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SOME UNIFORM IN BANDWIDTH FUNCTIONAL RESULTS

FOR THE TAIL UNIFORM EMPIRICAL AND QUANTILE

PROCESSES

Institute of Statistics, Catholic University of Louvain

By Davit Varron

For fixed t Ç, [0,1) and h > 0, consider the local uniforrn empirical
proeess

t>n,h,t(s) := n"1/2 []T l[t,t+hs}(Ui) - , « 6 [0,1],L
i=i

where the U, are independent and uniformly distributed on [0,1], We inves-

tigate the functional limit behaviour of T>n,k,t uniformly in Ijn < h < hn
when ntynf log log n —* oo and hn —> 0.

1. Introduction. Let (£/»)»>! be an independent, identically distributed (i.i.d.)

sequence of random variables that are uniformly distributed on [0,1]. Define the

empirical distribution function based on (U\,..., Un) by Fn(t) := n_1}j{l < i <

n, Ui < t}, t € [0,1] and dénoté by F^~(t) the left-continuous inverse of Fn, namely

F£~(t) := inf{s > 0, Fn(s) > t}. We also define the empirical (resp. quantile) pro-

cess by an(t) := Jn(Fn(t) — t),t € [0,1] (resp. fin(t) := s/n(F£~ (t) - t), te [0,1]).
The framework of this paper is the almost sure behaviour of the local empirical
and quantile processes. Namely, given t e [0,1) we focus on studying the following

processes, as n —* oo and h —> 0.

(I l) F>n,h,t(s) :=an(t + hs) - an(t), s € [0,1],

(1.2) 'D'n,h,t (S) -=0n{t + hs) -0n{t), S G [0, 1],

Mason (1988) was the first to establish a functional law of the iterated logarithm for

the local empirical proeess (see also Einmahl and Mason (1997) for a generalization
AMS 2000 subject classifications: Primary 62G20, 62G30
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of this resuit to empirical processes indexed by functions). To cite this resuit, we

need to introduce some further notations first. Write log2(u) := log(log(« V3)). We

say that a sequence (hn)n>i of strictly positive constants satisfies the local strong

invariance conditions when, ultimately as n —► oo,

(1.3) hn i 0, nhn î oo, nhn/\og2n —* oo.

Given a sequence (xn)n>i of éléments of a metric space (E, d), we say that xn K
when K is non void and coincides with the set of ail cluster points of (xn)n>i • In our

framework, (E, d) is the space jB([0, 1]) of ail real bounded CADLAG trajectories
on [0,1], endowed with the usual sup norm, namely || g ||:= sup{| g(s) j, s G [0,1]}.
Consider the space AC{0,1] of ail absolutely continuous functions on [0,1]. For any

g G AC[0,1], we define the usually called Hilbertian norm of g as

i

(1.4) \\ g\\2H:= Jg2(x)dx,
o

where g is any version of the dérivative of g with respect to the Lebesgue measure.

The usually called Strassen bail can be defined as follows:

(1.5) 5 := {9 6 ^C([0,1]), 9(0) = 0, || g ||„< l}.
As a corollary of a strong approximation resuit, Mason (1988) showed that, given
a sequence (hn)n>i fulfilling (1.3) and given t G [0,1), we hâve, almost surely

(1.6)
Vn,hn,t

(2K log2 n)1/2

In the particular case where t = 0, Einmahl and Mason (1988) showed that V'n hn t

also satisfies (1.6). They showed that resuit by making use of a local Bahadur Kiefer

représentation (see their Theorem 5). The almost sure iimit behavior of V'n hn t

when t G (0,1) has been investigated by Deheuvels (1997), who showed that the
above mentioned process may obey functiona! Iimit laws that are different from

(1.6). The aim of the présent paper is the following: given two sequences f)n < hn
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fulfilling (1.3), does (1.6) still hold uniformly in ï)n < h < hn? Namely, do we hâve
almost surely

(1.7)

(1.8)

lim sup
n-*°° *)n<h<hn

\fg € S, lira inf sup
n~~*°° i)n<h<hn

inf
g&S

T^n,h,t
(2h log2 n)1/2
T^n,h,t

(2/ilog2 n)1/2 ^

9 =0,

= 0?

The remainder of this paper is organised as follows. In §2, we State our main re-

sults on T>n<h,t- We then show how this resuits lead to a local Bahadur-Kiefer type

représentation that holds uniformly in h. The proofs of our main resuits follow in

§3, 4 and 5.

2. Mains resuits. Our first resuit is a weaker form of assertion (1.7).

THEOREM 1. Let (hn)n>i and (l)n)n>i be two sequences satisfying (1.3) as well
as f)n < \hn. Then, given t G (0,1), we hâve, almost surely:

(2.1) lim sup inf
n"*°° Iln<h<hn g€V2S

T^n,h,t
(2h log2 n)1/2

0.

The proof of Theorem 1 is written in §3.

Remark; Condition f)n < hn/2 is just technical, as this resuit is really interesting

when (hn)n>i and (hn)n>i are sequences that tend to 0 at different rates (typically
n~ai and n~a2, 0 < ai < 02 < 1). Clearly, Theorem 1 seems unsatisfactory, as

one would expect the lirait set to be S instead of \/2<S. As it will be pointed out in

the proof of Theorem 1 (see §3.2), it is possible to prove (1.7) when

(2.2) V/3 > 0, lim log(/in/hn)/(logn)^ = 0.
71—♦OC

However, (2.2) is a very restrictive condition, imposing (/in)n>i and (f)n)«>i to hâve

rates of convergence to zéro that are very close one to each other. In §3, we shall try

to point out the main difficulty that imposes us to weaken (1.7) to (2.1). Showing
that (1.7) is true or false without imposing (2.2) remains an open problem.
The second step of our investigation is to détermine the validity of (1.8). This
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A local Bahadur-Kiefer représentation

A conséquence of Theorem 1 is the following local Bahadur-Kiefer représentation,

whieh is very largely inspired from Einmahl and Mason (1988, Theorem 5). For
0 < h < 1 and n > 1 we set an(h) := (h log2 n/n)1/2, bn(h) := log(nh), dn(h) :=

21og2n + bn(h), rn(h) := (an{h)dn{h))l/2 and

Rn{h) ^n,h,0 + 'R'nJi,0

Theorem 3. Under the conditions of Theorem 1, with t = 0, we hâve, almost

surely

(2,7) limsup sup rn(h) lRn(h) < 21/2.
n—oc t)n<h<hn

The proof of Theorem 3 is provided in §5.

Remark: In view of Theorem 5 of Einmahl and Mason (1988), Theorem 3 seems to

be non optimal since a factor 21/4 can be drop when hn = i)n. This is a conséquence

of the fact that we were only able to prove (2.1) instead of (1.7).

3. Proof of Theorem 1. Our proof is divided into two subsections. In §3.1,
we establish a large déviation resuit which holds uniformly in ()„ < /i < hn. Then
we make use of that (uniform) large déviation principle to prove Theorem 1 in §3.2.

3.1. A unif07771 large déviation principle.

3.1.1. Définitions. Large déviation results are commonly used when proving
functional laws of the iterated logarithm such as (1.6). As a uniformity in l)n <
h < hn appears in Theorem 1, we shall make use of a large déviation principle
that holds uniformly in h. This tool was first used by Mason (2004). From now on,

(en,t)n>i, i<pn wdl dénoté a triangular array of strictly positive numbers satisfying

maxi<*<Pn €n,i ~► 0 as n —» oo. We call a rate function in a metric space (B, d) any

positive real function J on E such that, for each a > 0, the set {g € E, J (g) < a}
is a compact set of (E,d).
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DEFINITION 3.1. LeL (E, d) be a metric space and let % be a a-algebra included
in the Borel a-algebra of (E, d). Let (Xnti)n>i, i<Pn be a triangular array of random
variables that are measurable for (E,Tq). We say that (^n,t)n>i, i<pn satisfies the

uniform large déviation principle (JJLDP) for (cn,t)n>i, i<pn> a rate function J and
Tq whenever

1. For each closed set F G 2o we hâve

(3.1) limsupmaxenîj log fp(xn;i G JF1)) < —J(F),
n—*oo i^Pn ^ ^ ' '

2. For each open set O €% we hâve

(3.2) liminf minenijlog fp(xnij G o)) > -J(O).
n—+oQ i<pn ’ \ \ / /

Remark: In this définition, we introduce a sub a-algebra % because we will

consider repeatedly (E, d) as the metric space (J3([0,1], || • ||). As the VUih,t are not
Borel measurable in that space, we shall consider Tq as the a-algebra spawned by the

open balls of (B({0,1], || • ||). We will sometimes take (JF, d) as a finite dimensional
vector space, in which case Tq will dénoté the Borel a-aigebra. Another way to avoid
measurability problems is to consider inner and outer probabilities (see, e.g.,Van
der Vaart and Wellner (1996), Chapter 1).
The next resuit is a conséquence of the work of Arcones (2003).

PROPOSITION 3.1. Let (Xn<i)n> i, i<Pn be a triangular array of random variables
taking values in J3([Û, 1]) and measurable for Tq. Let {en,i)n>î, i<Pn be a triangular
array of strictly positive real numbers. Assume that the following conditions hold:

1. For each p > 1 and (sj,... ,sp) G (0, l)p satisfying Si ^ Sj for each i ^ j,
the triangular array (Xnfi(si),..., Xnji(sp))n>l i<p satisfies the ULDP in
Mp for (cn,i)n>i, i<Pn and a rate function

2. For any r > 0 we hâve

limlimsupraaxlog (p( sup | Xn>i(s') — Xn,i(s) |> r ) ) = -oo.
<510 n—*oo i<Pn ' ' |s—s'|<<5 ' *



Then (Xn,<)n>i,t<Pn satisfies the ULDP in (B([0,1],|| • ||) for (en,i)n>i,i<Pn, %
and the following rate function:

I{g):= sup ISl Sp(g(si),...,g(sp)), g e B([0,1]).
P> 1, (si Sp)€(0,l)F

Now consider the following rate function on B([0,1]) that is known to rule the

large déviation properties of a Wiener process:

Il g II//, when g e AC[0, 1];

oo, when g AC[0,1].
(3.3)

Notice that S = {g G B([0, 1]), g(0) = 0, J(g) < 1}. The main tool that will be
used to achieve our proof of Theorem 1 is the following ULDP.

Proposition 3.2. Let {hn)n>i and (f)„)n>i be two sequences satisfying con-

ditions of Theorem, 1 and let (/in,t)n>i, i<Pn be a triangular array satisfying f)n <

hn,i < hn for each n > 1, i < pn. Then the triangular array

satisfies the ULDP in (B([0,1]),|| • ||) forTç,, the rate function J given in (3.3)
and the (constant in i < pn) triangular array (1/ log2 n)n>i, i<Pn-

Proof of Proposition 3.2: We shall make use of Proposition 3.1, and we hence

hâve to show that conditions 1 and 2 of this proposition are satisfied. This verifi-

cation will be a conséquence of two separate lemmas. The next proposition, which
shall be useful to prove our first lemma, follows directly from the arguments of Ellis

(1984). Here < -, • > dénotés the usual scalar product on Rp.

PROPOSITION 3.3. Let (Xn)i)„>it i<Pn be a triangular array of random vectors

taking values in Rp, and let (en,t)n>i, i<Pn be a triangular array of strictly positive
real numbers. Assume that there exists a positive real function £ (which may take

infinité values) on Rp such that the following conditions are satisfied.
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1. £ is convex and lower serai continuons on W.

2. The définition set D(£) := {A € Rp, £(X) < oo} has an interior that contains

the null vector.

S. £ is différentiable on the interior of D(£) and, for each sequence (An)n>i

converging to a boundary point of D{£) we hâve || W(An) ||rp—^ oo. Here

|j • ||rp dénotés the usual Euclidian norm.

For each A € D(£), we hâve

lim max
n—*oo i<Pn

tn,i log (e( exp (enj < A,Xn>i > ))) - £{X)
5. For each X (£ D{£), we hâve

lim min eni log ( E( exp (en ) < A, Xn < > ) J ) = oo.
n—*oo i<Pn \ V ' ’ 'JJ

Then (ATnij)n>1) *<Pn satisfies the ULDP in Rp for (en,i)n>i, i<pn with the following
rate function:

J (s) := sup < A, s > —£(X), s € Rp.

We now state our first lemma.

Lemma 3.1. Let p > 1 and (s\,... ,sp) € [0, l]p be arbitrary, with «i < S2 <

... < sp. Under the assumptions of Proposition 3.2, the triangular array ofEP-
valued random vectors

( (2^n,i log2 Vl) ! i!< ('sp))')
' / n>l, i<pn

satisfies the ULDP for (en,ï)n> î, i<pn with the following rate function (with sq := 0).

JSl,...,Sp(xi,...,xp) :=^2(si+i ~ Si)(^Ltl—E*\ ? (xi,...,xp) € Rp.
i_o ^ ®*+l J

Proof of Lemma 3.1.

We shall make use of Proposition 3.3. Fix A = (Ai,..., Ap) € Rp and and write
the DHthn i,t as sums of i.i.d. random variables, namely

P n

(3.4) (2hn>i log2 n)“1/2 Aj2>n,hfMlt(*j) = (2nhn>i log2 n)~1/2 Zn,hn,ut>
j~1 k=l
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where
p

^n,hn,i,t ^j{Mt,t+hn.iSj]{^k) ~ ^n,tsj)i k = l, . . . , n.
i=i

These n random variables are i.i.d with mean 0 and variance-covariance matrix

given by hn^X'Un^X, with En,i(J, l') := min(s;, si>)—hniiSi$i'. Now define the matrix

E(M7) := min(s/,Si'). Clearly, as /in^ < /in —> 0 we hâve En)* —> E uniformly in i
as n —» oo. By standard computations we hâve, for each n > 1 and i < pn:

(\og2n)~1 log ^exp ^log2n(2hn<i log2n)“1/2 ^jT>n,hn
(3-5) =\ô^7i bg (EeXP
where rn>i := (log2 n/2nhn^)x^2. Recall that maxj<Pn rnij —♦ 0 as n —> oo, since f)n
satisfies (1.3), and notice that the Z* /i;_ . t are centered and almost surely bounded
by pmaxj=1). .)P | Aj |. This ensures that the following Taylor expansion is valid, for

each n > 1, i <pn (here e dénotés a real function satisfying e(u) —» 0 as u —» 0):
2 *

(3.6) E(«P = 1 +^V(l + eW).
Combining (3.5) and (3.6), we get

lim max
n—*oo i<pn

log log? n

(2hnti log2 n)1/2 E *jVn,hn
j= 1

log2 n
- Ia'SA

4
= 0.

As the function ^(A) := A'(E/4)A obviousiy satisfies conditions of Proposition 3.3,

the proof of Lemma 3.1 is concluded by noticing that
p

__ 2
sup <t,x> —i(t) = x'E~lx = Y{si+1 - ——) .□

' $i+1 —*i'

Our next lemma shows that condition 2 of Proposition 3.1 is fulfilled.

Lemma 3.2. Under the assumptions of Proposition 3.2, we hâve, for each r > 0

lim lim sup max log ( P( sup<5|0 fl—,0c i<Pn N \ |S —

^n,hn,i,t{s) ^n,hn>i,t{s )
(2hn4 log2 n)1/2 >r)) -oo.
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Proof of Lemma 3.2.

Fix r > 0 and introduce a parameter ô > 0 that will be chosen small enough

in the sequel. The proof of this lemma relies on an exponential inequality for the
oscillations of the local empirical process, which is due to Einmahl and Mason

(1988) (see their Inequality 1). For positive numbers a, 6 with a + b < 1, write

(3.7) <*>n(a, b) := sup | an(s 4- s ) - an(s) | .
0<s<b,
0<s'<a

Fact 1 (Einmahl, Mason, 1988). Fix 0 < e < 1/2. There exists K(e) < oo

such that, for any n > 1, A > 0, o > 0, 6 > 0 fulfilling a 4* b < 1 and 0 < a < 1/4,

(3.8) P^a;n(a, b) > < K(£)ba~l exp ^
Here we write ty(u) := 2u“2((l 4- u) log(l 4- u) — u).

Applying (3.8) to b = hUii, a = ôhn>i, e = 1/2 and À = r(2hnti log2 n)1/2 we get,
for ail large n and i <pn (so that hUti < hn < 1/4)

.K(\)p( sup
' |s—s'|<<5

(3.9)

i,t{s) 'Fn,hn<i,t(s )
(2Kyi log2 n)1/2

> r <■

<£ü!

( 7-2 l0®2 *>,,,/ ty/2 log2 n
exp 1 25 H ^ 'sf

( j2 log2n\
exp

45

since 4>(u) —►lasu —► 0, and

since

(3.10)
log2nhm max = 0.

n-»oo i<pn nhU'i

Now taking the logarithm in (3.9) concludes the proof of Lemma 3.2, then lemmas
3.1 and 3.2 in combination with Proposition 3.3 conclude the proof of Proposition

3.2. □

3.2. Proof of Theorem 1. We shall invoke usual blocking arguments along the

following subsequence:

(3.11) nfe := exp ^exp(-(logfc)1/2))j, k>5.



92

Clearly, n* satisfies, as k —» oo,

(3.12) — ♦ 1, log2(nfc) = logfc(l + o(l)).
nk+1

Now define the blocks Nk := ... ,71* — 1} for k > 6. Fix € > 0 and consider
a parameter p > 1 that will be chosen small enough in the sequel. For any k > 5,
consider the following discrétisation of [{)«*>&«*_!]

(3.13) hnkijik. := hnkl, hnkii i=p t)nk, l = 0,..., Rk — 1,

where Rk := [(log(hnfc_1/hn*;))/log(p)] + 1, and [w] dénotés the only integer q

fulfilling q < u < q 4-1. Clearly, as k —» oo, we hâve

(3.14) Rk = 0(lognfc).

Our aim is to show that the following probabilities are summable in k so as the

Borel-Cantelli lemma would complété the proof of Theorem L

(3.15) P, := max sup inf
n<=Nk iJn<h<hn geV2S

Fn h t

(2/ï log2 n)1/2 — ^
Clearly we hâve

Pfc < P( max inf
\o<l<Rk gÇx/2S

^nk,hnk,i,t
(2hTlkJ log2 nk)1/2

-F P ( max max sup
\n€/vfc 0<l<Rk-l hnk,i<h<phnkA

> e

T^n,h,t X>,̂ k font. ,1

(2h log2n)1/2 (2hnkti log2 n^)1/2
> 2e

=: Pi.fc + P2,fc-

To show that P^* is summable, we shall make use of Proposition 3.2. Consider the

following subset of B([0,1]):

F:={/€B([0,1]), inf ||/-s||>E|.g€s/2S >

Since the rate function J given in (3.3) is lower semi continuous on (£([0,1], || • ||),
there exists c*i > 0 satisfying J (F) — 2 + 2a\. Hence, for ail large k we hâve

(3.16) Pi,fc < {Rk + 1) exp ( — (2 + ai)log2nfc).
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Recalling (3.12) and (3.14), we conclude that Pi,* is suramabïe in k. It remains to

show the summability of (P2,fc)fc>i- First notice that

P2 k < P ( niax max sup
\l<Rk~ln€Nk hnktl<h<phnk,i

\friDn>h,t - y/nT>n,hnk,i,t I
{2nkhnk}i\og2nk)1/2 I

+ P( max max sup B(n,h)
\l<Rk-ln€Nk hnk,l<h<phnkii

\/ÏÎT)n,h,t
(2nkphnkti log2 nfc)1/2

(3.17) =: P3ifc + P4,&»

where

(3.18) B{n,h) :
fnfcp/infe,z log2 nk

n G Nk, l < Rk 1? hnk,l <h< phnkft.nh iog2 n

We shall require a maximal inequality due to Montgomery-Smith (1993) (see also

Latala (1993)).

Fact 2 (Montgomery-Smith, Latala, 1993). There exists a constant c> 0 such

that, given a Banach space (E, || • ||) and a finite sequence (Xi)i<i<n of i.i.d.
random variables taking values in (E, d) we hâve, for each À > 0.*

(3.19) max
l<î<n

Applying inequality (3.19), we get

Rk-1

P3,fc <
1=0

max sup
n€jVfe hnk,l<h<phnktl

y/R^n,h,t \/R^n,hnkj,t
(2nkhnkii log2 nfe)1/2

(3.20)
Rk-1

scE
1=0

sup
s/nfV.nk,h,t nk,hnk<i,t

(2nkhnk)i log2nfc)1/2
> e/c

As hnkj < hnk_1 —> 0, each term of (3.20) can be bounded by inequality (3.8),
provided that h1lk_l < 1/4. In inequality (3.8), we repeatedly choose b = hnkj, a =
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hnk,i(p — 1), 6 = 1/2, À = (2hnkyi log2 nk)l/2e/c. Hence, for ail large k we hâve

Rk-1 is< l

r3,* <c £ Mexp ( - ))éï P“1 V 2c2(p-l)2 Vc(p- l)\fnkhnkti' )

(3.21)

(3.22)

K(k
<<= £ 2 exp

<

,=o P-1
C^ (è) £> JU-f/2c(p-l)2

e2 log2 nk
4c2{p — l)2

P ~ 1
Rkk'

Inequality (3.21) is true for ail large k since f (ü) -+ 1 as u -> 0, and since

(3.23) lim max = 0.
k—*oo l<Rk-1 nkhnkj

Inequality (3.22) takes in account the faet that log2n* = logfc(l + o(l)) as k —> oo.

Hence for any choice of 1 < p < 1 + y/e/2c the general terni (3.22) is summable in
k and so are the P3,* (recall (3.14)). Showing that P^* < oo will be done in a

similar way. First notice that, as nk/nk-i —■► 1 and 1 < phnk,i/h < p we hâve

(3.24)

Hence, for ail large k we hâve

lim max max B(h, n) = p1//2 — 1 < 2(p — 1).k-*oo 0<Kfi|,-l neNk ' ~~ '

4,fc max max<P(
\0<l<Rk-l nÇNk
Rk~1 ' V

VriDntphnkti,t
(2nkphnkti log2 nk)1/2 2(p - 1)

>

^£
1=0

Rk-1

(3.25) < 2c ^ exp
1=0

(3.26) < 2c/?fc exp

Tl<k yphrifc }f $
>

(2phnkli log2 njk)V2 2c(p - 1)

(
e2(l — phnk,i) log2 nk ^ f e(l — phnkj)y/2log2 nk

8c2 (p — l)2

g2(l - phnk,l ) l0g-2 nk
16c2 (p — l)2

2cy/nkphnk,i

Here, (3.25) is a conséquence of Inequality 2 in Shorack and Wellner (1986, p. 444),
with p = phnkti, A = e(l - phnktl)(2phnkti log2 nk)1/2/4c(p - 1). Recalling (3.23),
we see that (3.26) holds for ail large k, as 4>(u) —* 1 when u —+ 0. Now choosing
p > 1 small enough leads to lie summability of (P4,*)*>i, which concludes the proof
of Theorem l.D
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Remark: If we had replaced the limit set s/2S by S in Theorem 1, then (3.16)
would become

Pi.fe < (Rk + 1) exp ( — (1 + ai)\og2nk).

Hence, we would be able to conclude that is summable if the cardinality i?* +1

of the grids were smaller than (logn*)^ for any j3 > 0. When constructing the hnkj
as in (3.13), the just mentioned condition is violated as soon as f)n and hn hâve

”really” different rates of convergence to zéro (typicaily when f)„ = h~@l < n~^2
with 0 < 02 < 0i < 1). It seems however impossible to reduce the cardinality Rk +1

of our grids, since the oscillations between two consecutive hnk,i become hardly
controllable and hence the corresponding probabilities W2,k might not be summable.
One could expect some improvements of this proof, since the RHS of (3.16) is

crudely obtained, but this turns out to be non trivial, as Proposition 3.2 would
hâve to be improved to more accurate large déviation rates for the 0 <

l < Rk- Another possibility would be to ”poissonize” the VUyh,t and then make use

of strong approximation of a centred Poisson process by a Wiener process W (see
Komlôs et al., 1977), which would reduce the problem to studying the summability
of

(3.27) :=p(ipe P~1/2W(p) i (21og2nt)1/2(5 + eSo)),
and then try to make use of the isoperimetric properties of a Gaussian measures

(here Bq dénotés the unit bail of B([0,1])). This however fails to work by making
brute use of the isoperimetric inequality, as long as is not negligible with

respect to log2 nk as k —► oo. We hope however, that (3.27) may be better controlled
and we thus leave an open question to specialists in Gaussian measures.

4. Proof of Theorem 2. To avoid lengthy notations, we shall prove Theorem
2 only with k = 2 with no loss of generality. The key of our proof of Theorem 2 is

the following lemma.
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Lemma 4.1. Under the assumptions of Theorem 2, for any p > 1, 0 < <

... < Sp1^ < 1 and 0 < < ... < Sp2^ < 1» the sequence of R2p-valued random
vectors

.Oh t, . T. . ,„vh r>„,hn,3,t(42))Xn:
\ (2/in,i log2 n)1/2 ’ ’ ‘ ‘ ’ (2/in>i log2 n)1/2 ’ (2/i„)2 log2 n)1/3 ’ “ * ’ (2/in,2 log2 n)1/2

satisfies the large déviation principle for the sequence (log2n)-1 and the following
rate function (writing Sq1^ = — 0).

v ^w:=èe-4‘>)(|if|;)2+(e-42))($ef)2.i=l

(4.1)

’i+l °i °i+l

x = x[l),... ,x(p1},x^],... ,x{2) € (0, l)2p.

Proof of Lemma 4.1.

The proof follows the same Unes as the proof of Lemma 3.1. Choose A :=

(Aj1/,..., Ap\ Aj2\ ..., Ap2)) € R2p arbitrarily and set (recall that U\ is uniform
on [0,1]).

j=i ' J

:= E Af1 (w „»iPi) - h«**T')■
3=1 3

By independence we hâve

(log2n)_1 log ^E^exp (log2n < \,Xn > )))
=Iôo~”n l0g (E(exp (r«4^n,i +rn,2x„i2))),

with rn,i := >/log2 n/2nhn>\ and rn>2 := yïog2 n/2nhn^■ As ATnii (resp Xn^) is
centered and almost surely bounded by 2pmaxJ=ii..M2p | Aj |, the following Taylor
expansion is valid by the dominated convergence theorem (here lim e(a, b) = 0):

>o

log exp (rn(iXn>1 + rn,2An)2)JJ
= ^(rn,iVar(An,i) + rJ>2Var(A„)2) + 2rn,irn,2Cov(Xn,i, Xn,2)) (1 + e(rn,i,rn>2)).
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Now, writing Ai := (A^,..., Ap1^) and A2 := (A^,..., Ap2^) we can write Var(Xnti)
A'jEn^Ai and Var(Xni2) = A2E^A2, where

^nHhj) -=K,i min(sj1),sj1)) - and

e£2)(m) '—hn,2 min(sf),sj2)) - hly2s\2) sf'*.
Hence, setting

:= and E^(î,jf) := min(s^,s^),
we obtain

(4.2) (r^Var^,!) + r2i2Var(X„,2)) = + Ai£<2>A2)(l + o(l)).

In a similar way, we can write Cov(AT„fi, Xn<2) = A'1EnA2, where En{i,j) :=

mm(hnt\s\l\hnt2S^) — hn^hn^s^s^p. Now recalling that hn^/hn^ —*■ 0 we hâve
En{i,j) = - sf^hn>2) for ail large n, whence

(4.3) r„,r„,2Cov(X„,,X„,2) = /Ri + o(l)) - o(^).Tl y \ Tl /

Combining (4.2) and (4.3) we get

Um (log2n) 1 log ^exp ( log2 n < \,Xn > ))) = i(AiE(1)Ai + A2E(2)A2)>
Then applying Proposition 3.3 leads to the claimed resuit.□

We shall now show that Lemma 4.1 is sufficient to infer a large déviation principle for

the couples of processes {2hnii \og2n)~1^2Vn>hn4,t and (2/in>2 log2 n)~1/,2'Dn>/ln 2)*.

Consider the following processes on [0,2] that are obtained by concaténation of

(2hn,i log2 n)~1/2'Dn,hn,t,t with (2hna log2 n)-^2Vnthn2tt:
'Dn,hn i,t(s)

'Dn{s)
when0<8<l;

T^n,hn o>t(s~^) 1 t ^ ^ n

(2Àn.,tog, „)■/»■ when l < S < 2.
Combining Lemma 4.1 with Lemma 3.2 we conclude that conditions of Proposi-

tion 3.1 are fulfilled, and thus Vn satisfies the large déviation principle for en :=



(log2 n) 1 and for the following rate fimetion:

J(g)

•SUp|V(s{1) +(s{2) J2)^g(1 + SJ +^ 9^1+SJ l■8UP\ L'Si+l j }\ fl) fl) J + [ j+1 j jv c(2) _ (2)
j=0 Sj+1 “ Sj *j+ l

p > i, o < < ■ ■ ■ < 41} <1 <1 + 42) <... < i + 42) <2}
IH + 11^ \H ’

where <jf(1)(s) := gis), g^(s) := g{ 1 + s)} s E [0,1]. The remainder of the proof of
Theorem 2 is a routine use of usual techniques in local empirical processes theory

(refer, e.g., to Deheuvels and Mason (1990)). We omit details for sake of briefness.
□

5. Proof of Theorem 3. We shall proceed in three steps. Recall that an(h) :=

[h log2 n/n)1/2, bn(h) := log(n/i), dn(h) := 21og2 n+6n(/i), rn{h) := (an(h)dn{h))1/2
and Rn{h) := T>n,h,o 4- £^)/l)0

Lemma 5.1. Under the assumptions of Theorem 1, we hâve almost surely

(5.1) lira sup sup = 1.
n—*oo

Proof of Lemma 5.1.

First notice that, almost surely, for each p > 1, h > 0, n > 1,

F~(h) < + (P-l)(^-)'/2 > 0.(2h log2 n)1'2 \2 log2 n/

Now, for fixed p > 1 we hâve (p — 1) inf{n/i/log2n, l)n < h < hn} —» oo. Moreover,

by a straightforward use of Theorem 1 and (1.6),

(5.2) liminf inf > -(2p)1^2 almost surely.v 1
n—*oo i)n<h<hn (2/ilog2n)1/2 “ v ’

This shows that (5.1) holds with < instead of =, while the converse inequality triv-

ially holds by Kiefer (1972), Theorem 6.D
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Lemma 5.2, Under the assumptions of Theorem 1 we hâve almost surely

Il Kxo IIlimsup sup -----—!
n—->00 t>n<h<hn (2h\og2n)1/2

< 21/2.

Proof of Lemma 5.2.

From Inequality (2.23) in Einmahl and Mason (1988) we hâve, for each n > 1

and h > 0,
11 H

< 11 Pn,F-(fe),0 H 1
(2/ilog2 n)1/2 ~ (2/ilog2 n)1/2 (2n/ilog2n)1/2'

The second term can be drop since ni)„ —*• oo. Fix p > 0. By Lemma 5.1 we hâve

almost surely, for ail large n and for ail ï)n < h < hn,

Vr'n<F~(h),0 H 1/2 11 ^n,ph,0 11
(2h log2 n)1/2 “ (2ph log2 n)1/2 ’

from where we readily obtain, by Theorem 1,

limsup sup —y-—-——< (2p)1/2 almost surely.
n—*oo f)n<h<h„ (2/i log2 n) >

As p > 1 was arbitrary, Lemma 5.2 is proved. □

The expression u>n appearing in the next lemma has been defined in (3.7).

Lemma 5.3. Under the assumptions of Theorem 1, and given 17 > 0, we hâve

almost surely

/c q\ i. ^n{flan{h), h) j/2

n—> oo f)n<h<hn Fn(/l)

Proof of Lemma 5.3.

This proof is largely inspired from the proof of Lemma 6 in Einmahl and Mason

(1988). Fix e > G and consider the sequence (nk) the sets Nk and the grids hnkj, 0 <
l < Rk as in §3.2. Also define, for each k > 5 and l < Rk,

ak,i '=v{phnk,i log2 Uk/nk-i)1/2 and

n,l :=(ak!i(2\og2nk + \og(nkhnkti)))1/2.
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As ak,i > an(h) for each n € Nk and h € [hnkli, phnkli], we hâve

p(u u w"(rff,ft)^i/2(i+3-))
'n6Nfc hn<h<hn n' ' '

<p( u‘ U U ""(°--’'-;fr-t--->^1/2(1 + 3e0
' i=0 neNk hnkii<h<phnktl rn( ^ '

<?("(_/ U ‘Jn(ak:‘'Phn*'‘) >Vl'2(l+2e)(5.4)

(5.5)

v 1=0 neNfc

=:Pjk,

where (5.4) holds for any choice of p > 1 small enough, ultimately as k —> oo, which
is a conséquence of the easily checked fact that

\rn{h)(5.6) lim lim max max sup
p—1 fc—oo n€Nkl<Rk-1 h€lfc„fcti,pfc„Jk,i] 1

By Bonferroni’s inequality we can write
tffe-i

0.

P* < £ p( IJ “n{ak-l'phn-l] > ^(l + 2e)
1=0 ' n&Nk rk'1

(5.7)

1=0

Rk-1

■= E
1=0

Some straightforward vérifications show that the blocking arguments of Inequality
2 in Einmahl and Mason (1988) can be used simultaneously to each P*,*, for ail

large k and hence, by Fact 1,

Pk,i <2P(ujnk{ak,i,phnk}i) > rjl/2rk>i(l + c))
<2A-(l)^2iiexp2 ( (1 - §)(1 4- e)2 2

20fc,É
where Akj := (1 + e)^1/2rfe in^1//2a^j converge to 0 uniformly in l < Rk — 1 when
h -> oo. Since ^ (given in Fact 1) satisfies 4>(u) —* 1 as u —» 0 we obtain, for ail

large k and for each l < Rk — 1,

(l-f)2(l + e)2’“s“< if-iïèS"’ (2 log2 nk + \og{nkphnk,i)

2 «/8

<2K(-)(-!-) (nk-ihnkti) €/8(log2n*) 1/2(lognfe-i) 1 e/4,
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for ail large k and for each 0 < l < Ry - 1, which entails by (5.7)

2 e/8 Rk-1
Pi,t <2K(i)(’±-) (log,n*)-1/a(logn*.,)-1-/4»ir-X:/9 £ P'U">z P 1=0

2 e/8 i

<2^(|)(“) ^7^78 0og2^)~1/2(log"fc-i)~1~e/8(”*-ifcnfc)~6/8> ■

from where P& is summable in fc. □

The proof of Theorem 3 is concluded as follows. First, it is well known that, alraost

surely,

(5-8) || an +(3n + (an(Fn)~ an) ||= n~1/2,

whence, almost surely, for ail n > 1 and h > 0,

(5.9) Rn(h) < sup || a„(s + n~1/2pn(s)) - an{$) || +n~1/2,
0<s<h

from where

rn(h)~lRn(h) < rn{h)~1ujn(7i~1/2 || Vn^0 ||,/i)+(nhlog2n)“1/4(21og2n+log(nh))“1/2,

which concludes the proof by combining lemmas 5.2 and 5.3 (with the choice of ?/ =

2), as the second terni of the RHS of 5.10 converges to 0 tmiformly in l)n < h < hn

as n —> oo.D
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