\prime} \Sigma_{n} \lambda_{2}$, where $\Sigma_{n}(i, j):=$ $\min \left(h_{n, 1} s_{i}^{(1)}, h_{n, 2} s_{j}^{(2)}\right)-h_{n, 1} h_{n, 2} s_{i}^{(1)} s_{j}^{(2)}$. Now recalling that $h_{n, 1} / h_{n, 2} \rightarrow 0$ we have $\Sigma_{n}(i, j)=h_{n, 1} s_{i}^{(1)}\left(1-s_{j}^{(2)} h_{n, 2}\right)$ for all large n, whence

$$
\begin{equation*}
\left|r_{n, 1} r_{n, 2} \operatorname{Cov}\left(X_{n, 1}, X_{n, 2}\right)\right|=\frac{\log _{2} n}{n} \sqrt{\frac{h_{n, 1}}{h_{n, 2}}}(1+o(1))=o\left(\frac{\log _{2} n}{n}\right) \tag{4.3}
\end{equation*}
$$

Combining (4.2) and (4.3) we get

$$
\lim _{n \rightarrow \infty}\left(\log _{2} n\right)^{-1} \log \left(\mathbb{E}\left(\exp \left(\log _{2} n<\lambda, X_{n}>\right)\right)\right)=\frac{1}{4}\left(\lambda_{1}^{\prime} \Sigma^{(1)} \lambda_{1}+\lambda_{2}^{\prime} \Sigma^{(2)} \lambda_{2}\right)
$$

Then applying Proposition 3.3 leads to the claimed result.
We shall now show that Lemma 4.1 is sufficient to infer a large deviation principle for the couples of processes $\left(2 h_{n, 1} \log _{2} n\right)^{-1 / 2} \mathcal{D}_{n, h_{n, 1}, t}$ and $\left(2 h_{n, 2} \log _{2} n\right)^{-1 / 2} \mathcal{D}_{n, h_{n, 2}, t}$. Consider the following processes on $[0,2]$ that are obtained by concatenation of $\left(2 h_{n, 1} \log _{2} n\right)^{-1 / 2} \mathcal{D}_{n, h_{n, 1}, t}$ with $\left(2 h_{n, 2} \log _{2} n\right)^{-1 / 2} \mathcal{D}_{n, h_{n, 2}, t}$:

$$
\widetilde{\mathcal{D}_{n}}(s):= \begin{cases}\frac{\mathcal{D}_{n, h_{n, 1}, t}(s)}{\left(2 h_{n, 1} \log _{2} n\right)^{1 / 2}}, & \text { when } 0 \leq \mathrm{s} \leq 1 \\ \frac{\mathcal{D}_{n, h_{n, 2}, t}(s-1)}{\left(2 h_{n, 2} \log _{2} n\right)^{1 / 2}}, & \text { when } 1<\mathrm{s} \leq 2\end{cases}
$$

Combining Lemma 4.1 with Lemma 3.2 we conclude that conditions of Proposition 3.1 are fulfilled, and thus $\widetilde{\mathcal{D}}_{n}$ satisfies the large deviation principle for $\epsilon_{n}:=$
$\left(\log _{2} n\right)^{-1}$ and for the following rate function:

$$
\begin{aligned}
& \bar{J}(g) \\
: & \sup \left\{\sum_{j=0}^{p}\left(s_{j+1}^{(1)}-s_{j}^{(1)}\right)\left(\frac{g\left(s_{j+1}^{(1)}\right)-g\left(s_{j}^{(1)}\right)}{s_{j+1}^{(1)}-s_{j}^{(1)}}\right)^{2}+\left(s_{j+1}^{(2)}-s_{j}^{(2)}\right)\left(\frac{g\left(1+s_{j+1}^{(2)}\right)-g\left(1+s_{j}^{(2)}\right)}{s_{j+1}^{(2)}-s_{j}^{(2)}}\right)^{2},\right. \\
& \left.p \geq 1,0<s_{1}^{(1)}<\ldots<s_{p}^{(1)}<1<1+s_{1}^{(2)}<\ldots<1+s_{p}^{(2)}<2\right\} \\
= & \left\|g^{(1)}\right\|_{H}^{2}+\left\|g^{(2)}\right\|_{H}^{(2)},
\end{aligned}
$$

where $g^{(1)}(s):=g(s), g^{(2)}(s):=g(1+s), s \in[0,1]$. The remainder of the proof of Theorem 2 is a routine use of usual techniques in local empirical processes theory (refer, e.g., to Deheuvels and Mason (1990)). We omit details for sake of briefness.
5. Proof of Theorem 3. We shall proceed in three steps. Recall that $a_{n}(h):=$ $\left(h \log _{2} n / n\right)^{1 / 2}, b_{n}(h):=\log (n h), d_{n}(h):=2 \log _{2} n+b_{n}(h), r_{n}(h):=\left(a_{n}(h) d_{n}(h)\right)^{1 / 2}$ and $R_{n}(h):=\left\|\mathcal{D}_{n, h, 0}+\mathcal{D}_{n, h, 0}^{\prime}\right\|$.

Lemma 5.1. Under the assumptions of Theorem 1, we have almost surely

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} \frac{\left\|F_{n}^{\leftarrow}(h \cdot)\right\|}{h}=1 . \tag{5.1}
\end{equation*}
$$

Proof of Lemma 5.1.

First notice that, almost surely, for each $\rho>1, h>0, n \geq 1$,

$$
F_{n}^{\leftarrow}(h) \leq \rho h \frac{\mathcal{D}_{n, \rho h, 0}}{\left(2 h \log _{2} n\right)^{1 / 2}}+(\rho-1)\left(\frac{n h}{2 \log _{2} n}\right)^{1 / 2} \geq 0
$$

Now, for fixed $\rho>1$ we have $(\rho-1) \inf \left\{n h / \log _{2} n, \mathfrak{h}_{n} \leq h \leq h_{n}\right\} \rightarrow \infty$. Moreover, by a straightforward use of Theorem 1 and (1.6),

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \inf _{\mathfrak{h}_{n} \leq h \leq h_{n}} \frac{\mathcal{D}_{n, \rho h, 0}}{\left(2 h \log _{2} n\right)^{1 / 2}} \geq-(2 \rho)^{1 / 2} \text { almost surely. } \tag{5.2}
\end{equation*}
$$

This shows that (5.1) holds with \leq instead of $=$, while the converse inequality trivially holds by Kiefer (1972), Theorem 6

Lemma 5.2. Under the assumptions of Theorem 1 we have almost surely

$$
\limsup _{n \rightarrow \infty} \sup _{\mathrm{h}_{n} \leq h \leq h_{n}} \frac{\left\|\mathcal{D}_{n, h, 0}^{\prime}\right\|}{\left(2 h \log _{2} n\right)^{1 / 2}} \leq 2^{1 / 2}
$$

Proof of Lemma 5.2.

From Inequality (2.23) in Einmahl and Mason (1988) we have, for each $n \geq 1$ and $h>0$,

$$
\frac{\left\|\mathcal{D}_{n, h, 0}^{\prime}\right\|}{\left(2 h \log _{2} n\right)^{1 / 2}} \leq \frac{\left\|\mathcal{D}_{n, F_{n}^{-}(h), 0}\right\|}{\left(2 h \log _{2} n\right)^{1 / 2}}+\frac{1}{\left(2 n h \log _{2} n\right)^{1 / 2}}
$$

The second term can be drop since $n \mathfrak{h}_{n} \rightarrow \infty$. Fix $\rho>0$. By Lemma 5.1 we have almost surely, for all large n and for all $\mathfrak{h}_{n} \leq h \leq h_{n}$,

$$
\frac{\left\|\mathcal{D}_{n, F_{n}^{-}(h), 0}\right\|}{\left(2 h \log _{2} n\right)^{1 / 2}} \leq \rho^{1 / 2} \frac{\left\|\mathcal{D}_{n, \rho h, 0}\right\|}{\left(2 \rho h \log _{2} n\right)^{1 / 2}}
$$

from where we readily obtain, by Theorem 1 ,

$$
\limsup _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} \frac{n^{-1 / 2}\left\|\mathcal{D}_{n, h, 0}^{\prime}\right\|}{\left(2 h \log _{2} n\right)^{1 / 2}} \leq(2 \rho)^{1 / 2} \text { almost surely. }
$$

As $\rho>1$ was arbitrary, Lemma 5.2 is proved.
The expression ω_{n} appearing in the next lemma has been defined in (3.7).

Lemma 5.3. Under the assumptions of Theorem 1, and given $\eta>0$, we have almost surely

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{\mathfrak{h}_{n} \leq h \leq h_{n}} \frac{\omega_{n}\left(\eta a_{n}(h), h\right)}{r_{n}(h)} \leq \eta^{1 / 2} . \tag{5.3}
\end{equation*}
$$

Proof of Lemma 5.3.

This proof is largely inspired from the proof of Lemma 6 in Einmahl and Mason (1988). Fix $\epsilon>0$ and consider the sequence (n_{k}) the sets N_{k} and the grids $h_{n_{k}, l}, 0 \leq$ $l \leq R_{k}$ as in $\S 3.2$. Also define, for each $k \geq 5$ and $l \leq R_{k}$,

$$
\begin{aligned}
& a_{k, l}:=\eta\left(\rho h_{n_{k}, l} \log _{2} n_{k} / n_{k-1}\right)^{1 / 2} \text { and } \\
& r_{k, l}:=\left(a_{k, l}\left(2 \log _{2} n_{k}+\log \left(n_{k} h_{n_{k}, l}\right)\right)\right)^{1 / 2}
\end{aligned}
$$

As $a_{k, l} \geq a_{n}(h)$ for each $n \in N_{k}$ and $h \in\left[h_{n_{k}, l}, \rho h_{n_{k}, l}\right.$, we have

$$
\begin{align*}
& \mathbb{P}\left(\bigcup_{n \in N_{k}} \bigcup_{h_{n} \leq h \leq h_{n}} \frac{\omega_{n}\left(\eta a_{n}(h), h\right)}{r_{n}(h)} \geq \eta^{1 / 2}(1+3 \epsilon)\right) \\
\leq & \mathbb{P}\left(\bigcup_{l=0}^{R_{k}-1} \bigcup_{n \in N_{k}} \bigcup_{h_{n_{k}, l} \leq h \leq \rho h_{n_{k}, l}} \frac{\omega_{n}\left(a_{k, l}, \rho h_{n_{k}, l}\right)}{r_{n}(h)}>\eta^{1 / 2}(1+3 \epsilon)\right) \\
\leq & \mathbb{P}\left(\bigcup_{l=0}^{R_{k}-1} \bigcup_{n \in N_{k}} \frac{\omega_{n}\left(a_{k, l}, \rho h_{n_{k}, l}\right)}{r_{k, l}}>\eta^{1 / 2}(1+2 \epsilon)\right) \\
= & : \overline{\mathbb{P}}_{k}, \tag{5.5}
\end{align*}
$$

where (5.4) holds for any choice of $\rho>1$ small enough, ultimately as $k \rightarrow \infty$, which is a consequence of the easily checked fact that

$$
\begin{equation*}
\lim _{\rho \rightarrow 1} \lim _{k \rightarrow \infty} \max _{n \in N_{k}} \max _{l \leq R_{k}-1} \sup _{h \in\left[h_{n_{k}}, l, \rho h_{\left.n_{k}, l\right]}\right]}\left|\frac{r_{n}(h)}{r_{k, l}}-1\right|=0 . \tag{5.6}
\end{equation*}
$$

By Bonferroni's inequality we can write

$$
\begin{align*}
\overline{\mathbb{P}}_{k} & \leq \sum_{l=0}^{R_{k}-1} \mathbb{P}\left(\bigcup_{n \in N_{k}} \frac{\omega_{n}\left(a_{k, l}, \rho h_{n_{k}, l}\right)}{r_{k, l}}>\eta^{1 / 2}(1+2 \epsilon)\right) \\
& =: \sum_{l=0}^{R_{k}-1} \overline{\mathbb{P}}_{k, l} . \tag{5.7}
\end{align*}
$$

Some straightforward verifications show that the blocking arguments of Inequality 2 in Einmahl and Mason (1988) can be used simultaneously to each $\overline{\mathbb{P}}_{k, l}$, for all large k and hence, by Fact 1 ,

$$
\begin{aligned}
\overline{\mathbb{P}}_{k, l} & \leq 2 \mathbb{P}\left(\omega_{n_{k}}\left(a_{k, l}, \rho h_{n_{k}, l}\right) \geq \eta^{1 / 2} r_{k, l}(1+\epsilon)\right) \\
& \leq 2 K\left(\frac{\epsilon}{2}\right) \frac{\rho h_{n_{k}, l}}{a_{k, l}} \exp \left(-\frac{\left(1-\frac{\epsilon}{2}\right)(1+\epsilon)^{2}}{2 a_{k, l}} \eta r_{k, l}^{2} \Psi\left(\Delta_{k, l}\right)\right)
\end{aligned}
$$

where $\Delta_{k, l}:=(1+\epsilon) \eta^{1 / 2} r_{k, l} n_{k}^{-1 / 2} a_{k, l}^{-1}$ converge to 0 uniformly in $l \leq R_{k}-1$ when $k \rightarrow \infty$. Since Ψ (given in Fact 1) satisfies $\Psi(u) \rightarrow 1$ as $u \rightarrow 0$ we obtain, for all large k and for each $l \leq R_{k}-1$,

$$
\begin{aligned}
\overline{\mathbb{P}}_{k, l} & \leq 2 K\left(\frac{\epsilon}{2}\right) \sqrt{\frac{n_{k-1} \rho h_{n_{k}, l}}{\eta^{2} \log _{2} n_{k}}} \exp \left(-\frac{\left(1-\frac{\epsilon}{2}\right)^{2}(1+\epsilon)^{2}}{2}\left(2 \log _{2} n_{k}+\log \left(n_{k} \rho h_{n_{k}, l}\right)\right)\right) \\
& \leq 2 K\left(\frac{\epsilon}{2}\right)\left(\frac{\eta^{2}}{\rho}\right)^{\epsilon / 8}\left(n_{k-1} h_{n_{k}, l}\right)^{-\epsilon / 8}\left(\log _{2} n_{k}\right)^{-1 / 2}\left(\log n_{k-1}\right)^{-1-\epsilon / 4},
\end{aligned}
$$

for all large k and for each $0 \leq l \leq R_{k}-1$, which entails by (5.7)

$$
\begin{aligned}
\overline{\mathbb{P}}_{1, k} & \leq 2 K\left(\frac{\epsilon}{2}\right)\left(\frac{\eta^{2}}{\rho}\right)^{\epsilon / 8}\left(\log _{2} n_{k}\right)^{-1 / 2}\left(\log n_{k-1}\right)^{-1-\epsilon / 4} n_{k-1}^{-\epsilon / 8} h_{n_{k}}^{-\epsilon / 8} \sum_{l=0}^{R_{k}-1} \rho^{-l \epsilon / 8} \\
& \leq 2 K\left(\frac{\epsilon}{2}\right)\left(\frac{\eta^{2}}{\rho}\right)^{\epsilon / 8} \frac{1}{1-\rho^{-\epsilon / 8}}\left(\log _{2} n_{k}\right)^{-1 / 2}\left(\log n_{k-1}\right)^{-1-\epsilon / 8}\left(n_{k-1} h_{n_{k}}\right)^{-\epsilon / 8},
\end{aligned}
$$

from where $\overline{\mathbb{P}}_{k}$ is summable in k.
The proof of Theorem 3 is concluded as follows. First, it is well known that, almost surely,

$$
\begin{equation*}
\left\|\alpha_{n}+\beta_{n}+\left(\alpha_{n}\left(F_{n}^{\leftarrow}\right)-\alpha_{n}\right)\right\|=n^{-1 / 2} \tag{5.8}
\end{equation*}
$$

whence, almost surely, for all $n \geq 1$ and $h>0$,

$$
\begin{equation*}
R_{n}(h) \leq \sup _{0<s<h}\left\|\alpha_{n}\left(s+n^{-1 / 2} \beta_{n}(s)\right)-\alpha_{n}(s)\right\|+n^{-1 / 2} \tag{5.9}
\end{equation*}
$$

from where
$r_{n}(h)^{-1} R_{n}(h) \leq r_{n}(h)^{-1} \omega_{n}\left(n^{-1 / 2}\left\|\mathcal{D}_{n, h, 0}\right\|, h\right)+\left(n h \log _{2} n\right)^{-1 / 4}\left(2 \log _{2} n+\log (n h)\right)^{-1 / 2}$,
which concludes the proof by combining lemmas 5.2 and 5.3 (with the choice of $\eta=$ 2), as the second term of the RHS of 5.10 converges to 0 uniformly in $\mathfrak{h}_{n} \leq h \leq h_{n}$ as $n \rightarrow \infty$.

REFERENCES

[1] Arcones, M. (2003). The large deviation principle of stochastic processes, Part 1. Theory Probab. Appl. 47, 4, 567-583.
[2] Deheuvels, P. (1997). Strong laws for local quantile processes. Ann. Probab. 25, 2007-20054.
[3] Deheuvels, P. (2000). Strong approximation of quantile process by iterated Kiefer processes. Ann. Probab. 28, 2, 909-945.
[4] Deheuvels, P., Einmahl, U., and Mason, D. (1999). Asymptotic independence of the local empirical process indexed by functions. In High dimensional probability, II. 183-205.
[5] Deheuvels, P. and Mason, D. (1990). Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes. Ann. Probab. 18, 1693-1722.
[6] Einmahl, J. and Mason, D. (1988). Strong limit theorems for weighted quantile processes. Ann. Probab. 16, 4, 1626.
[7] Einmahl, U. and Mason, D. (1997). Gaussian approximation of local empirical processes indexed by functions. Probab. Theory Related Fields 107, 3, 283-311.
[8] Einmahl, U. and Mason, D. (2003). Uniform in bandwidth consistency of variable bandwidth kernel estimators. Preprint.
[9] Ellis, R. (1984). Large deviations for a general class of random vectors. Ann. Probab. 12, 1-12.
[10] Kiefer, J. (1972). Iterated logarithm analogues for sample quantiles when $p_{n} \downarrow 0$. In Proc. Sixth Berkeley Symp. Statist. Probab., B. Univ. California Press, Ed.Vol. 1. . 227-244.
[11] Komlós, J., Major, P., and Tusnády, G. (1977). An approximation of partial sums of independent r.v.'s and the sample d.f.II. Z. Wahrsch. Verv. Gebiete 34, 33-58.
[12] Latala, R. (1993). On a maximal inequality for sums of independent identically distributed random variables. Warsaw University Print.
[13] Mason, D. (1988). A strong invariance principle for the tail empirical process. Ann. Inst. H. Poincar Probab. Statist. 24, 491-506.
[14] MASON, D. (2004). A uniform functional law of the iterated logarithm for the local empirical process. Ann. Probab. 32, 2, 1391-1418.
[15] Montgommery-Smith,J.S. (1993). Comparison of sums of identically distributed random vectors. Probab. Math. Statist. 14, 281-285.
[16] Van der Vaart, A. and Wellner, J. (1996). Weak convergence and empirical processes. Springer.
[17] Varron, D. (2005). A bandwidth-uniform functional limit law for the increments of the empirical process. Preprint.

