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Introduction

Over the past twenty years, palaeoenvironmental research in the
eastern Mediterranean and Balkans has progressed significantly, mainly
based on marine (e.g., Rohling et al., 2002; Kotthoff et al., 2008a,b;
Triantaphyllou et al., 2009, 2014; Geraga et al., 2010; Kotthoff et al.,
2011), lake and marsh (e.g. Digerfeldt et al., 2007; Pross et al., 2009;
Peyron et al., 2011; Magny et al., 2012), peat bog (e.g. Bozilova and
Tonkov, 2000; Stefanova and Ammann, 2003; Marinova et al., 2012),
and more rarely fluvial (e.g. Benito et al., 2015) archives. These records
provide evidence of significant climatic instability during the Holocene
with notable periods of rapid climatic change (RCC) that are observed
at the global scale (Bond et al., 2001; Mayewski et al., 2004; Wanner
et al., 2011). At the same time, there has been an increase in numbers
of scientific publications that connect cultural to environmental changes
(e.g., Weiss et al., 1993; DeMenocal, 2001; Weninger et al., 2006;
Büntgen et al., 2011; Drake, 2012; Kaniewski et al., 2013; Wiener,
2014). Such publications often propose a decisive role on modifications
pez@u-pec.fr (L. Lespez).
in biophysical factors in the emergence, decline or collapse of different
societies, even if others suggest that these changes are more complex
(Berglund, 2003) and propose non-deterministic explanations
(e.g., Berger and Guilaine, 2009; Kuzucuoğlu, 2010, 2014; Mercuri et al.,
2011; Roberts et al., 2011; Butzer, 2012; Lespez et al., 2014). Most of
these studies have focused on the 8200 and 4200 cal yr BP events. For
the first period, the main question concerns the consequences of RCC
on human migration and the spread of Neolithic cultures from the Near
East across Anatolia and Aegean towards Europe (e.g., Weninger et al.,
2006, 2014; Berger and Guilaine, 2009; Lemmen and Wirtz, 2014). The
second focuses on the effects of the 4200–4000 cal yr BP aridification
on Middle Bronze Age societies in the Near East and eastern Mediterra-
nean regions (e.g., Weiss et al., 1993; DeMenocal, 2001; Weninger
et al., 2006, 2009; Weninger and Clare, 2011; Kaniewski et al., 2013;
Wiener, 2014).

In this paper, we focus on the6500–5000 cal yr BPperiod,which cor-
responds to one of the less studied RCC episodes in the EasternMediter-
ranean and Balkans. This episode is evident at the global scale, but its
timing is still unclear. Mayewski et al. (2004) provide evidence of a
cool period from 6000 to 5000 cal yr BP, whilst Wanner et al. (2011)
identify a cold spell between 6500 and 5900 cal yr BP. This uncertainty
is related to the nature of RCC events that involve a combination of
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orbital, ice-sheet, ocean circulation, large tropical volcanic eruptions,
and solar forcing factors (Finné et al., 2011; Wanner et al., 2011)
and the complexity of the middle Holocene climate transition
(Triantaphyllou et al., 2009; Magny et al., 2013). Indeed, the begin-
ning of the climate reversal following the Holocene climate optimum
is characterized by complex interactions between changes in orbital
forcing, ocean circulation, and solar activity (Magny et al., 2006;
2013).

In the southeastern part of the Balkans and the Aegean (Bulgaria,
Greece and Southern Romania), thismiddle Holocene climate transition
corresponds to the transition from the Late–Final Neolithic or
Chalcolithic (~6500–5300 cal yr BP, according to the Greek terminolo-
gy) to the Bronze Age (~5300–3000 cal yr BP). Many signs of cultural
breaks have been identified, with the disappearance of certain charac-
teristicmaterial and cultural features of thefinal phases of theNeolithic,
including decorated ceramics (black-on-red, graphite-painted, incised
and incrusted types), zoomorphic and anthropomorphic figurines, clay
models, and ornaments (e.g. Spondylus bracelets and beads) (Anthony
and Chi, 2009; Papadimitriou and Tsirtsoni, 2010). On the other hand,
the persistence of some techniques (architecture, stone and metal
tools) and the permanence in the location of certain settlements suggest
that a degree of continuity existed or at least that there were some ties
between the two periods (Tsirtsoni, 2010, 2014).

The radiocarbon ages obtained recently confirm the break between
the Neolithic and the Bronze Age, because they show that, at sites
where both periods are represented, several centuries separate the
last levels of the Neolithic from the first levels of the Bronze Age. De-
pending on the site and the precision of the ages, the hiatus extends
from ~6300–6000 to 5400–5000 cal yr BP (Maniatis and Kromer,
1990; Görsdorf and Bojadžiev, 1996; Tsirtsoni, 2014). Furthermore,
very few sites have been dated within this interval (Boyadžiev, 1995;
Maniatis et al., 2014; Tsirtsoni, 2014). A chronological gap of seven to
eight centuries is apparent in the entire area. Interpretation of these
data remains the focus of debate. Some researchers tend to underesti-
mate the problem, pointing out the provisional nature of the radiocar-
bon ages and emphasising signs of continuity (Andreou et al., 1996;
Demakopoulou, 1996; Treuil et al., 2008). But others, particularly in
Bulgaria, propose a range of hypotheses to explain the causes of what
is often perceived as the total collapse of Chalcolithic civilization.
Some evoke human factors, in the form of invasions of people from
the steppes north of the Black Sea (Boyadžiev, 1995, 1998), whilst
others favour the role of environmental factors in relation to social
changes: climate change resulting in a global rise of the water level
and flood intensification (Todorova, 1978, 1995, 2007) or, on the con-
trary, a severe drought (Nikolov, 2012), has been suggested as a poten-
tial factor. Based on the available palaeoenvironmental data in the
southeastern part of the Balkans, Weninger et al. (2009) put forward
the role of overall cooling and the succession of catastrophic cold win-
ters in the triggering of societal change. In these hypotheses, the gap
in the 4th millennium BC may be the result of movement towards
more favourable areas: in particular, the southern mountainous zones
(Rhodope Mountains) that constitute one of the regions where the
Chalcolithic seems to persist the longest in Bulgaria, until 5800–
5700 cal yr BP, and more generally southwards to the Aegean.

To assess the causal link between settlement decline and RCC pe-
riods, we need to examine more precisely the relationship between cli-
mate change and the paleoenvironmental conditions at archaeological
sites. In the framework of the French project “Balkans 4000” that ad-
dresses climate–society interactions during the 4th millennium BC, we
develop archaeological and palaeoenvironmental investigations to
show that the hiatus is real and define its age based on numerous ar-
chaeological sites in the southeastern Balkans (Tsirtsoni, in press). To
be able to detect the spatial organisation of the results, we studied
sites distributed as equally as possible, taking into account the density
of the archaeological sites and possibilities for sampling (Fig. 1). Broad-
ening the framework of the study region was essential to be able to
examine evidence for existence of specific sanctuary areas or the pro-
gression of site abandonment in the Balkans. Our study area extends
from Attica to the lower Danube Valley, covering ~360,000 km2. Obser-
vations were at the site scale within this vast area. The sites examined
have different profiles, in terms of nature (habitats, cemeteries), in-
stallation type (flat site, tells, caves), location (plains, mountains,
coastal), and duration of occupation. The results of the archaeologi-
cal research are presented in Tsirtsoni (in press) and the aims of
this paper are to identify and describe changes in the environment
near archaeological sites occupied during the Late Neolithic and the
Early Bronze Age to examine the nature of paleoenvironmental
transformation and its potential effects on changes in settlement
patterns and land use.

Previous research and study area

Researchwas conducted in the currentfloodplain of the LowerAngitis
River near the confluence with the Strymon River (40°55′11″ N; 23°49′
23″ E). This area is located 15 km from the Aegean Sea and the mouth
of the Strymon River, and was chosen because of its archaeological and
palaeoenvironmental potential as shown by previous investigations con-
ducted in Greek eastern Macedonia (Lespez, 2003, 2007, 2011, Lespez
et al., 2013). From an archaeological perspective, this area has the advan-
tage of being situated at the outlet of a north–south axis that has repeat-
edly played a crucial role in the population dynamics of the Balkans and
in exchanges between the Aegean world and southeast Europe
(Todorova et al., 2007). The region is also in the middle of a zone where
archaeological studies have been extensively developed and contains
many sites occupied during the Late Neolithic and the Early Bronze Age.
The well-known excavated sites of Dimitra (Grammenos, 1997), Sitagri
(Renfrew et al., 1986; Fig. 1, site 9), and Dikili Tash (Darcque and
Tsirtsoni, 2010) show a hiatus of 800–1000 yr during the 4thmillennium
BC in the settlement history,which according to the available archaeolog-
ical information has been interpreted as an abandonment of the site by
Late Neolithic people. In the lower Angitis valley, we focus our investiga-
tion at the bottom of the archaeological site of Fidokoryphi that is one of
the four LateNeolithic andEarly Bronze Age siteswithin a radius of 10 km
(with Dimitra, AÏri Baïri and Kryoneri; Grammenos and Fotiadis, 1980;
Fig. 2). Fidokoryphi is established on a small-elongated Neogene hill
(330 × 100 m), which reaches 19 m above sea level (asl) and dominates
the alluvial plain of the Angitis River (Fig. 2). The previous investigations
conducted on the Holocene deposits show a thick fill of more than 10 m
that is composed of alluvial and shallow lake deposits that reveal a signif-
icant potential for high resolution palaeoenvironmental studies (Lespez,
2007).

The lower Strymon Valley forms a subsiding basin along a Cenozoic
detachment system (Dinter and Royden, 1993), situated between the
Serbo–Macedonianmassif to the west and the southern RhodopeMoun-
tains to the east that rise to between 1300 and 2100masl. Tectonic activ-
ity was high during the middle Pleistocene and decreases during the late
Pleistocene, with the studied area being relatively stable during theHolo-
cene (Broussoulis et al., 1991; Lespez and Dalongeville, 1998). The valley
bottom lies 5 to 100 m asl and is fringed by faulted Neogene hills with
calcimagnesic soils and coalescing series ofmiddle and upper Pleistocene
alluvial fans composed of gravelly reddish-brown sediments (Psilovikos,
1986; Broussoulis et al., 1991; Lespez and Dalongeville, 1998). The distal
parts of these alluvial fans are covered by vertic soils (Lespez, 2008). The
Angitis River drains the Drama–Philippi basin. Given the karstic nature of
the southern Rhodopes (marbles), stream flow is perennial and the
monthly discharges vary between 6 and 29 m3/s. In its lower course,
the Angitis River has been extensively modified due to the complete
drainage of the Achinos Lake which occupied the valley bottom until
the early 20th century (Ancel, 1930). Travel accounts available from the
16th century highlight the large size of the lake and its marshy shores
that were characterized by seasonal change (Fig. 2). The historical data
for older periods suggests the continuance of themarshy lake landscapes



Figure 1. Study area with archaeological sites studied in the “Balkans 4000” programme (black circles indicate sites dated during the programme and grey circles other settlements) and the
location of themain previously published palaeoenvironmental investigations discussed in the text. A. Study area; B. Tenaghi Philippon; C. Core SL 152; D. Lake Prespa; E. Lake Ioannina; F. Lake
Xinias; G. Lake Kopais; H. Lake Gölhisar; I. Core LC 21. Archaeological sites: 1. Tatul; 2. Orlitsa; 3. Varhari; 4. Yunatsite; 5. Haramiiska; 6. Yagodina; 7. Dolno Dryanovo; 8. Slatino; 9. Sitagroi; 10.
Promachon Topolnitsa; 11. Sidirokastro; 12. Kryoneri; 13. Dikili Tash; 14. Polyplatano; 15.Megalo Nissi Galanis; 16. Dispilio; 17.Maliq; 18.Makriyalos; 19. Doliana; 20.Mandalo Dikili Tash; 21.
Makrychori; 22. Rachmani; 23. Galini; 24. Mandra; 25. Palioskala; 26. Vassilis; 27. Prodromos; 28. Sykeon; 29. Dimini; 30. Mikrothives; 31. Astakos; 32. Drakaina; 33. Sarakinos; 34. Tharounia;
35. Athens; 36.Merenda; 37. Kitsos; 38. Agia Triada; 39. Limnes; 40. Agios Dimitrios; 41. Franchthi; 42. Kouveleiki; 43. Diros; 44. Kastri; 45. Limenaria; 46. Agios Ioannis; 47. Agios Antonios; 48.
Mikro Vouni; 49. Poliochni; 50. Kum Tepe; 51. Youra; 52. Emborio; 53. Strophilas; 54. Kephala; 55. Ftelia; 56. Saliagos; 57. Zas; 58. Knossos; 59. Phaistos; 60. Kephala.
during Byzantine times. Earlier testimonies are rare but those of Herodo-
tus, Thucydides and Appian also provide evidence of a large lake in the
lower Strymon and valley, which could have been affected by the same
seasonal rhythms as those described for modern times (Bellier et al.,
1986).

The climate is sub-Mediterranean with a continental influence. The
mean annual temperature is 15°C and the annual precipitation in the
plains is about 600–650 mm (Horvat et al., 1974). The mountainous
areas are characterized by sub-Mediterranean vegetation (Horvat et al.,
1974). On the foothills, grazing pressure has led to the replacement of
the woodlands with Mediterranean shrub (Atherden, 2000). According
to Gerasimidis (2000) the lower part (below 600–800 m) of the Lailias
Mountains, inside the Strymon catchment, is dominated by shrub or
low woodland with hornbeam (Ostrya carpinifolia), juniper (Juniperus
oxycedrus), evergreen oaks (Quercus ilex and Q. coccifera), and elm
(Ulmus minor). Mixed deciduous oak forest (Quercus pubescens) and
Scots pine forest (Pinus sylvestris) dominate between 800 and 1200–
1400masl. Above this subzone, up to 1700–1800masl, the slopes are oc-
cupied by beech (Fagus sylvatica) forestwith occasionalwillow (Salix sp.),
birch (Betula sp.) and fir (Abies cephalonica). In the upper part of the
mountain, different sub-alpine or alpine plant communities are well-
developed, such as perennial grasses (Strid and Tan, 1997).

Materials and methods

Geomorphic and sedimentological investigations

We applied standard geomorphic and sedimentological methods
that include examination of texture, structure and geometry of the sed-
imentary units such as used by Miall (1996) and Brown (2008). The



Figure 2. The study area in the lower Strymon and Angitis Valley and location of the cores. 1. Border of theNeogene andQuaternary formations; Blue lines show lakeshore changes derived
from old maps (1904: German map of Salonik area, 1/200,000; 1918: British map of Achinos Lake, 1/20,000; 1927: Greek map of Rhodolivos, 1/100,000).

Figure 3. Synthetic diagram for core FC1 sedimentological and bioclast analyses.



artificial entrenchment of theAngitis River (5–6m)provided the oppor-
tunity to describe the upper part of stratigraphic units and lithofacies
using the bank exposure (FCp1). Additional fieldwork mainly included
coring organised in a cross-section to document the lateral and longitu-
dinal patterns of the Holocenefill. A total of five cores (6–12mdeep) lo-
cated on both sides of the hillock were obtained using a percussion
drilling machine (Fig. 2). Core FC1 is located at the bottom of the FCp1
section. Each core was described in the field and laboratory. Further
analyses were undertaken on samples from cores FC1 and FC4 (Fig. 3).
Grain size wasmeasured for 285 samples using a laser particle analyser
(Coulter LS 200), adjusting for measurements on the N2 mm fraction.
Coarse material was removed and grain size was determined using 5
sieves with mesh sizes of 2, 2.5, 3.15, 4 and 5 mm. Deposits were de-
scribed using two variables, the coarsest percentile (C) and the median
(M), extracted from the cumulative curve of grain size distribution in a
sample following the method developed by Passega (1957) and com-
pleted by Bravard and Peiry (1999) for the floodplain deposits. C and
M have been plotted on a log–log graph and give the C–M pattern of
the alluvial deposits (Fig. 4).

Carbonate content of 124 samples of FC4 was determined using a
Bernard calcimeter. High-resolution scanning, magnetic susceptibility
(SI) and gamma-ray attenuation bulk density were also measured in
core FC4 at 5 mm resolution using a Geotek multisensor core logger.

Micromorphological analyses were conducted to identify the
sedimentary microfacies for core FC2. Fifty large-size thin sections
(12 cm×6 cm)were examined at 1.25–40×magnification using a petro-
logical and incident UV light microscope for precise descriptions of the
laminated sediments and more generally to detect micro-bedded sedi-
ment structures and describe sedimentary facies, some pedological fea-
tures (humification, biological activity, micro-aggregation,
hydromorphic features, oxidation, and desiccation features), and organic
matter content. Facies assemblages were identified and interpreted in
terms of architectural elements based on standard models (Miall,
1996). In addition, architectural elements and sediment transport types
were identified combining facies assemblage and grain-size analyses.

Dating

The chronostratigraphy of the coreswas determined using a series of
24 AMS and one conventional radiocarbon age from in situ charcoal,
plant remains and total organic matter (Table 1). Radiocarbon ages
Figure 4. CM image representing the coarsest percentile (C) a
and age–depth model of FC1 were calibrated using OxCal v4.2.3
(Bronk Ramsey, 2013) and the IntCal13 atmospheric calibration curve
(Reimer et al., 2013). Figure 5 shows the age–depth model calculated
for the pollen diagram with linear interpolation (2σ) using Tilia 2.0.
Palaeoecological analyses

The macroscopic shells of freshwater bivalves and molluscs were
identified to further help reconstruct the paleoenvironment. Fresh
water mussels (Unio tumidus) indicate sandy environment whilst
fresh water snails (Viviparus viviparus) are more typical of silty sedi-
mentation, characteristic of low energy to standing water (Fig. 3).

Despite the problem of preservation and waterborne contamination,
several studies highlight the potential value of pollen data obtained in
floodplain and shallow lake contexts to reconstruct the environments
(e.g., Brown, 1999). Analyses focused on identification of pollen and
non-pollen palynomorphs (NPPs) to reconstruct land cover changes.
Eighty-nine 1 cm3 samples were analysed from depths of between 3
and 10 m on FC1. All samples were treated following the Faegri and
Iversen (1989) method although acetolysis was not carried out to
allow the identification of any contamination by modern pollen. One
Lycopodium tablet per sample was added to calculate pollen concentra-
tions (Stockmarr, 1971). Small aliquots of the residues were mounted in
glycerine, sealed with Histolaque and all recognisable pollen and spores
were counted under a light microscope using 400× magnification, until
a pollen amount of at least 500 units was reached. The average total
land pollen (TLP) sum was 520 terrestrial pollen grains, excluding
hydro-hygrophytic taxa and NPPs (expressed as percentages of the
TLP). The identification of pollen grainswas supported by a reference col-
lection at the Archaeobiology laboratory of Madrid (CCHS, CSIC), identifi-
cation keys and atlases (Moore et al., 1991; Reille, 1992). NPPs were
mainly identified according to van Geel (2001); Carrión and Navarro
(2002); van Geel et al. (2003) and van Geel and Aptroot (2006) following
the nomenclature of Hugo de Vries (HdV Laboratory, University of
Amsterdam). Pollen diagrams were constructed using Tilia 2.0 (Grimm,
1992). Due to fluvial to lake nature of the sedimentation the pollen con-
centration is variable, indicating aerial and fluvial inputs. Nevertheless,
the pollen concentration is always high as shown by the synthetic dia-
gram (56,738 grain/cm3 for the least rich sample; Fig. 10), and it enables
a precise restitution of the vegetation cover changes.
nd the median (M) of Holocene and modern formations.



Table 1
Radiocarbon ages for Holocene deposits.

Site Core Depth Ech. Material Measure Lab. code Dates 14C yr
BP (1 σ)

Calibrated ages
cal yr BP (2 σ)

Remarks

Fidokoryphi Cp1 4.51–4.63 Charcoal Conventional Ly-2323 (Poz) 1091 ± 38 1071–928
Fidokoryphi Cp1 4.51–4.63 Charcoal Conventional Dem-1116 1179 ± 26 1170–995
Fidokoryphi FC1 1.90–1.92 FC1-2 Plant remain AMS Lyon-7187 2350 ± 30 2465–2331
Fidokoryphi FC1 2.52–2.54 FC1-3 Charcoal AMS Erl-8790 2545 ± 40 2754–2490
Fidokoryphi FC1 3.45 FC1-4 Charcoal AMS Erl-8789 2969 ± 43 3321–3001
Fidokoryphi FC1 5.36 FC1-6 Twig AMS Lyon-6022 4270 ± 30 4927–4876
Fidokoryphi FC1 5.68 FC1-6 Charcoal AMS Erl-8789 4585 ± 46 5459–5053
Fidokoryphi FC1 6.90 FC1-7 Twig AMS Lyon-6023 4775 ± 30 5588–5468
Fidokoryphi FC1 7.80–7.82 FC1-8 Plant remain AMS Lyon-6392 5135 ± 35 5987–5753
Fidokoryphi FC1 8.84–8.88 FC1-9 Charcoal AMS Erl-8789 5663 ± 51 6600–6314
Fidokoryphi FC1 9.92–9.95 FC1-10 Pollen AMS Lyon-6393 5095 ± 35 5918–5746 Excluded
Fidokoryphi FC2 2.79–2.82 FC2-3 Plant remain AMS Erl-12812 291 ± 49 435–285
Fidokoryphi FC2 3.89 FC2-4 Plant remain AMS Erl-12813 955 ± 49 957–746
Fidokoryphi FC2 4.25 FC2-5 Plant remain AMS Lyon-6024 1920 ± 30 1948–1746
Fidokoryphi FC2 7.93–7.94 FC2-8 Peat AMS Erl-12814 4841 ± 52 5710–5337
Fidokoryphi FC2 8.91–8.92 FC2-9 Organic silt AMS Erl-12815 8495 ± 68 9584–9310 Excluded
Fidokoryphi FC2 8.98 FC2-9B Organic silt AMS Lyon-7188 6665 ± 35 7591–7475
Fidokoryphi FC2 9.86 FC2-10 Plant remain AMS Lyon-6025 6275 ± 35 7275–7030
Fidokoryphi FC3 2.64 FC3-3 Plant remain AMS Lyon-6026 1215 ± 30 1256–1062
Fidokoryphi FC4 1.28 FC4-2 Charcoal AMS Lyon-7189 N45,000 Excluded
Fidokoryphi FC4 3.38 FC4-4 Charcoal AMS Erl-15209 264 ± 30 431–262
Fidokoryphi FC4 663–665 FC4-663 Organic silt AMS Lyon-8119 1925 ± 30 2488–2279
Fidokoryphi FC4 9.68–9.70 FC4-10 Organic silt AMS Beta-273957 3310 ± 40 3640–3450
Fidokoryphi FC4 11.98–12.0 FC4-12 Organic silt AMS Erl-15213 6268 ± 48 7291–7017
Fidokoryphi FC7 4.60–4.63 FC7-5 Organic silt AMS Lyon-7192 2255 ± 30 2342–2157
Fidokoryphi FC7 6.62–6.72 FC7-7 Plant remain AMS Lyon-7193 2610 ± 30 2778–2716

OxCal v4.0.5 (Bronk Ramsey, 2013); r:5 IntCal04 atmospheric curve (Reimer et al 2004).
We also added a macroscopic charcoal particle analysis to improve
knowledge of the local fire regimes (Clark, 1988; Carcaillet et al.,
2001; Whitlock and Anderson, 2003). Core sampling provided the op-
portunity to detect the main stages of the evolution of the fire regime
even if the discrimination of specific events from the background levels
Figure 5. Age–depth model for core FC1 (OxCal v4.2.3, Bronk Ramsey, 2013; Calibration
IntCal 13 atmospheric curve, Reimer et al., 2013). The dashed white line is the age–
depth model calculated for the pollen diagram with linear interpolation (2σ) using Tilia
2.0. The cultural chronology for the studied area is from Treuil et al., 2008 and Tsirtsoni,
2014. TP: transitional period; MBA: Middle Bronze Age; LBA: Late Bronze Age.
of charcoal is much more difficult in fluvial wetlands than in a lake due
to the regular fluvial input to the sedimentation. After sieving and
chemical treatment with hydrogen peroxide charcoal particles
N100 μm were counted using a binocular microscope under incident
light (Tinner et al., 1998). Eighty charcoal samples from core FC1 were
counted and recorded in particles per gramme (p ∙g−1).

Results and interpretation

Eight main stratigraphic units with ages that span themiddle to late
Holocenewere identified; whichwe nameU1 toU8 (Fig. 6). They corre-
spond to the progressivefilling of the valley bottom by alluvial and shal-
low lake deposits, resulting in a vertical accretion of 6 to 14 m. In this
paper, the focus is on units U2 to U5 that cover the period from 8000
to 2500 cal yr BP.

Lithofacies of the Holocene deposits

The grain size classification, based on the C–Mdiagram, provides ev-
idence for six groups of sediments that can be defined on the basis of
grain size (Table 2, Fig. 4). Within these groups, ten facies were identi-
fied according to grain size, organic content, and micromorphology
(Table 3, Fig. 7). Facies F1 and F2 are typical of mid-channel and lateral
bars. F1 indicates the predominance of rolling processes for the gravel
transportation, whilst the F2 results from saltation and suspension
transport of sand and silt. Facies F3 to F6 are composed of very well-
preserved laminated fine sand to silt deposits. These are rich in organic
matter, particularly in leaf and branch remains that are commonly
found in subhorizontal position indicating that the deposit was always
below the surface of the water. These facies were deposited in standing
water, such as the shallow lake, which occupied the lower Strymon Val-
ley in historical times. These deposits always have high values of SI. In
lake and fluvial environments, magnetic susceptibility often reflects
the terrigenous flux derived from fluvial transport (Dearing, 1999).
Moreover, in the study area, the dominance of the metamorphic base-
ment (Psilovikos, 1986) may increase the ferromagnetic mineral con-
tents of the fluvial input. So, the high SI value indicates the
significance of the fluvial input and the dominant metamorphic origin



Figure 6. Holocene alluvial deposits along the Fidokoryphi transect. The sedimentary units are numbered from U1 to U8. 1. Coarse sand, gravels; 2. Medium to coarse sand; 3. Micaceous
fine sand; 4. Sandy silt; 5. Silt; 6. Grey silt; 7. Organic to peaty silt; 8. Laminated carbonated silt.
of the sand grains. Facies F7 and F8 are interpreted as sediments
transported by uniform suspension and deposited by decantation in a
shallow carbonaceous lake as indicated by the high carbonate content
of these deposits, always higher than 20% on the samples obtained on
FC4. The reduced fluvial input is assessed by the low SI value and the
low grain size of the metamorphic sand grains. Facies F9 presents silt
deposits with a massive microstructure characteristic of overbank silt
deposit. F10 corresponds to floodplain or piedmont palaeosols con-
firmed by micromorphological analyses. The palaeosols are often pris-
matic and the microstructure is subangular blocky. Bioturbation and
pedogenic features are numerous. They correspond mainly to channels
and chambers with limpid illuvial clay coating. These observations indi-
cate the long-lasting development of illuvial horizon (Bt) of reddish
brown to dark luvisol with vertic evolution. Holocene sedimentation is
dominated by shallow lake deposits in core FC4. The variability of the
fluvial input is noticeable (F3 to F8) and fluvial deposits (F1 and F2)
are intercalated. The amounts of carbonate increase to the top of the
sedimentation. During the last centuries, the complete silting of the
Lower Strymon and Angitis valley by overbank and channel deposits
(F1, F2 and F9) is observed on all cores (Fig. 3).
Table 2
Sediment groups determined by grain size analyses and interpretation.

Group Median (M) Coarsest one
percentile (P)

Description Inferred mode of
transportation

1 160–2200 μm 1000–5300 μm Medium to
coarse sand

Saltation and rolling

2a 60–160 μm 800–3000 μm Heterometric
fine sand

Saltation and
suspension

2b 60–200 μm 250–600 μm Fine sand Saltation
3 20–60 μm 250–800 μm Silt Suspension
4 30–80 μm 85–200 μm Silt Suspension
5 7–20 μm 80–300 μm Fine silt Decantation and

suspension
6 4–30 μm 25–120 μm Clay to fine silt Mainly decantation
Architecture and environmental interpretation of the Middle Holocene
deposits

Holocene deposits vary from 6 m on the edge on the floodplain to
14 m along the channel of the Angitis River. The radiocarbon ages
show that Holocene sedimentation began in the middle Holocene,
with sedimentation rates changing from 23.6 mm ∙yr−1 from 6500 to
5200 cal yr BP, 11.5 mm ∙yr−1 from 5200 to 3200 cal yr BP to
17.5 mm ∙yr−1 from 3200 to 2400 cal yr BP (Fig. 5). Four stages of sedi-
mentation are apparent:

1) Stage 1 (7500–6000 cal yr BP, U2–U3)with incised valley bottom and
wetland development. The base of theHolocene deposits is formed by
Neogene outcrops, such as the Fidokoryphi hillock, and by Pleistocene
alluvial fans (U1). During this first stage, alluvial sedimentation was
limited to the narrow and incised Angitis River, probably b20 m
wide, and into the Strymon valley bottom to the west. The lower
parts of the slopes underwent Holocene pedogenesis that resulted
in the development of a mature palaeosol (U2), observed at the bot-
tom of cores FC2 and FC3. This soil, characterized by a polyhedric to
prismatic structure and significant bioturbation and splits (facies
F10), shows that a large part of the Lower Angitis Valley was outside
the influence of flood flows. The soil comprises an archaeological
layer (potsherds, bones, burnt clay) attributed to the Middle and
Late Neolithic by the radiocarbon ages obtained on charcoal samples
collected from core FC2 (Fig. 6). The alluvial sedimentation observed
from 7500 cal yr BP corresponds to massive fine dark grey silt in
core FC1 (U3, facies F8) and laminated dark grey silt and fine sand
with some fragments of Neogene formations in core FC4 (U3, facies
F5). This indicates a marshy environment restricted to the east
along the narrowwater course of the Angitis and at the edge of a shal-
low lake withminor fluvial input west of the Fidokoryphi hillock. The
low value ofmagnetic susceptibility confirms theweakness of the flu-
vial input from the erosion of the river basin.

2) Stage 2 (6000–5600 cal yr BP, U4a) is characterized by alluvial sedi-
mentation that is apparent in cores FC1, FC2 and FC4. The contact be-
tween the palaeosol and the marshy deposits, and the upper unit is



Table 3
Sedimentary facies, description and interpretation.

Facies assemblage
code

Description Lithofacies assemblage
(Miall, 1996)

M C99 Grain
size
group

Interpretation

F1 Horizontal to cross-bedded coarse sand with gravels Sp, Sh, Sl 500–2200 μm 1000–5300 μm 1 Midchannel, lateral sand bars
and bedforms

F2 Laminated fine to medium sand Sh 160–500 μm 1000–2000 μm 1 Sand sheet deposited out of
main channel

F3 Laminated fine sand with coarser grain, abundant
amorphous organic matter, organic remains (leaf,
branch…) in subhorizontal position and charcoal

Fl 60–160 μm 600–3000 μm 2a Shallow Lake with significant
fluvial input

F4 Laminated fine sand with abundant amorphous
organic matter, organic remains (leaf, branch…) in
subhorizontal position and charcoal

Fl 60–160 μm 200–600 μm 2b Shallow Lake with moderate
fluvial input

F5 Alternation of fine micaceous sand and silt layers Fl 20–80 μm 80–600 μm 4 Shallow Lake with weak
fluvial input

F6 Laminated (rhythmic) greyish organic fine silt and
white carbonated fine silt layers

Fl 2–30 μm 20–140 μm 6 Shallow lake and its margin

F7 Massive light brown carbonated fine silts with
organic remains

Fsm 2–30 μm 20–140 μm 6 Shallow lake

F8 Grey massive silt Fsm 20–60 μm 200–800 μm 3 Shallow lake to swampy
floodplain

F9 Massive light brown silt Fm 20–80 μm 80–800 μm 3, 4, 5 Overbank deposits in
floodplain

F10 Dark grey organic silt with numerous pedogenic
features

P 6–60 μm 80–800 μm 3, 4, 5 Floodplain palaeosol
erosional, indicating a phase of incision before the deposition of
coarser alluvial deposits. During the beginning of this stage, alluvial
sedimentation mainly corresponds to sandy deposits of mid-
channel and lateral bars at the bottom of cores FC1 and FC2 (U4a; fa-
cies F1, F2). The alluvial architecture, grain-size analyses and the in-
crease inmagnetic susceptibility of facies F4 in core FC4 indicate that
a shallow lake existed with moderate fluvial input. These observa-
tions reveal the instability of the course of the Angitis River with
flood flows running on the both sides of the Fidokoryphi hillock.

3) Stage 3 (5600–4900 cal yr BP, U4b) represents a shallow lake and
marshy environment that occurred after the establishment of the
fluvial environment, resulting in a rapid rise of the water table, lead-
ing to an extension of thewetlands. Themarshy environments reach
the eastern part of thefloodplain as far as core FC2whereas themain
part of the Lower Strymon and Angitis Valley was still occupied by a
shallow lake. The sandy fraction of the deposits and the recurrent
deposits of medium to coarse sandy layers is apparent from the flu-
vial sediments in cores FC1, FC2 and FC4 (Fig. 3). This indicates that
the lake was regularly reached by the flood flows of the Angitis and
Strymon rivers in the east andwest, respectively. On the edge of the
shallow lake,marshy environment developed depositing peat that is
now present in core FC2. This landscape persisted for more than a
millennium with the hillock of Fidokoryphi forming an island.

4) Stage 4 (4900–2500 cal yr BP, U5) represents a shallow lake and
marshy environment. The contact of these units with the underlying
units is erosional. Sedimentation is firstly characterized by an alluvi-
al layer on both sides of the hillock (U5a). Then, at the bottom of the
eastern side, the alternation of shallow lake deposits and coarser flu-
vial deposits is evident. In contrast, to the centre of the Angitis valley
and towards the Strymon River, the deposits are predominance of
fine silt to fine sand indicating a shallow lake environment (U5b).
The grain size and magnetic susceptibility decrease observed in
core FC4, suggest a low fluvial input originating from Rhodope bed-
rock. The wetlands reached their maximum extension and the posi-
tion of the Angitis River was probably close to its position during
stage 1. The Fidokoryphi hillock remained an island even if themag-
nitude of the coarse deposits could indicate the building of levees
along the course of the Angitis River. During this period, an increase
in carbonate deposition is clearly evident in core FC4 and probably
indicates a relative increase in suspended load resulting from a
local erosion of the soil developed in the Neogene carbonate
formations. This increase of carbonate led to the development of
rhythmic deposits with lamination of fine carbonated silt at the
top of the U5 unit in core FC4 and even more in the following sedi-
mentary units (U6 and U7). This explained the records of fresh
water snails (V. viviparus) more than mussels (U. tumidus) from U7.

Pollen, NPPs assemblage and fire signature

The pollen record in core FC1 can be divided into six palynozones in-
cluding TLP, hydro-hygrophytic and NPPs taxa (Figs. 8 and 9).

1) FC1-1 (1000–870 cm, ~7100–6400 cal yr BP)
In the first palynozone (FC1-1), the palynological composition of the
samples is slightly dominated by arboreal taxa, mainly deciduous
Quercus (19–28%). A significant presence of other woodland taxa
such as Alnus, Ostrya/Carpinus orientalis, evergreen Quercus and to a
lesser extent Salix and Betula, complete the vegetation spectrum.
This observation indicates the dominance of a woodland cover (50–
60%). Nevertheless, the forest coexists with significant herbaceous
vegetation comprising Poaceae (8–28%) and Artemisia and also
anthropozoogenous and anthropogenic–nitrophilous taxa (Fig. 8),
which could be the first indicators of local human impact. Charcoal
particles are always present throughout core FC1, but in the first
palynozone, the number of charcoal particles remains less than 100
per 10 g, showing a low fire signature (Fig. 10). A slight increase in
the number of charcoal particles (222 to 224 p ∙g−1) at the end of
the palynozonemay be explained by fire activity related to the estab-
lishment of the Late Neolithic population around 6500 cal yr BP.

2) FC1-2 (870–775 cm; ~6400–5800 cal yr BP)
The second palynozone (FC1-2) shows an increase in woodland taxa
(70%) with a corresponding decrease in upland herbaceous taxa, par-
ticularly Poaceae. Dense mixed forest dominates and the major spe-
cies are deciduous: Quercus (20–30%), Ostrya/C. orientalis, evergreen
Quercus andAlnus.Weobserve thedevelopment ofCorylus and the ap-
pearance of Fagus at the end of this period.Major change in hydrologic
conditions is also evidenced by changes in the NPPs and hydro-
hygrophytic records (Fig. 9). The appearance of open water eu-
mesotrophic NPPs, corresponds with peaks in Ceratophyllum sp. (van
Geel et al., 1980/1981), Pediastrum and Botryococcus colonies
(Bakker and van Smeerdijk, 1982a,b,c; Komarek and Jankovska,
2001; Pasztaleniec and Poniewozik, 2004). Other hydro-hygrophytic



Figure 7. Thin sections showingmicrofacies organisation of laminatedHolocene deposits. 1. Coarse tomedium sand layerswith reworked peat and organic remains (F1); 2. Laminations of
medium to fine sandy deposits with amorphous organic matter and organic remains (leaves, twigs, etc.) in subhorizontal position (F3); 3. Laminations of medium to fine sandy deposits
with amorphous organicmatter, numerousmicrocharcoal particles and organic remains (leaves, twigs, etc.) (F4); 4. Laminations ofmicaceous sand andfine silt (F5); 5. Rhythmic deposits
with lamination offine carbonated silt andfineorganic silt (F6); 6. Carbonated siltwith organic remains (F7); 7. Greymassive silt (F8); 8.Massive light brown silt (F9); 9. Dark grey organic
silt with numerous pedogenetic features (channels and chambers organised in a polyhedric structure) and archaeological artefacts (bones, fired clay, potsherds) (F10).
taxa and the two maximum percentages for Abies pollen at depths of
850 and 790 cm (6300 and 5900 cal yr BP), suggest wetter climatic
conditions. According to the development of heliophilous and/or
mesothermophilous taxa (Corylus, Fagus and evergreen Quercus), the
wetter and likely warmer conditions were favourable for wooded
cover growth on the slopes. At the same time, these conditions coin-
cided with the start of Cerealia crop activity (0.5–5%), confirming the
impact of agricultural activities in the lowland area. Weak fire activity
is reflected in the low number of charcoal particles.

3) FC1-3 (775–750 cm; ~5800–5700 cal yr BP)
The third palynozone (FC1-3) corresponds to an event marked by the
abrupt retreat of forest vegetation (b40%)with the exception of Fagus,
the disappearance of almost all Pediastrum colonies and other hydro-
hygrophytic taxa and the expansion of xerophilousNPPs, such as Type
200, indicative of temporary desiccation (van Geel et al., 1989). At the
same time, we observe a significant rise in Poaceae, Cerealia, anthro-
pogenic–nitrophilous, and anthropozoogenous taxa. The first peak of
coprophilous NPPs such as Sordaria, Sporormiella, Podospora and
Cercophora (van Geel, 1978; van Geel et al., 2003) suggests that the
vegetation change was most likely related to grazing/browsing activ-
ities in the local surroundings. Moreover, correlation with the first
major peak in charcoal particles (Fig. 10) (N1000 p ∙g−1) supports
local human impact on the environment around 5800 cal yr BP.

4) FC1-4 (750–510 cm; ~5700–4450 cal yr BP)
The fourth palynozone (FC1-4) begins with the recovery of the land-
scape by arboreal taxa (Alnus, Betula, Corylus, Ostrya/C. orientalis,
P. sylvestris and Erica arborea). The plant communities indicate a
mixed-oak forest in the valley and on the lower slopeswhilst amoun-
tainous forestwith coniferous (Scots pine andfir), beech and birch are
recorded for the higher-elevation slopes. Wetland development is
shown by an increase in Cyperaceae and eu-mesotrophic NPPs, such
as Tetraedron cf. minimum, Botryococcus and Pediastrum, and reflects
the temporary or permanent presence of open water bodies. The
woodland shows shrubby patches with E. arborea and Cistus, indicat-
ing the persistence of degraded vegetation. Until 5300 cal yr BP, the
number of charcoal particles remains high (500–1200 p ∙g−1),



Figure 8. Percentage pollen diagram for selected trees, shrubs and herbs from core FC1 (exaggeration curves are ×10).
indicating a lasting change in the fire regime. The high number of par-
ticles even after the development of a shallow lake environment con-
firms that the charcoal influx in the sedimentationwasmainly of local
origin. After 5300 cal yr BP, the decrease in the number of charcoal
particles is significant.

This palynozone was also punctuated by two similar events at
around 5450 and 5000–4900 cal yr BP. These are characterized by a
reduction in tree pollen with the exception of mesothermophilous
and heliophilous taxa (Corylus, Fagus, evergreen Quercus), and a
decrease in Cyperaceae and other hydro-hygrophytic taxa and NPPs
indicative of humid environments. These changes in pollen indicate
drought events. Further, for the “5450 event”, this is supported
Figure 9. Percentage pollen diagram for hydro-hygrophitic tax
by the presence of xerophilous NPPs and a charcoal peak
(1439 p ∙g−1) that reflect dry vegetation susceptible to fire. The sec-
ond event (5000–4900 cal yr BP) corresponds to a peak in NPPs indic-
ative of erosive processes: Glomus cf. fasciculatum and Pseudoschizaea
circula (van Geel et al., 2003). This dry period also coincides with a
slight increase in Cerealia and anthropozoogenous taxa percentages.
The consequences of these rapid climate changes may have favoured
anthropogenic activities and/or their visibility in the pollen
assemblage.

5) FC1-5 (510–385 cm; ~4450–3200 cal yr BP)
The fifth palynozone (FC1-5) shows a decrease in humid conditions
with the disappearance of some NPPs, including Tetraedron cf.
a and NPPs from core FC1 (exaggeration curves are ×10).



Figure 10. Pollen and NPP synthetic diagram for core FC1. Pollen and NPP groups: 1) Riparian taxa (Alnus and Salix); 2) Anthropic–nitrophilous taxa (Aster type, Boraginaceae, Cardueae,
Centaurea nigra type, Cichorioideae, Dipsacus fullonum type, Malva sylvestris type, Rumex acetosella type, Rumex acetosa type, Rumex obtusifolius type); 3) Anthropozoogenous taxa
(Chenopodiaceae, Plantago lanceolata type, Urtica dioica type,); 4) perennial pasture plants (Apiaceae, Brassicaceae, Caryophyllaceae, Fabaceae undiff.); coprophilous NPPs (Cercophora
sp. type 112, Podospora sp. type 368, Sordaria sp. type 55A, Sporormiella sp. type 113, Riccia type); NPPs of eu-mesotrophic open water (Pediastrum colonies, Ceratophyllum sp. type
137, Botryococcus, Gloeotrichia type 146, Spirogyra, Neorhabdocoela undiff., type 119, type 128A, Tetraedron cf. minimum, Zygnema type); NPPs indicative of erosive processes (Glomus
sp. type 207 and Pseudoschizaea circula); NPPs indicative of fire events or dry conditions (Pleospora sp. type 3B, type 200).
minimum and Botryococcus. Anthropogenic activities are shown by
the presence of coprophilous NPPs and NPPs indicative of erosive
processes, probably resulting from animal grazing. More generally,
Cerealia, anthropozoogenous and anthropic–nitrophilous taxa indi-
cate the development of agricultural activities. However, no signifi-
cant impact on forest vegetation cover is recorded except ca.
3300 cal yr BP. The fire signature remains moderate during most of
this period (500–1000 p ∙g−1).

6) FC1-6 (385–300 cm; ~3200–2750 cal yr BP)
The final palynozone (FC1-6) includes the persistence of Mediterra-
nean species such as wild olive (Olea europaea), the gradual reduc-
tion in deciduous Quercus (b11%), Ostrya/C. orientalis (b2%), in
Cyperaceae, and in most of the open water eu-mesotrophic NPPs
and Pediastrum. This indicates a shift towards drier climatic condi-
tions. At the same time, P. sylvestris recaptures the slopes whilst
Salix and Alnus are present on the now drying former wetland
areas. Cerealia pollen and anthropozoogenous and anthropic–
nitrophilous taxa vary between 2 and 4%, reflecting a new increase
in agricultural activities along the Lower Angitis. The increase in
the number of charcoal particles, from 700 to 3306 p ∙g−1 (Fig. 9),
is significant and could be related to the intensification of human ac-
tivities and the overall dryness of the local environment.

Discussion

General trend of hydrological changes

The absolute level of themarshy and shallow lake environment was
around 5 to 4 m below the current mean sea level (bsl) at ~6000 cal yr
BP. The predicted sea level using the Lambeck and Purcell (2005)model
is around 5 m bsl for this period. This modelled level is quite consistent
with the estimated sea level obtained from fieldwork at the island of
Lemnos in the northern Aegean for the period between 7000 and
5000 cal yr BP (Pavlopoulos et al., 2013). Thus, the rise in sea level
probably explains the rise of the water table in the Lower Strymon val-
ley and plays a key role in the long-lasting presence of the shallow lake
and marshy environments from 6000 cal yr BP. This observation also
confirms the relative tectonic stability since the middle Holocene.
Then, a decrease in accumulation rate after 5200 cal yr BP evident
along the Angitis river can be explained by the decrease in the rise of
sea level predicted by the sea level curve of Lambeck and Purcell
(2005), which is also observed after 5000 cal yr BP on the Alyki coastal
plain at Lemnos (Pavlopoulos et al., 2013). Thus, due to their low eleva-
tion and the proximity of the sea shore, the rate of accumulation in the
Lower Strymon and Angitis Valley was initially driven by sea level
changes in the Aegean Sea during the middle and late Holocene.

After 6000–5600 cal yr BP, the rising of thewater table and the expan-
sion of thewetlands are supported by the sediment, pollen andNPP anal-
yses. These show the development of a lasting shallow lake environment
with some fluvial input. The rise of thewater table and themaximumex-
tension of the wetlands are explained by the large accommodation space
available along the Lower Strymon Valley and the wetter conditions.
They have also been recorded during themiddle Holocene hydroclimatic
optimum, in Central Greece, at Lake Xinias from 7000 to 5000 cal yr BP
(Digerfeldt et al., 2007) and, in northern Greece, at Lake Ioannina
(Lawson et al., 2004), Lake Prespa (Cvetkoska et al., 2014) and in thema-
rine records (Triantaphyllou et al., 2009, 2014).

After 4450 cal yr BP, The pollen andNPPs data show a progressive af-
firmation of drier conditions after 4450 cal yr BP. This trend is widely
observed in the easternMediterranean region and has been interpreted
as the secondof themajor Holocene climatic oscillations recorded in the
Mediterranean region, occurring ~4500–4000 cal yr BP (Magny et al.,
2013). This is considered to be a non-linear response to the gradual in-
solation decrease (Magny et al., 2013) resulting primarily from varia-
tions in orbital parameters (Berger and Loutre, 1991, Fig. 11). Data
obtained in the central Mediterranean area suggest a north–south cli-
mate partition during the Holocene (Peyron et al., 2013) whilst
Triantaphyllou et al. (2014) suggest a time-transgressive gradient in



the Aegean Sea during themiddle Holocene transition. The hydrological
trend of the study area follows the general pattern attributed to areas
south of 40°N (Magny et al., 2013) despite its slightly northern latitude.

Impact of climatic events

The palaeoenvironmental data obtained in the Lower Angitis Valley
show significant changes of centennial scale after 6000 cal yr BP. Paly-
nological and geomorphic data indicate the high instability of the wet-
land environment which probably corresponds to the local response
to the complex RCC identified at 6500–5000 cal yr BP (Mayewski
et al., 2004; Wanner et al., 2011; Fig. 11).
Figure 11. Comparison between environmental changes recorded by selected analyses in the
changes determined by Zanchetta et al., 2014 are highlighted.
Wetter conditions and hydrological response 6500–5800 cal BP

The first stage of environmental change identified corresponds the
increase in fluvial sedimentation between 6000 and 5600 cal yr BP. Dur-
ing this period, the river was wider with alternating sandy gravel bars,
bordered by a reed belt and the riparian forest. This fluvial pattern
shows an increase in the sediment discharge associated to an increase
in runoff in the Angitis River basin. This may be explained by increased
soil erosion due to thewidespread development of Late Neolithic settle-
ment in the region. But, there is no evidence of abrupt and large opening
of the landscape during this period on a regional scale (Greig and
Turner, 1974; Kotthoff et al., 2008a,b; Pross et al., 2009) or more
Aegean and eastern Mediterranean regions. Studied period and phases of rapid climatic



generally in northern Greece (Lawson et al., 2004). Furthermore, a soil
erosion episode has not been documented in the Philippi–Drama
basin before the 2ndmillennium BC (Lespez, 2003, 2007). The observed
fluvial input increase is thus more probably related to climate change,
given that wetter conditions aremore generally observed in the eastern
Mediterranean region during this period (Finné et al., 2011;
Triantaphyllou et al., 2014). On the southern coast of the Black Sea,
such fluvial input corresponds to an increase in runoff caused by an
increase in annual precipitation (Lamy et al., 2006; Fig. 11). In northern
Greece (Lawson et al., 2004), the northern Aegean Sea (Dormoy et al.,
2009; Kouli et al., 2012), and the eastern Mediterranean Sea (Bar-
Matthews and Ayalon, 2011), this period corresponds to an increase in
precipitation (Fig. 11). This increase in precipitation is associated with
the onset of a cooler period well-recorded in the Peloponnesus
(Heymann et al., 2013) and the southern Aegean Sea (Marino et al.,
2009). Increased fluvial activity is also observed for large north African
rivers and for several rivers in southern Italy and Mediterranean Spain
(Faust et al., 2004; Benito et al., 2015) and suggests awidespreadhydro-
logical response to the climate change.

Climate instability and succession of three dry and cold events: 5800–
4900 cal BP

This wet phase ends around 5800 cal yr BP. The pollen and NPP data
then show a strong decline for all hydro-hygrophytic taxa and the dis-
appearance of nearly all Pediastrum colonies. At the same time, the
abrupt decline in arboreal pollen for riparian, mixed oak and altitudinal
forests is not counterbalanced by the minor development of evergreen
oak and beech tree. This reflects a first dry event around 5800 to
5700 cal yr BP. Kotthoff et al. (2008a,b) identify a short-termminimum
in non-saccate arboreal pollen percentages accompanied by increased
percentages of Chenopodiaceae in the northern Aegean Sea. These
changes in pollen composition are interpreted as a drought climatic
event that affected the vegetation across the entire northern Aegean re-
gion around 5600 cal yr BP. The development of dry conditions has also
been observed more generally in eastern Mediterranean regions
(Lawson et al., 2004; Lamy et al., 2006; Eastwood et al., 2007; Kotthoff
et al., 2008a,b; Dormoy et al., 2009; Bar-Matthews and Ayalon, 2011;
Zanchetta et al., 2014; Fig. 11). The timing of the onset of this drought
event is not yet well established. The onset of this drought varies from
6100 to 5800 cal yr BP whilst the acme of dry conditions is observed
from 5800 to 5600 cal yr BP according to the available data in north-
eastern Mediterranean areas (Fig. 11). This event corresponds to the
start of cooler conditions in the southern Aegean Sea, interpreted as
the incursion of cold mass air from northern latitudes to eastern Medi-
terranean regions (Rohling et al., 2002; Marino et al., 2009; Fig. 11).
This winter pattern may have encouraged the development of drier
winters in a context of more pronounced zonal flow (Zanchetta et al.,
2014) related to positive NAO circulation (Magny et al., 2013). The ob-
servations made in the eastern Mediterranean area, show that this pat-
tern was active from the southern Black Sea to the southeastern
Mediterranean Sea, including the northern Aegean area studied.

Two other short events, at around 5450 and 5000–4900 cal yr BP,
show the same drought conditions with a decrease of Cyperaceae, other
hydro-hygrophytic taxa and a reduction of arboreal pollen with the ex-
ception of mesothermophilous and heliophilous taxa. These events
have also been identified in marine cores from the Aegean Sea (Geraga
et al., 2010). Zanchetta et al. (2014) state that two speleothem records
available for the central (Corchia) and eastern Mediterranean areas
(Soreq) reveal three periods of drought (Fig. 11), which can be compared
to climate instability recorded in Central Europe (Magny et al., 2006). The
first lasted from 5700 to 5500 cal yr BP and probably corresponds to that
observed in the Lower Angitis Valley around 5800–5700 cal yr BP. The
second is around 5200 cal yr BP and is also well-known in the eastern
Mediterranean (e.g., Bar-Matthews and Ayalon, 2011; Kuzucuoğlu et al.,
2011; Roberts et al., 2011). The third, less marked, is observed around
5000 cal yr BP in southeastern Aegean (Kouli et al., 2012). This suggests
that northern Greece underwent the same pattern of climatic instability
with three dry cold events than central and eastern Mediterranean
areas (Zanchetta et al., 2014). The incursion of cold mass air from north-
ern latitudes and a positive NAO circulation proposed for the first dry
event can also be invoked for the others (Zanchetta et al., 2014). The
data obtained in the Lower Angitis Valley points out the ability of the flu-
vial environment to record centennial-scale climatic events during the
middle Holocene. Nevertheless, the timing and the nature of theses cli-
matic events remain to be refined. The discrepancies between data
could reflect both the uncertainties of the dating control of the
palaeoclimatic data used and the relative sensitivity of each site to climate
change (Peyron et al., 2013). In fact, the geographical pattern probably
plays a significant role in northern Greece, given the complexity of the
hydrological systems, the complex land–sea geography and the regular
pulses of northern continental influences on the climate of this region.

Vegetation change and impact of agropastoral activities

The landscape was dominated by woodland cover during the initial
phase (~7100–6500 cal yr BP). Mixed oak forest resulting from diversi-
fication of the forest cover is widely observed in northern Greece and
the southern Balkans during thee Holocene and the start of the middle
Holocene (Willis, 1994). This change in vegetation corresponds to wet
mild conditions which favoured internal competitive and autogenic
ecological changes (e.g.,Willis, 1994; Lawson et al., 2005). The develop-
ment of evergreen oak can be explained by the location of the study
area near the Aegean Sea and the north–south orientation of the Stry-
mon Valley facilitating the northward expansion of Mediterranean in-
fluences. The development of such forest cover does not mask a
significant herbaceous pollen presence which indicates a more open
landscape alternating with the riparian forest (alder, poplar, willow).
This supports the view of Kotthoff et al. (2008a,b) who argue that the
forest cover was not as dense during themiddle Holocene in the north-
ern borderlands of the Aegean Sea. Indicators of anthropogenic activity
are rare although the first Neolithic settlements had been established in
the broader region since 8500 cal yr BP (Lespez et al., 2013). The devel-
opment of Late Neolithic settlement testifies to an increase in the inten-
sity of farming and livestock activities occurred from7400 to 5900 cal yr
BP (Lespez, 2008). Human impact is only suggested by a continuous
curve for anthropozoogenous and anthropic–nitrophilous taxa with
the continuous development of Plantago lanceolata which could indi-
cate pasture activities leading to a patchier forest cover. So, it appears
that the largewetland studiedwas not suitable for crop cultivation dur-
ing the first phases of Neolithic and/or the density of the forest cover
was not favourable to record the impact of small-scale agricultural
development.

The first environmental impact of human activities

An increase in anthropogenic taxa is observed after 6500 cal yr BP.
The development of crop cultivation is demonstrated by the continuous
curve for Cerealia pollen from 6300 to 5600 cal yr BP with two maxi-
mum peaks around 6300–6100 and 5 800–5600 cal yr BP. The first
peak corresponds to the first occupation of Fidokoryphi (Grammenos
and Fotiadis, 1980) and more generally to the occupation of numerous
archaeological sites in eastern Macedonia. In the Angitis river basin, 27
stratified archaeological sites of the tell type have been inventoried in-
deed (Koukouli-Chrysanthaki et al., 2008), many of which seem to
start around6800 cal yr BP (Late Neolithic II). The Lower StrymonValley
includes several other archaeological sites (Grammenos and Fotiadis,
1980). The archaeological excavations conducted at Dimitra and
Kryoneri address the development of a flourishing farming society dur-
ing the second half of the 5th millennium BC (Grammenos, 1997;
Malamidou, 2007), similar to neighbouring settlements in the Strymon
Valley and the Philippi–Drama plain and the broader Balkan region



(Papadimitriou and Tsirtsoni, 2010). The cultivation of cereals (wheat
and barley) as well as legumes (lentil and grass pea) is documented at
many of them (Treuil et al., 2008). These changes are related to the es-
tablishment of cultivated fields and the development of grazing in par-
allel with an increase in collecting fruits, fodder and firewood as
demonstrated at Dikili Tash (Valamoti, 2015). Thus the human impact
on the vegetation cover is explained by an increase in settlement in
the study area and at a regional scale.

None of archaeological sites of the lower Strymon valley and Angitis
river basin sites seems to be occupied after ca. 6000 cal yr BP (Tsirtsoni,
in press). However, in the Lower Angitis valley, the persistence of
Cerealia pollen after 6000 cal BP and a second peak for anthropogenic
indicators recorded around 5800–5700 cal yr BP are therefore particu-
larly noteworthy. This is probably highlighted by tree thinning in the ri-
parian, mixed oak and mountainous forest cover due to the drought
conditions and demonstrates that farming activities continued to be
practiced on the edge of the wetlands and the foothills despite the
lack of archaeological evidence.

A second phase of increased anthropogenic indicators is observed
from 5100 to 4700 cal yr BP, corresponding to a continuous curve for
Cerealia and an increase in all anthropozoogenous and anthropic–
nithrophilous taxa which reach percentages never attained during the
previous period. As a consequence, the forest cover decreases (b40%
of tree pollen) with the exception of evergreen oak and hazel. These lat-
ter are light-demanding trees and evergreen oak is thermophilous.
Their relative increase can be explained by the clearance of the mixed
oak forest and the development of dry conditions from 5000 cal yr BP.
This period corresponds to the renewal of human settlement in the re-
gion. Themajor sites of the Late and Final Neolithic period, such as Dikili
Tash and Sitagroi, are once again inhabited from 5300 to 5000 cal yr BP
and the site of Kryoneri somewhat later (Maniatis et al, 2014; Tsirtsoni,
in press). Agropastoral activities are also evidenced by numerous ar-
chaeological studies and the anthropogenic landscape changes corre-
spond to lasting land use changes during the Bronze Age (Lespez,
2008). In addition, we observe the development of olive trees, possibly
cultivated, from 4000 cal yr BP.

Regional comparison

The comparison with the regional data shows that landscape chang-
es driven by human activities are also recorded during theNeolithic and
the Bronze Age in northern Greece. On the edge of the Philippi marsh,
close to the site of Dikili Tash, the effect of agropastoral activities is evi-
dent from around 8500 cal yr BP (Glais et al., 2016) and on the shore of
Lake Kastoria, at the base of the Neolithic site of Dispilio, from 7500 cal
BP (Kouli, 2015). But apart from this pollen site adjacent to a well-
established archaeological context, the first evidence of landscape
changes due to human activities is found later. It is recorded by pollen
studies around 5000 cal yr BP at Nisi fen (Lawson et al., 2005),
4500 cal yr BP at Ioannina (Bottema, 1974; Lawson et al., 2004) and
Giannitsa (Bottema, 1974), and around 3500–3000 cal yr BP in Doirani
(Athanasiadis et al., 2000), Gramousti and Rezina (Willis, 1994) and
Edessa (Bottema, 1974). In southern Albania, the impact of human ac-
tivities has been also detected around 4500 cal yr BP (Denèfle et al.,
2000). In all cases, this occurs well after the arrival of agriculture in
these areas. For most of the pollen sites, their location in mountainous
areas often far away from the lowlands with their dense Neolithic set-
tlement is suggested as an explanation. In contrast, the timing of the im-
pact of agropastoral practices on vegetation cover ismore similar to that
observed at several sites in central Greece and south-western Bulgaria.
Human impact on vegetation cover has been recorded at Lake Voulkaria,
around 5500 cal yr BP (Jahns, 2005) and at Lake Kopais from 6200 to
5500 cal yr BP (Greig and Turner, 1974) even if such changes are ob-
served only ca. 4000 cal yr BP at Lake Xinias (Bottema, 1979;
Digerfeldt et al., 2007). Similarly, the many studies conducted in
south-western Bulgaria show initial sporadic evidence for cereal crops
and grazing activities from 7500 to 7000 cal yr BP associated with the
increase in the number of settlements during the Late Neolithic
(Marinova et al., 2012). The timing of initial clearing and human impact
is recorded in the same-time interval in southern Greece (7600–
6000 cal yr BP, Atherden et al., 1993) and in Crete (after 6500 cal BP,
Bottema and Sarpaki, 2003). The effects of agropastoral activities were
probably widespread in the southeastern Balkan regions during the
Late Neolithic.

The results obtained in the Lower Angitis Valley suggest that either:
the heart of the large wetlands and the mountain lakes and peat bogs
were too far from the cultivated and grazing areas prior to the Bronze
Age; or the pollen recruitment area was probably too large and diluted
the indicators of anthropogenic transformation of the vegetation cover,
as is the case for the Philippimarsh (Greig and Turner, 1974). Until now,
most of the pollen sites used in northern Greece are probably more
favourable for detecting the effects of climate change on the environ-
ment than to track human impact, because they are not located near ar-
chaeological sites or areas disturbed by human activities.

Environmental changes and local human adaptations

The environmental research shows significant changes in the de-
posits from 6400 to 5800 cal yr BP. The marshy environments are re-
placed by fluvio-lacustrine environments. The alluvial and shallow
lake deposits cover the lower part of the once inhabited foothills, as
shown by the fossilisation of an occupation level attributed to the end
of the Middle Neolithic/start of the Late Neolithic (FC2; Fig. 6). From
then on, the expansion and nature of the wetlands does not fundamen-
tally change until the onset of Antiquity. It is thus probable that the hill
of Fidokoryphi, surrounded by an expanding marshy lake, was aban-
doned, at the latest, after 5600 cal yr BP. Besides, the archaeological re-
search at Dimitra and Kryoneri, respectively located along the Angitis
and the Strymon Rivers, 7 to 8 km from Fidokoryphi, shows that they
were abandoned since the beginning of the 4th millennium BC
(Grammenos, 1997; Malamidou, 2007, in press)

The pollen data evidence two periods of human modification of the
landscape due to agropastoral activities (6300–5600 and 5100–
4700 cal yr BP) corresponding respectively to the end of the Late–
Final Neolithic and the Early Bronze Age periods. During the Neolithic,
despite the succession of a wetter period (6400–5800 cal yr BP) and a
dry event (5800–5700 cal yr BP) documented locally and in the eastern
Mediterranean region in general, the effects on the landscape by human
activities have beendetected continuously. During the Early Bronze Age,
the pollen data show that the edge of themarshwas cultivated and used
for grazing whilst re-occupation of the archaeological sites within a ra-
dius of 10 km took place (Grammenos, 1997; Malamidou, 2007, in
press).

The intermediary period (5600–5300 cal yr BP) is marked by a de-
crease in indicators of cultivation and grazing activities. Nevertheless,
the continuous occurrence of cereal pollen, anthropozoogenous and an-
thropic–nitrophilous taxa, the development of Cistus, Ericaeae, and
Fabaceae, and the constancy of the fire signature suggest the persistence
of agropastoral activities not far from core FC1. Fire may have been used
for temporary clearance for pasture purposes and probably encouraged
the development of Mediterranean shrubs on the edge of the wetlands
and the foothills. Nevertheless, abandonment of the sites occupied dur-
ing the Late Neolithic is assessed by the excavations and settlement dis-
placement is indisputable. The populations moved to cope with
environmental change, but although they moved away from areas
most affected by the risingwater table, they probably settled in the foot-
hills. In contrast to what has been observed in southwestern Bulgaria,
where there is almost no indication of human impact on the vegetation
from 5800 to 5200 cal yr BP (Marinova et al., 2012), the permanence,
even slightly diminished, of anthropogenic indicators confirms
continuity of settlement in the Lower Angitis and Strymon Valley. The
abrupt succession of wet (6400–5800 cal yr BP) and dry periods



(5800–5700 cal yr BP) could have affected the population of eastern
Macedonia, but it is unlikely that the dry and cool conditions of the
short-time climate eventswould have led to the abandonment of settle-
ments located around the large wetlands in the lowlands of the region.
Willcox (2005) states that climate change in the Near East at the start of
the Neolithic transition, in physically very contrasting environments, is
often sufficient to move over very little distances to find different envi-
ronmental conditions.

The lack of archaeological sites dated to this intermediate period and
the weakness of archaeological evidence of such continuity raise the
question of changes in settlement patterns. New archaeological and
palaeoenvironmental data highlight the complexity of settlement pat-
tern during this transitional period. As previously noted, there are no
sites in northern Greece and more largely in the southeastern Balkans
for which the sequence shows uninterrupted occupation from the
Late–Final Neolithic to the Early Bronze Age (Tsirtsoni, 2014, in press).
In easternMacedonia, all types of settlementswere abandoned in coast-
al (e.g., Thasos Island), lowland (e.g., Kryonery and Dikili Tash) and
mountainous areas (e.g., Sidirokastro Cave), although not at the same
time (Maniatis et al., 2014). This indicates that there is no geographical
patterning that could suggest withdrawal to more favourable areas or
spatial progression of a cultural process (Tsirtsoni, 2014, in press). Nev-
ertheless, as suggested for Bulgaria (Leshtakov, 2006), it is possible that
subsistence change supported the development of fairly mobile groups
practising pastoral activities. This could also explain the increase in fire
events and the development of shrublands.

To conclude, the data for the Lower Angitis Valley show that climatic
instability would have necessarily affected human practices and
agropastoral activities, but also indicate that change in the geographical
context and in climate was not sufficient to prevent the sustainability of
the human activities. The persistence of farming and herding activities
during the transitional phase indicates the adaptability of the popula-
tion to cope with environmental changes and points towards the role
of social factors rather than environmental factors alone in triggering
cultural changes. One must therefore look elsewhere for the causes of
cultural transformations that affected societies at the endof theNeolith-
ic in the Balkans. As suggested by Tsirtsoni (2014), based on the archae-
ological data, what appeared to be an effect of depopulation is probably
the expression of a change in settlement patterns, and likely of subsis-
tence patterns, forwhich the cultural, and possibly economic, factors re-
main to be understood.

Conclusions

Research undertaken in the Lower Angitis Valley shows that the en-
vironmental changes that occurred in the southern Balkans during the
Neolithic–Bronze Age transition were complex. Paleoecological data
show a succession of dry events at 5800–5700, 5450 and 5000–
4900 cal yr BP confirming the climatic instability of themiddle Holocene
climate transition. Two periods with farming and pastural activities
(6300–5600 and 5100–4700 cal BP) are evident corresponding to an in-
crease in settlement at the regional scale. The intervening period is
marked by environmental changes, but the continuous occurrence of
anthropogenic taxa suggests the persistence of human activities despite
the absence of archaeological evidence. The results obtained suggest
that environmental factors alone were not sufficient to trigger the ob-
served societal changes and that one should be wary of the determinist
hypotheses proposed to explain the organisation and redistribution of
populations affected by climate change. This raises a fundamentalmeth-
odological problem and should cause us to examinewith caution the re-
sults of research based on existing data sets to resolve questions about
the relationship between nature and societies at supra-regional scales.
Today, there is a need to go beyond the observation of co-occurrence
and the hypothetical causal link between climate change and social
change. For the southeastern Balkans, it is only when we have many
case studies available that we may hope to identify strategies for
adaptation to environmental changes and the specific dynamics of
human groups in social evolution on a regional scale. The complexity
of interactions reveals and limits the scope of deterministic arguments
that are too simplistic. The objective is to reverse the perspective, to de-
veloping new approaches capable to describe on one hand ancient
agrosystems and their resilience, and on the other hand, environmental
transformations very close to human settlements as proposed in this
paper, before estimating the consequences for populations on a regional
or supra-regional scale.
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