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Let G be an undirected bipartite graph with positive integer weights on the edges. We refine the existing decomposition theorem originally proposed by Kao et al., for computing maximum weight bipartite matching. We apply it to design an efficient version of the decomposition algorithm to compute the weight of a maximum weight bipartite matching of G in O( |V |W /k(|V |, W /N ))-time by employing an algorithm designed by Feder and Motwani as a subroutine, where |V | and N denote the number of nodes and the maximum edge weight of G, respectively and k(x, y) = log x/ log(x 2 /y). The parameter W is smaller than the total edge weight W, essentially when the largest edge weight differs by more than one from the second largest edge weight in the current working graph in any decomposition step of the algorithm. In best case W = O(|E|) where |E| be the number of edges of G and in worst case W = W, that is, |E| ≤ W ≤ W. In addition, we talk about a scaling property of the algorithm and research a better bound of the parameter W . An experimental evaluation on randomly generated data shows that the proposed improvement is significant in general.

Introduction

Let G = (V = V 1 ∪ V 2 , E, Wt) be an undirected, weighted bipartite graph where V 1 and V 2 are two non-empty partitions of the vertex set V of G, and E is the edge set of G with positive integer weights on the edges which are given by the weight function Wt: E → N, where N is the set of positive integers. Throughout the paper, we use the symbols N and W to denote the largest weight of any edge and the total weight of G, respectively. The weight of the graph G is defined by W = Wt(G) = e∈E Wt(e). We also assume that the graph does not have any isolated vertex. For uniformity we treat an unweighted graph as a weighted graph having unit weight for all edges.

We use the notation {u, v} for an edge e ∈ E between u ∈ V 1 and v ∈ V 2 , and its weight is denoted by Wt(e) = Wt(u, v). We also say that e = {u, v} is incident on vertices u and v; and u and v are each incident with e. Two vertices u, v ∈ V of G are adjacent if there exists an edge e = {u, v} ∈ E of G to which they are both incident. Two edges e 1 , e 2 ∈ E of G are adjacent if there exists a vertex v ∈ V to which they are both incident.

A subset M ⊆ E of edges is a matching if no two edges of M share a common vertex. A vertex v ∈ V is said to be covered or matched by the matching M if it is incident with an edge of M ; otherwise v is unmatched [START_REF] Bondy | Graph theory with applications[END_REF][START_REF]Graph theory[END_REF].

A matching M of G is called a maximum (cardinality) matching if there does not exist any other matching of G with greater cardinality. We denote such a matching by mm(G). The weight of a matching M is defined as Wt(M ) = e∈M Wt(e). A matching M of G is a maximum weight matching, denoted as mwm(G), if Wt(M ) ≥ Wt(M ) for every other matching M of the graph G.

Observe that, if G is an unweighted graph then mwm(G) is a mm(G), which we write as mwm(G) = mm(G) in short and its weight is given by Wt(mwm(G)) = |mm(G)|. Similarly, if G is an undirected and weighted graph with Wt(e) = c for all edges e in G and c is a constant then also we have mwm(G) = mm(G) with weight of the matching as Wt(mwm(G)) = c * |mm(G)|.

Our Contribution

In [START_REF] Kao | A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees[END_REF][START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF], Kao et al. proposed a decomposition theorem and algorithm for computing weight of a Maximum Weight Bipartite Matching (MWBM) of the bipartite graph G. Our contribution in this paper is a revised version of the existing decomposition theorem and use it efficiently to design an improved version of the decomposition algorithm to estimate the weight of a MWBM of G in time O( |V |W /k(|V |, W /N )) by taking algorithm designed by Feder and Motwani [START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF] as base algorithm, where k(x, y) = log x/ log(x 2 /y).

This algorithm bridges a gap between the best known time complexity of computing a Maximum Cardinality Matching (MCM) and that of computing a MWBM of a bipartite graph. In best case, computation of weight of a MWBM takes O( |V ||E|/k(|V |, |E|)) time which is the same as the complexity of the Feder and Motwani's algorithm [START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF] for computing MCM of unweighted bipartite graph; whereas in worst case it takes O( |V |W/k(|V |, W/N )), that is, |E| ≤ W ≤ W . Further, we provide an interesting scaling property of the algorithm and a better bound of the parameter W . However, it seems to be a challenging problem to get rid of W or N from the complexity.

The modified algorithm works well for general W, but is best known for W = o(|E| log(|V |N )). We also design a revised algorithm to construct minimum weight cover of a bipartite graph in time O( |V |W /k(|V |, W /N )) to identify the edges involved in maximum weight bipartite matching. It is also possible to use other algorithms as a subroutine, for example, algorithms given by Hopcroft and Karp [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] and Alt et al. [START_REF] Alt | Computing a maximum cardinality matching in a bipartite graph in time O(n 1.5 m/ log n)[END_REF] in which case the running times of our algorithm will be O( |V |W ) and O((|V |/ log |V |) 1/2 W ), respectively. An experimental evaluation on randomly generated bipartite graphs shows that the proposed improvement is significant in general.

Roadmap

In Section 2, we give a detailed summary of existing maximum matching algorithms and their complexities for unweighted and weighted bipartite graphs. Section 3 describes modified decomposition theorem and an algorithm to compute the weight of a MWBM. The complexity analysis of the algorithm is discussed in Section 4. The algorithm to compute minimum weight cover of a bipartite graph is given in Section 5, which is used to find the edges of a MWBM. Section 6 provides the experimental comparisons between the modified algorithm and Kao et al.'s algorithm for randomly generated bipartite graphs. We summarize the results in Section 7.

Survey of Maximum Matching in Bipartite Graph

The problem of computing maximum matching in a given graph is one of the fundamental algorithmic problem that has played an important role in the development of combinatorial optimization and algorithmics. A survey of some of the well known existing maximum (cardinality) matching and maximum weight matching algorithms for bipartite graph are summarized in Table 1 andTable 2, respectively. The algorithms with best asymptotic bound are indicated by " * " in these tables. A more detailed and technical discussion of the algorithms can be found in textbooks [START_REF] Korte | Combinatorial optimization: Theory and algorithms[END_REF][START_REF] Schrijver | Combinatorial optimization -polyhedra and efficiency[END_REF][START_REF] West | Introduction to graph theory[END_REF].

Maximum Cardinality Matching

For unweighted bipartite graphs, Hopcroft-Karp [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] 

Maximum Weight Bipartite Matching

Several algorithms have also been proposed for computing maximum weight bipartite matching, improving both theoretical and practical running times. The well known Hungarian method, the first polynomial time algorithm, was introduced by Kuhn [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] and Munkres [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. Fredman and Tarjan [START_REF] Michael | Fibonacci heaps and their uses in improved network optimization algorithms[END_REF] In addition to the above exact algorithms, several randomized and approximate algorithms are also proposed, see for example [START_REF] Duan | Approximating maximum weight matching in near-linear time[END_REF][START_REF] Sankowski | Maximum weight bipartite matching in matrix multiplication time[END_REF]. 

Refined Decomposition Theorem for Maximum Weight Bipartite Matching

We now propose a modified decomposition theorem which is a generalization of the existing decomposition theorem originally proposed by Kao et al. [START_REF] Kao | A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees[END_REF][START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF] and use it to develop a revised version of the decomposition algorithm to decrease the number of iterations and speed up the computation of the weight of a MWBM. Let G = (V = V 1 ∪ V 2 , E, Wt) be an undirected, weighted bipartite graph 1 having V 1 and V 2 as partition of vertex set V . Further, let E = {e 1 , e 2 , . . . , e |E| } be set of edges of G with weights Wt(e i ) = w i for 1 ≤ i ≤ |E|, where w 1 , w 2 , . . . , w |E| are not necessarily distinct. As defined earlier, let N be the maximum edge weight, that is, for all i ∈ {1, 2, . . . , |E|}, 0 ≤ w i ≤ N , and W = 1≤i≤|E| w i be the total weight of G.

Our algorithm considers several intermediate graphs with lighter edge weights. During this process it is possible that weights of some of the edges may become zero. An edge e ∈ E is said to be active if its weight Wt(e) > 0, otherwise it is said to be inactive, that is when Wt(e) = 0. Let there be m (≤ |E|) distinct edge weights in current working graph where w 1 < w 2 < • • • < w m -1 < w m . We denote the first two distinct maximum edge weights in current working graph by H 1 and H 2 (< H 1 ), respectively. Assign H 2 = 0 in case m = 1.

We first build two new graphs referred to as G h and G ∆ h from a given weighted bipartite graph G. For any integer h ∈ [1, N ], we decompose the graph G into two lighter weighted bipartite graph G h and G ∆ h as proposed by Kao et al. [START_REF] Kao | A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees[END_REF][START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF]. A minimum weight cover is a dual of maximum weight matching [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF]

. A cover of G is a function C: V 1 ∪ V 2 → N 0 such that C(v 1 ) + C(v 2 ) ≥ Wt(v 1 , v 2 ) ∀v 1 ∈ V 1 and v 2 ∈ V 2 . Let Wt(C) = x∈V1∪V2 C(x). A cover C is minimum weight cover if Wt(C) is minimum. Formation of G h from G:
The graph G h is formed by including those edges {u, v} of G whose weights Wt(u, v) lie in the range [N -h+1, N ]. Each edge {u, v} in graph G h is assigned weight Wt(u, v)-(N -h). For illustration, G 1 is constructed by the maximum weight edges of G and assigned unit weight to each edge.

Formation of G ∆

h from G: Let C h be the minimum weight cover of G h . The graph G ∆ h is formed by including every edge {u, v} of G whose weight satisfies the condition

Wt(u, v) -C h (u) -C h (v) > 0.
The weight assigned to such an edge is

Wt(u, v) -C h (u) -C h (v).
Theorem 3.1 (The Decomposition Theorem [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF]) Let G be an undirected, weighted bipartite graph. Then (a) for any integer h ∈ [1, N ],

Wt(mwm(G)) = Wt(mwm(G h )) + Wt(mwm(G ∆ h )), (b) in particular (trivial), for h = 1, Wt(mwm(G)) = Wt(mm(G 1 )) + Wt(mwm(G ∆ 1 )).
Note that the Theorem 3.1(b) is derived from Theorem 3.1(a), since for h = 1, we have

mwm(G 1 ) = mm(G 1 )
and Wt(mwm(G 1 )) = Wt(mm(G 1 )) = |mm(G 1 )|.

The Theorem 3.1(b) is used recursively in the Algorithm 1 [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF], to compute the weight of a maximum weight matching of the graph G.

Algorithm 1 Kao et al.'s algorithm [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF] to compute weight of a MWBM.

Input: A weighted, undirected, complete bipartite graph G with positive integer weights on the edges.

Output: Weight of a maximum weight matching of G, that is, Wt(mwm(G)).

Compute-MWM

(G) 1: Construct G 1 from G. 2: Compute mm(G 1
) and find a minimum weight cover

C 1 of G 1 . 3: Construct G ∆ 1 from G and C 1 . 4: if G ∆
1 is empty, 5: then return Wt(mm(G 1 )); 6: else return Wt(mm(G 1 ))+Compute-MWM(G ∆ 1 ).

Remark 3.2 A graph G may not have all edge weights distinct. Consider the set of distinct edge weights of G. The Algorithm 1 works efficiently only when the largest edge weight differs by exactly one from the second largest edge weight of the current graph during an invocation of Theorem 3.1(b) in each iteration.

Remark 3.3 Observe that for arbitrary h ∈ [1, N ], mwm(G h ) need not be equal to mm(G h ), that is, we cannot always conclude that mwm(G h ) = mm(G h ).
One of our objectives is to investigate those values of h for which mwm(G h ) is equal to mm(G h ) apart from the trivial value of h as 1 in each iteration of the Algorithm 1 to generate G h having all its edge weights as 1.

In order to get the speed up whenever possible, by decreasing the number of iterations whenever possible, we revise the Theorem 3.1(b) and propose Theorem 3.4 which gives a domain of h ∈ [1, N ] where mwm(G h ) = mm(G h ) and as a consequence of that we can write

Wt(mwm(G h )) = Wt(mm(G h )) = h * |mm(G h )|.
It works for h = 1 and performs well especially when the largest edge weight differs by more than one from the second largest edge weight in the current graph in a decomposition step during an iteration.

Theorem 3.4 (The Modified Decomposition Theorem) The following equalities hold for any integer

h ∈ [1, H 1 -H 2 ]
where H 1 and H 2 (< H 1 ) are the first two distinct maximum edge weights of graph G, respectively. We assign H 2 = 0 in case all edge weights are equal.

(a) mwm(G h ) = mm(G h ), (b) Wt(mwm(G)) = h * Wt(mm(G h )) + Wt(mwm(G ∆ h )).
Proof: The proof of the above statements are based on the construction of new graphs G h and G ∆ h from G and Theorem 3.1(a).

(a) To prove that for any integer h where

1 ≤ h ≤ H 1 -H 2 , mwm(G h ) = mm(G h ) holds true, it is
enough to prove the same for the maximum value (i) of h, that is, for h = H 1 -H 2 . As specified earlier, the construction of G h is done by choosing those edges {u, v} of G that have weight

Wt(u, v) ∈ [N -h + 1, N ] = [H 1 -(H 1 -H 2 ) + 1, H 1 ] = [H 2 + 1, H 1 ]. Since H 1 ∈ [H 2 + 1, H 1 ]
, G h has only the heaviest edges of G and each such edge is assigned the same weight. Thus, mwm

(G h ) = mm(G h ) for h = H 1 -H 2 . (b) Observe that h ∈ [1, H 1 -H 2 ] and [1, H 1 -H 2 ] ⊆ [1, N ]. So, by using Theorem 3.1(a) we have, ∀h ∈ [1, H 1 -H 2 ], Wt(mwm(G)) = Wt(mwm(G h )) + Wt(mwm(G ∆ h )). (i) For illustration, consider h = c where 1 ≤ c ≤ H 1 -H 2 . Then as per the formation of G h from G, Gc is built by choosing those edges of G that have weight Wt(u, v) ∈ [N -(c -1), N ]. Since, c -1 ≥ 0 and N ∈ [N -(c -1), N ] for any c ∈ [1, H 1 -H 2 ],
Gc has only the heaviest edges of G. For optimization, choose h = H 1 -H 2 , the maximum possible value of h.

Also by using the Theorem 3.4(a), mwm

(G h ) = mm(G h ) for all h ∈ [1, H 1 -H 2 ]. Weight of each edge (ii) {u, v} in G h is exactly Wt(u, v) -(N -h) = H 1 -(H 1 -h) = h. Therefore, Wt(mwm(G h )) = h * Wt(mm(G h )) = h * |mm(G h )|.

Hence for any integer

h ∈ [1, H 1 -H 2 ], Wt(mwm(G)) = Wt(mwm(G h )) + Wt(mwm(G ∆ h )) = h * Wt(mm(G h )) + Wt(mwm(G ∆ h )).
This completes the proof.

2 Remark 3.5 The equality mwm(G h ) = mm(G h ) in Theorem 3.4(a) is not true for h > H 1 -H 2 and h ≤ N .

To show that for any

h ∈ [H 1 -H 2 + 1, N ] the statement mwm(G h ) = mm(G h ) is not true, it is enough to show the same essentially for h = H 1 -H 2 + 1. Observe that h = H 1 -H 2 + 1 ≥ 2, since H 1 > H 2 . According to the construction of G h , it is formed by edges {u, v} of G whose weights Wt(u, v) ∈ [N -h + 1, N ] = [H 1 -(H 1 -H 2 + 1) + 1, H 1 ] = [H 2 , H 1 ], that is, G h is built with the maximum weight edges and second maximum weight edges of G, because {H 1 , H 2 } ∈ [H 2 , H 1 ]. The weight of each heaviest edge {u, v} of G in G h is exactly Wt(u, v) -(N -h) = H 1 -(H 1 -h) = h
which is greater than or equal to 2 and that of each second heaviest edge {u, v} of G in G h is exactly

Wt(u, v) -(N -h) = H 2 -(H 1 -h) = (H 2 -H 1 ) + h = (1 -h) + h = 1.
Hence mwm(G h ) = mm(G h ) for such a value of h. Example 3.6 Consider the graph shown in the Figure 1 [START_REF] Cheriyan | Can a maximum flow be computed in o(nm) time?[END_REF][START_REF] Duan | Approximating maximum weight matching in near-linear time[END_REF] and their respective calculated weights are 6 and 1.

(a). Let h = H 1 -H 2 + 1. So, h = H 1 - H 2 + 1 = 9 -4 + 1 = 6. As shown in the Figure 1(b), G h is formed by the edges {u, v} whose weights Wt(u, v) ∈ [N -h + 1, N ] = [9 -6 + 1, 9] =

Hence mwm(G

h ) = mm(G h ).
We use the modified decomposition Theorem 3.4 to design a recursive Algorithm 2 to compute the weight of a mwm(G). 

= H1 - H2 + 1 = 6, G h is extracted, but mwm(G h ) = mm(G h ).
Algorithm 2 Compute weight of a maximum weight matching of G.

Input: A weighted, undirected, complete bipartite graph G with positive integer weights on the edges.

Output: Weight of a maximum weight matching of G, that is, Wt(mwm(G)).

WT-MWBM(G)

1: Assume that initially Wt(mwm(G)) = 0.

2: Find h = H 1 -H 2 from the current working graph G. 3: Construct G h from G. 4: Compute mm(G h ). 5: Find minimum weight cover C h of G h . 6: Construct G ∆ h from G and C h . 7: if G ∆ h is empty (that is, G ∆ h has no active edge) 8: then return h * |mm(G h )|; 9: else return h * |mm(G h )| + WT-MWBM(G ∆ h ).
Example 3.7 Consider the bipartite graph shown in Figure 2(a). The Algorithm 2 finds the weight of a MWBM in just two iterations, as the algorithm is designed for the best h in every invocation of WT-MWBM( ), whereas algorithm by Kao et al. [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF] requires 500 iterations because it considers h = 1 in every invocation of Compute-MWM( ).

Correctness of the algorithm follows from the construction of G h and G ∆ h and the modified decomposition Theorem 3.4. 

G, h = 495. (b) G h is extracted. (c) C h is the weighted cover of G h . (d) G ∆ h is formed from G h and C h . Compute WT-MWBM(G ∆ h ).
4 Complexity of the Modified Algorithm

Let G = (V = V 1 ∪ V 2 , E, Wt)
be the initial input graph and N denotes the maximum edge weight of G, that is, for all i ∈ {1, 2, . . . , |E|}, 0 ≤ w i ≤ N and W = 1≤i≤|E| w i is the total weight of G. Further, let {w 1 , . . . , w m } be the set of distinct edge weights of G, where m ≤ |E|.

Based on the constructions of G h and G ∆ h , the modified decomposition Theorem 3.4 and the Algorithm 2, we can easily observe that in worst case the maximum number of possible iterations of WT-MWBM( ) is N , when h = 1 in each iteration in the current working graph. Whereas in the best case, all the edge weights of G are the same and so we will have h = N for the present decomposition. As a consequence the algorithm will terminate in the first iteration itself.

As the complexity analysis of the Algorithm 2 is almost similar to that presented elsewhere [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF], the details are available in Appendix 8 (see page [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. The algorithm takes O( |V |W /k(|V |, W /N )) time to compute the weight of a mwm(G) by using the algorithm by Feder and Motwani [START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF], as a subroutine.

Let L i consists of edges of remaining G (after i -1-th iteration) whose weights reduce in G ∆ h in i-th iteration. Also let there be p iterations, l i = |L i | for i = 1, 2, . . . , p ≤ N and h i = H i1 -H i2 in the i-th iteration, where H i1 and H i2 (< H i1 ) are the first two distinct maximum edge weights of the remaining graph G after the i -1-th iteration.

From the detailed complexity analysis we have,

l 1 h 1 +l 2 h 2 +• • •+l p h p = W. Let l 1 +l 2 +• • •+l p = W . Observe that, in worst case, if h i = 1 for all i ∈ [1, p], then W = p i=1 l i = W. And in best case, if h 1 = N , then W = |E|.
Moreover, the parameter W is smaller than W , essentially when the largest edge weight differs by more than one from the second largest edge weight in the current working graph in decomposition step during at least one iteration of the algorithm. Therefore in best case (iii) Proof: As mentioned in the detailed complexity analysis of the Algorithm 2 (described in Appendix 8, page 22), let L i consists of edges of remaining graph G (left after i -1-th iteration), whose weights reduce in G ∆ h in the i-th iteration of WT-MWBM( ). Assume that there be p iterations for the Algorithm 2,

l i = |L i | for i = 1, 2, . . . , p ≤ N and h i = H i1 -H i2 in the i-th iteration, where H i1 and H i2 (< H i1 )
are the first two distinct maximum edge weights of the remaining graph G after i -1-th iteration. From the detailed complexity analysis we have,

l 1 h 1 + l 2 h 2 + • • • + l p h p = W and l 1 + l 2 + • • • + l p = W .
Observe that for the new graph G, the number of iterations in Algorithm WT-MWBM( G) still remains p and in the computation of WT-MWBM( G), L i consists of l i number of edges of the remaining graph G (after i -1-th iteration), whose weights reduce in G ∆ h in i-th iteration of WT-MWBM( ). In this case, if h i = H i1 -H i2 in the i-th iteration, where H i1 and H i2 (< H i1 ) are the first two distinct maximum edge weights of the remaining graph G after i -1-th iteration, respectively, then

h i = H i1 -H i2 = α * H i1 -α * H i2 = αh i where i = 1, 2, . . . , p, l 1 h 1 + l 2 h 2 + • • • + l p h p = l 1 αh 1 + l 2 αh 2 + • • • + l p αh p = αW,
and

l 1 + l 2 + • • • + l p = W .
Therefore, the modified Algorithm That is, multiplication by an integer constant to all the weight of edges of a weighted bipartite graph G does not affect the time complexity of the modified decomposition algorithm for computing the weight of a MWBM of the bipartite graph. The following remark talks about a conditional scaling down property of the algorithm for the graph G. Proof: Without going into more detailed and repeated writing, as mentioned in the previous Proposition 4.1, we have:

l 1 h 1 + l 2 h 2 + • • • + l p h p = W, where h i = H i1 -H i2 and l 1 + l 2 + • • • + l p = W .
Let g = GCD(w 1 , w 2 , . . . , w |E| ). Observer that, in any iteration i (where i = 1, 2, . . . , p) both H i1 and H i2 are divisible by g. Hence, according to the definition of h i s, each h i = H i1 -H i2 is also divisible by the factor g.

Therefore, W = l 1 + l 2 + • • • + l p ≤ l 1 (h 1 /g) + l 2 (h 2 /g) + • • • + l p (h p /g) ≤ (l 1 h 1 + l 2 h 2 + • • • + l p h p )/g = W g ≤ W.
This completes the proof. 2

Complexity Analysis by Considering Other Base Algorithms

We also analyze the complexity of the Algorithm 2 by considering the Hopcroft-Karp algorithm [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] and Alt-Blum-Mehlhorn-Paul algorithm [START_REF] Alt | Computing a maximum cardinality matching in a bipartite graph in time O(n 1.5 m/ log n)[END_REF] as base algorithms.

With Respect to the Hopcroft-Karp Algorithm: Hopcroft-Karp algorithm [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] presents the best known worst-case performance for getting a maximum matching in a bipartite graph with runtime of O( |V ||E|). Hence the recurrence relation for running time of the Algorithm 2 with respect to Hopcroft-Karp algorithm is

T (|V |, W , N ) = O( |V |l 1 ) + T (|V |, W , N ) and T (|V |, 0, 0) = 0 Therefore, T (|V |, W , N ) = O( |V |l 1 ) + O( |V |l 2 ) + • • • + O( |V |l p ) = O |V | p i=1 l i = O( |V |W ).
With Respect to the Alt-Blum-Mehlhorn-Paul Algorithm: A bit better algorithm for dense bipartite graph is Alt-Blum-Mehlhorn-Paul algorithm [START_REF] Alt | Computing a maximum cardinality matching in a bipartite graph in time O(n 1.5 m/ log n)[END_REF] which is (log |V |) 

Finding a Maximum Weight Matching

The Algorithm 2 computes only the weight of a mwm(G) of a given graph G. To find the edges of a mwm(G), we give a revised algorithm for constructing a Minimum Weight Cover (MWC) of G which is a dual of maximum weight matching. As mentioned before, a cover of G is a function 

C: V 1 ∪ V 2 → N 0 such that C(v 1 ) + C(v 2 ) ≥ Wt(v 1 , v 2 ) ∀v 1 ∈ V 1 and v 2 ∈ V 2 . Let Wt(C) = x∈V1∪V2 C(x). We say C is minimum weight cover if Wt(C) is minimum. Let C be a MWC of a graph G. Lemma 5.1 ([19]) Let C ∆ h be any minimum weight cover of G ∆ h . If C is a function on V (G) such that for every u ∈ V (G), C(u) = C h (u) + C ∆ h (u),

MWC(G)

1: Assume that initially Wt(mwm(G)) = 0. 

2: Find h ← H 1 -H 2 from the current working graph G. 3: Construct G h from G. 4: Compute mm(G h ). 5: Find minimum weight cover C h of G h . 6: Construct G ∆ h from G and C h . 7: if G ∆ h is empty (that is, G ∆ h has no active edge) 8: then return C h ; 9: else 10: C ∆ h ← MWC(G ∆ h ); 11: return C, where C(u) = C h (u) + C ∆ h (u) for all nodes u in G.

Experimental Evaluation

The Algorithm 2 is efficient because of the modified decomposition Theorem 3.4. In order to understand the practical importance of the Algorithm 2, we report experimental evaluations of the same for the randomly generated weighted bipartite graphs.

Implementation and Experimental Environments

We As mentioned in [START_REF]Approximate parameterized string matching under weighted hamming distance[END_REF][START_REF] Hazay | Approximate parameterized matching[END_REF] the Approximate Parameterized String Matching (APSM) problem under Hamming distance error model is computationally equivalent to the MWBM problem in graph theory. The input data relation between the above problems are:

Input Data Description and Its Randomness

(a) length of the pattern is equal to weight of the bipartite graph, and (b) alphabet size of the pattern is equal to number of vertices in a partition of the vertex set of the corresponding bipartite graph.

Experimental Results

We have tested the respective algorithms with large input data sets. The details are given below. In each of the graphs, the output of our Algorithm 2 (denoted in short by "Modified Algorithm") corresponds to the red colored unbroken line, whereas that of for the Algorithm 1 (denoted in short by "Kao et al.'s Algorithm") corresponds to the red colored dotted line.

Experiment 6.1 This experiment is done for a total of 250 pseudo-randomly generated bipartite graphs, each of its weight is fixed to 1000 unit where size of each of the partitions of the vertex set of bipartite graph varies from 2 to 26. each row reports the average output of 10 different random graphs, each of whose number of vertices and weight are fixed. For example, the numerical row corresponding to '# Vertices in a partition' equal to 15 reports the following. For the 10 randomly generated different bipartite graphs, each of whose size of the vertex set is 30 and weight is 1000 unit. And on an average the number of iterations of WT-MWBM( ) and Compute-MWM( ) in the Algorithms 2 and 1 are 10.20 and 391.20, respectively; whereas average time taken by the respective algorithms to compute the weight of a MWBM are 0.001089 and 0.044228 seconds.

Each numerical row of the

Figure 3 shows the comparison on the number of iterations for the random graphs with different size partition of the vertices for the Algorithms 2 and 1. Similarly, Figure 4 gives the comparison time taken by the same algorithms for the random graphs with different size partition of the vertices.

2

The next two experiments are done over the graphs corresponding to the randomly generated strings over the DNA alphabet Σ = {A, C, G, T } of different lengths. Experiment 6.2 In this experiment we have fixed the size of each partition of each graph to 4 and randomly generated a total of 62 bipartite graphs for 62 different weights. See Table 4 for more details. Unlike previous experiment, each row reports the iterations and time comparison of the Algorithms 2 and 1 on a randomly generated bipartite graph with fixed size vertex and weight. Figures 5 and6 describe the pictorial representation of the Table 4. Tab. 4: Experimental result for the 62 pseudo-randomly generated weighted bipartite graphs as considered in Experiment 6.2. The number of vertices in each partition of the vertex set of each of the graphs is fixed to be 4, but weight of the graph varies. We have fine-tuned the existing decomposition theorem originally proposed by Kao et al. in [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF], in the context of maximum weight bipartite matching and applied it to design a revised version of the decomposition algorithm to compute the weight of a maximum weight bipartite matching in O( |V |W /k(|V |, W /N )) time by employing an algorithm designed by Feder and Motwani [START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF], as base algorithm. We have also analyzed the algorithm by using Hopcroft-Karp algorithm [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] and Alt-Blum-Mehlhorn-Paul algorithm [START_REF] Alt | Computing a maximum cardinality matching in a bipartite graph in time O(n 1.5 m/ log n)[END_REF] as base algorithms, respectively. The algorithm performs well especially when the largest edge weight differs by more than one from the second largest edge weight in the current working graph during an invocation of WT-MWBM( ) in any iteration. Further, we have given a scaling property of the algorithm and a bound of the parameter W as |E| ≤ W ≤ W GCD(w1,w2,...,w |E| ) ≤ W , where GCD(w 1 , w 2 , . . . , w |E| ) denotes the GCD of the positive edges weights {w 1 , w 2 , . . . , w |E| } of the weighted bipartite graph. The algorithm works well for general W, but is the best known for W = o(|E| log(|V |N )). The experimental study shows that performance of the modified decomposition algorithm is satisfactory.

Appendix: Detailed Complexity Analysis of Algorithm 2

Here we give complexity analysis of the Algorithm 2 in general. It is almost similar as done in the paper [START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF]. We assume that a maximum heap [START_REF] Thomas | Introduction to algorithms[END_REF] is used to store the distinct edge weights along with the associated edges of G. However, it is very difficult and challenging to get rid of W or N from the complexity. This modified algorithm works well for general W, but is best known for W = o(|E| log(|V |N )).

(iv) Jensen's Inequality [START_REF] Hardy | Inequalities[END_REF]. If f (x) is a convex function on an interval I and µ 1 , µ 2 , . . . , µn are positive weights such that n i=0 µ i = 1 then

f n 0 µ i x i ≤ n i=0 µ i f (x i ).

Tab. 1 :

 1 algorithm, which is based on augmenting path technique, offers the best known performance for finding maximum matching in time O(|E| |V |). In case of dense unweighted bipartite graphs, that is with |E| = Θ(|V | 2 ), slightly better algorithms exist. An algorithm by Alt et al. [1] obtains a maximum matching in O(|V | 1.5 |E|/ log |V |) time. In case of |E| = Θ(|V | 2 ), this becomes O(|E| |V |/ log |V |) and is also log |V |-factor faster than Hopcroft-Karp algorithm. This speed up is obtained by an application of the fast adjacency matrix scanning technique of Cheriyan, Hagerup and Mehlhorn [4]. The algorithm proposed by Feder-Motwani [10] has the time complexity O(|E| |V |/k(|V |, |E|)), where k(x, y) = log x/ log(x 2 /y). Complexity survey of maximum unweighted bipartite matching algorithms. Year Author(s) Complexity 1973 * Hopcroft and Karp [16] O(|E| |V |) 1991 Alt, Blum, Mehlhorn and Paul [1] O(|V | 1.5 |E|/ log |V |) 1995 * Feder and Motwani [10] O(|E| |V |/k(|V |, |E|))

  improved this with running time O(|V |(|E| + |V | log |V |)) for sparse graph by using Fibonacci heaps. An O(|V | 3/4 |E| log N )-time scaling algorithm was proposed by Gabow [12] under the assumption that edge weights are integers. A different and faster scaling algorithm was given by Gabow and Tarjan [13] with running time O( |V ||E| log(|V |N )). Kao et al. [19] proposed an O( |V |W/k(|V |, W/N ))time decomposition technique under the assumptions that weights on the edges are positive and W = o(|E| log(|V |N )).

(

  ii) Only maximum weight edges of G are included in G h .

Fig. 1 :

 1 Fig. 1: (a) An undirected bipartite graph G with positive integer weights on the edges. (b) Considering h= H1 -H2 + 1 = 6, G h is extracted, but mwm(G h ) = mm(G h ).

Fig. 2 :

 2 Fig. 2: (a) An undirected, weighted bipartite graph G with positive integer weights on the edges. In the current graphG, h = 495. (b) G h is extracted. (c) C h is the weighted cover of G h . (d) G ∆ h is formed from G h and C h . Compute WT-MWBM(G ∆ h ).

  , it requires O( |V ||E|/k(|V |, |E|)) time and in worst case O( |V |W/k(|V |, W/N )), to compute weight of a maximum weight matching. That is, |E| ≤ W ≤ W .This time complexity bridges a gap between the best known time complexity for computing a Maximum Cardinality Matching (MCM) of unweighted bipartite graph and that of computing a MWBM of a weighted bipartite graph. In best case, for computation of weight of a MWBM, the Algorithm 2 takes O( |V ||E|/k(|V |, |E|)) time which is the same as the complexity of the Feder and Motwani's algorithm[START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF] for computing MCM of unweighted bipartite graph; whereas in worst case it (Algorithm 2) takes O( |V |W/k(|V |, W/N )) time which is the same as the complexity of the Kao et al.'s algorithm[START_REF]A decomposition theorem for maximum weight bipartite matchings[END_REF]. However, it is very difficult and challenging to get rid of W or N from the complexity. This modified algorithm works well for general W, but is best known for W = o(|E| log(|V |N )).

4. 1

 1 Some More Advantages: Scaling Up and Down, and GCD Properties Some other advantages of the modified decomposition algorithm is stated by the following propositions. Let G = (V, E, Wt) be an undirected, weighted bipartite graph, E = {e 1 , e 2 , . . . , e |E| } be the set of positive integer weight edges with weights Wt(e i ) = w i > 0 (where 1 ≤ i ≤ |E|), N be the maximum edge weight and W = 1≤i≤|E| w i be the total weight of G. The modified decomposition Algorithm 2 computes weight of a maximum weight bipartite matching of G in O( |V |W /k(|V |, W /N )) time, where |E| ≤ W ≤ W .

Proposition 4 . 1 (

 41 Multiplicative Scaling Up Property) Let G be a new weighted bipartite graph constructed by multiplying a large constant α ∈ N to each edge weight w i of the initial weighted bipartite graph G. Then for both the graphs G and G, the complexity of the Algorithm 2 remains O( |V |W /k(|V |, W /N )) where |E| ≤ W ≤ W ; whereas for the graph G, the complexity of the Algorithm 1 becomes O( |V |αW/k(|V |, αW/N )).

  2 will take O( |V |W /k(|V |, W /N )) time to compute the weight of a mwm( G) by using the algorithm by Feder and Motwani [10] as a subroutine; whereas time required for the Kao et. al.'s Algorithm 1 is O( |V |αW/k(|V |, αW/N )) time.

Remark 4 . 2 (

 42 Multiplicative Scaling Down Property) Let we scale down each edge weights of G by multiplying a factor of 1 α and get a new graph G, where α is the Greatest Common Divisor (GCD) of the positive edge weights of G. Then the time complexity of the Algorithm 2 for computing a MWBM of both the graphs G and G remains same.Though during the complexity calculation of Algorithm 2 we have stated a bound for W as: |E| ≤ W ≤ W , but the following proposition gives a more better bound of the parameter W .

Proposition 4 . 3 (

 43 GCD Property) Let G = (V, E, Wt) be an undirected, weighted bipartite graph and E = {e 1 , e 2 , . . . , e |E| } be the set of positive weight edges with weights Wt(e i ) = w i > 0 for 1 ≤ i ≤ |E|. Further, let the GCD of the positive edge weights of G is denoted by GCD(w 1 , w 2 , . . . , w |E| ), then |E| ≤ W ≤ W GCD(w 1 , w 2 , . . . , w |E| ) ≤ W.

Algorithm 3

 3 then C is minimum weight cover of G. Using this lemma we design an O( |V |W /k(|V |, W /N ))-time revised algorithm to compute a MWC of G. The correctness of this algorithm is clear from the Lemma 5.1 and the time complexity analysis is similar to that given in the previous section. Calculate a MWC C of G. Input: A weighted, undirected, complete bipartite graph G with positive integer weights on the edges. Output: A minimum weight cover C of G.

  Now as deduced byKao et al. in [19], finding a maximum weight matching by using the given vertex cover takes O( |V ||E|/k(|V |, |E|)) time. Since |E| ≤ W ≤ W, so altogether O( |V |W /k(|V |, W /N )) time requires to find a MWBM of G.

For a frame

  of fixed number of vertices in a partition of the vertex set and fixed weight of bipartite graph G, we have generated the random weighted G by assigning random (uniformly distributed) weight to the randomly (uniformly distributed) picked up edges of G. The outputs of these experiments for an input bipartite graph G are: (a) the number of iterations of WT-MWBM( ) and Compute-MWM( ) in the Algorithms 2 and 1, respectively, for the graph G and (b) total time taken by the respective algorithms to compute the weight of a MWBM of G.

Fig. 3 :

 3 Fig. 3: Partition size vs. Iteration graph corresponding to the Experiment 6.1. Weight of each input graph is fixed to be 1000 unit.

Fig. 4 :

 4 Fig. 4: Partition size vs. Time graph corresponding to the Experiment 6.1. Weight of each input graph is fixed to be 1000 unit.

Fig. 5 :

 5 Fig. 5: Weight vs. Iteration graph corresponding to the Experiment 6.2. The number of vertices in each partition of the vertex set is fixed to be 4.

.

  Let the running time of WT-MWBM(G) be T (|V |, W , N ) excluding the initialization. Let L be the set of the heaviest weight edges in G. So up to the Step 3, construction of G h requires O(|L| log |E|) time. The Step 4 takes O( |V ||L|/k(|V |, |L|)) time by using Feder and Motwani's algorithm[START_REF] Feder | Clique partitions, graph compression and speeding-up algorithms[END_REF] to compute mm(G h ). In Step 5, C h can be found in O(|L|) time from this matching. Let L 1 be the set of edges of G adjacent to some node u with C h (u) > 0, that is, L 1 consist of edges of G whose weights reduce inG ∆ h . Let l 1 = |L 1 |. Step 6 updates every edges of L 1 in the heap in O(l 1 log |E|) time. Since L ⊆ L 1 , Step 1 to 6 takes O( |V |l 1 /k(|V |, l 1 )) time altogether. Let l i = |L i | for i = 1, 2, . . . , p ≤ N and h i = H 1 -H 2for i-th phase of the recursion, where L i consists of edges of remaining G whose weights reduce in G ∆ h on i-th iteration. Note that,l 1 h 1 + l 2 h 2 + • • • + l p h p = W. Let l 1 + l 2 + • • • + l p = W . Observe that if h i = 1 for all i ∈ [1, p], then W = p i=1 l i = W . Step7 uses at most T (|V |, W , N ) time, where W (< W ) is the total weight of G ∆ h and N (< N ) is the maximum edge weight of G ∆ h . Hence the recurrence relation for running time is T (|V |, W , N ) = O( |V |l 1 /k(|V |, l 1 )) + T (|V |, W , N ) andT (|V |, 0, 0) = 0 Therefore, T (|V |, W , N ) = O |V |l 1 k(|V |, l 1 ) + O |V |l 2 k(|V |, l 2 ) + • • • + O |V |l p k(|V |, l p ) Let f (x) = x log x.Note that it is a convex function, so by Jensen's inequality(iv) , This lead to the running time complexity as follows.T (|V |, W , N ) = O |V | log |V | W log |V | 2 -W log W N |V |W /k(|V |, W /N )).This is better than the O( |V |W/k(|V |, W/N )) time as mentioned in [19]. The parameter W is smaller than W which is the total weight of G, essentially when the heaviest edge weight differs by more than one unit from the second heaviest edge weight in a current working graph during a decomposition in any iteration of the algorithm. In best case the algorithm takes O( |V ||E|/k(|V |, |E|)) time to compute a maximum weight matching and in worst case O( |V |W/k(|V |, W/N )), that is, |E| ≤ W ≤ W . This time complexity bridges a gap between the best known time complexity for computing a Maximum Cardinality Matching (MCM) of unweighted bipartite graph and that of computing a MWBM of a weighted bipartite graph.

  Tab. 2: Complexity survey of maximum weight bipartite matching algorithms.

	Year(s)	Author(s)	Complexity
	1955,	Kuhn [21],	O(|V | 4 )
	1957	Munkres [22]	(Hungarian method)
	1960	Iri [17, 24]	O(|V | 2 |E|)
	1969	Dinic and Kronrod [8, 24]	O(|V | 3 )
	1984, 1987 * Fredman and Tarjan [11]	O(|V |(|E| + |V | log |V |))
	1985	Gabow [12]	O(|V | 3/4 |E| log N )
	1989 *	Gabow and Tarjan [13]	O( |V ||E| log(|V |N ))
	1999	Kao, Lam, Sung and Ting [18] O( |V |W )
	2001 *	Kao, Lam, Sung and Ting [19] O( |V |W/k(|V |, W/N ))
	2014 *		O( |V |W )
	(This work)		O((|V |/ log |V |) 1/2 W )
			O( |V |W /k(|V |, W /N ))

  1/2 -factor faster than Hopcroft-Karp algorithm for maximum bipartite matching. Hence the time complexity, with respect to Alt-Blum-Mehlhorn-Paul algorithm as a base algorithm, is O((|V |/ log |V |) 1/2 W ) and it is (log |V |) 1/2factor faster than the above case.

  have implemented both Kao et al.'s algorithm [19] and Algorithm 2 in C++ and compiled them using g++ 4.8.2-19ubuntu1 compiler. All the experiments have been performed on a Desktop PC with an Intel R Xeon R (E5620 @ 2.40 GHz) Processor, 32.00 GB RAM and 1200 GB Hard Disk, running the Ubuntu 14.04.1 LTS (Trusty Tahr) 64-bit Operating System.

  Table3is corresponding to 10 different random graphs, each of whose size of each partition of the vertex set and weight of the graphs are fixed. Only for this experimental result, Tab. 3: Efficiency comparison between the Algorithms 2 and 1 for the 250 pseudo-randomly generated weighted bipartite graphs as considered in Experiment 6.1.

	# Vertices	Weight	Algorithm 2	Algorithm 1 (by Kao et al.)
	in a Partition	of Graph	# Iterations Time (Sec.) # Iterations Time (Sec.)
	2	1000	8.40	0.000050	422.60	0.002356
	3	1000	8.20	0.000084	397.60	0.003769
	4	1000	6.60	0.000104	402.20	0.005922
	5	1000	7.20	0.000146	444.40	0.009566
	6	1000	8.60	0.000214	408.60	0.010882
	7	1000	7.00	0.000251	418.60	0.014451
	8	1000	10.40	0.000405	455.20	0.019964
	9	1000	7.20	0.000376	366.40	0.018605
	10	1000	7.40	0.000411	400.20	0.024284
	11	1000	8.60	0.000525	391.20	0.025592
	12	1000	9.00	0.000670	391.20	0.031218
	13	1000	8.40	0.000722	391.20	0.035947
	14	1000	8.40	0.000811	391.20	0.039951
	15	1000	10.20	0.001089	391.20	0.044228
	16	1000	9.60	0.001156	391.20	0.048768
	17	1000	9.40	0.001217	391.20	0.053661
	18	1000	9.60	0.001411	391.20	0.058682
	19	1000	11.00	0.001680	391.20	0.064456
	20	1000	8.60	0.001492	391.20	0.070000
	21	1000	11.80	0.002226	391.20	0.077403
	22	1000	11.00	0.002284	391.20	0.083169
	23	1000	13.40	0.002924	391.20	0.089702
	24	1000	13.80	0.003254	391.20	0.097006
	25	1000	13.00	0.003327	391.20	0.103550
	26	1000	12.20	0.003342	391.20	0.110369

  Weight vs. Time graph corresponding to the Experiment 6.2. The number of vertices in each partition of the vertex set is fixed to be 4. In the final experiment also we have fixed the size of a partition of each graph to 4 and but for a total of 71 randomly generated bipartite graphs for 71 different and large weights. See Table5for more details. 2Tab. 5: Experimental result for the 71 pseudo-randomly generated bipartite graphs as considered in Experiment 6.3. Cardinality of each partition of the vertex set is fixed to be 4, but weight of the graph varies largely.

	# Vertices in a Partition 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 500 Fig. 6: Experiment 6.3 # Vertices Weight of Graph 10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0 1000 Time (Sec.) Length of the pattern/Weight of the Bipartite Graph Algorithm 2 Algorithm 1 (by Kao et al.) # Iterations Time (Sec.) # Iterations Time (Sec.) 3.00 0.000121 5.00 0.000152 4.00 0.000109 13.00 0.000229 9.00 0.000260 38.00 0.000965 6.00 0.000165 52.00 0.001257 5.00 0.000141 81.00 0.001641 5.00 0.000142 109.00 0.002703 18.00 0.000419 133.00 0.003255 5.00 0.000144 116.00 0.002648 6.00 0.000192 139.00 0.003666 4.00 0.000122 192.00 0.004288 31.00 0.000745 189.00 0.004863 6.00 0.000165 203.00 0.004828 6.00 0.000159 277.00 0.006564 6.00 0.000166 298.00 0.006679 9.00 0.000195 186.00 0.003468 8.00 0.000222 268.00 0.007218 7.00 0.000188 243.00 0.005828 8.00 0.000193 390.00 0.009581 8.00 0.000205 380.00 0.010258 11.00 0.000297 395.00 0.011187 11.00 0.000248 368.00 0.009515 12.00 0.000230 466.00 0.012499 5.00 0.000135 535.00 0.012997 6.00 0.000126 405.00 0.008078 8.00 0.000205 397.00 0.008670 6.00 0.000168 602.00 0.014516 6.00 0.000168 648.00 0.016127 13.00 0.000283 553.00 0.015214 6.00 0.000158 639.00 0.016306 10.00 0.000242 426.00 0.009439 94.00 0.002554 456.00 0.011925 9.00 0.000267 591.00 0.017001 6.00 0.000162 775.00 0.016471 7.00 0.000189 676.00 0.015674 6.00 0.000162 665.00 0.013834 6.00 0.000162 860.00 0.021617 6.00 0.000163 701.00 0.017824 6.00 0.000150 777.00 0.016954 6.00 0.000142 827.00 0.019956 8.00 0.000194 788.00 0.018098 6.00 0.000168 690.00 0.016825 6.00 0.000175 584.00 0.011463 37.00 0.000864 727.00 0.016040 5.00 0.000139 585.00 1500 2000 2500 Modified Algorithm 3000 Kao et al.'s Algorithm in a Partition Weight of Graph Algorithm 2 Algorithm 1 (by Kao et al.) # Iterations Time (Sec.) # Iterations Time (Sec.) 4 1000 11.00 0.000241 368.00 0.009156 4 10000 7.00 0.000196 4284.00 0.009156 4 20000 8.00 0.000193 7722.00 0.009156 4 30000 6.00 0.000161 14942.00 0.352380 4 40000 12.00 0.000326 19786.00 0.589580 4 50000 8.00 0.000213 22172.00 0.619935 4 60000 8.00 0.000207 28763.00 0.806167 4 70000 8.00 0.000215 22042.00 0.588712 4 80000 9.00 0.000190 28054.00 0.662195 4 90000 10.00 0.000240 21440.00 0.447115 4 100000 36.00 0.000970 32975.00 0.865868 4 110000 10.00 0.000222 53322.00 1.320364 4 120000 8.00 0.000199 57741.00 1.466250 4 130000 6.00 0.000156 54970.00 1.209947 4 140000 9.00 0.000204 50849.00 1.102937 4 150000 12.00 0.000221 65220.00 1.502660 4 160000 9.00 0.000183 44405.00 0.868532 4 170000 8.00 0.000188 71264.00 1.668321 4 180000 9.00 0.000212 68565.00 1.391208 4 190000 7.00 0.000182 58417.00 1.261169 4 200000 8.00 0.000199 84882.00 2.177765 4 210000 21.00 0.000411 55160.00 0.861068 4 220000 7.00 0.000171 90913.00 1.931699 4 230000 10.00 0.000247 87201.00 2.051072 4 240000 15.00 0.000315 112402.00 2.794717 4 250000 8.00 0.000180 102078.00 2.032557 4 260000 17.00 0.000353 105322.00 2.745294 4 270000 10.00 0.000251 88840.00 2.062840 4 280000 15.00 0.000368 94300.00 2.191243 4 290000 8.00 0.000191 79909.00 1.639328 4 300000 18.00 0.000364 105128.00 2.443022 4 310000 8.00 0.000188 120579.00 2.260459 4 320000 8.00 0.000216 125597.00 3.134282 4 330000 10.00 0.000236 151182.00 3.940926 4 340000 9.00 0.000196 166492.00 3.507791 4 350000 7.00 0.000181 151689.00 3.194340 4 360000 7.00 0.000186 166928.00 3.850720 4 370000 9.00 0.000212 167154.00 3.666068 4 380000 10.00 0.000162 147368.00 2.885593 4 390000 21.00 0.000388 137803.00 2.969532 4 400000 9.00 0.000202 158026.00 3.690540 4 410000 10.00 0.000256 153238.00 4.177567 4 420000 15.00 0.000350 168440.00 4.543331 4 430000 8.00 0.000174 195902.00 4.567199 4 440000 7.00 0.000192 165922.00 4.078337 4 450000 8.00 0.000199 183992.00 4.580142 4 460000 8.00 0.000190 208746.00 4.302464 4 470000 14.00 0.000234 229321.00 5.470295 4 480000 8.00 0.000210 199475.00 5.379294 4 490000 10.00 0.000266 239623.00 6.374744 4 500000 11.00 0.000238 186026.00 4.691640 4 510000 12.00 0.000298 201041.00 4.919859 4 520000 9.00 0.000218 189501.00 4.317819 4 530000 9.00 0.000205 151069.00 3.144941 0.009586 4 540000 8.00 0.000219 230280.00 5.777490	3500
	4	4	2200	550000	8.00 7.00	0.000186 0.000164 254817.00	747.00 5.943550	0.016389
	4 4	4 4 4	2250 2300	560000 570000 580000	6.00 20.00 10.00 7.00 7.00	0.000175 0.000433 240510.00 0.000252 0.000178 260619.00 0.000177 230100.00	897.00 6.015034 1091.00 5.542112 4.817907	0.022177 0.028346
	4 4	4 4 4	2350 2400	590000 600000 610000	6.00 11.00 8.00 8.00 7.00	0.000164 0.000239 240188.00 0.000185 0.000202 260924.00 0.000179 261019.00	740.00 5.613709 954.00 5.703650 6.318097	0.014673 0.022879
	4	4	2450	620000	6.00 13.00	0.000168 0.000295 281111.00	998.00 5.626782	0.023334
	4 4	4 4 4	2500 2550	630000 640000 650000	18.00 9.00 5.00 10.00 10.00	0.000439 0.000227 276200.00 0.000159 0.000227 286193.00 0.000213 255659.00	735.00 5.939048 1086.00 7.329997 5.345079	0.017273 0.023379
	4	4	2600	660000	7.00 6.00	0.000200 0.000165 321451.00	1035.00 8.061329	0.027333
	4 4	4 4 4	2650 2700	670000 680000 690000	6.00 7.00 4.00 8.00 19.00	0.000155 0.000170 243797.00 0.000133 0.000173 286228.00 0.000396 306680.00	1313.00 5.014862 1348.00 6.904159 8.027268	0.032712 0.031344
	4	4	2750	700000	10.00 4.00	0.000254 0.000134 330990.00	922.00 7.337250	0.020268
	4		2800		9.00	0.000271	1030.00	0.028735
	4		2850		15.00	0.000361	1206.00	0.029624
	4		2900		42.00	0.000958	1144.00	0.026569
	4		2950		5.00	0.000153	1266.00	0.030598
	4		3000		6.00	0.000180	1249.00	0.033715
	4		3050		8.00	0.000216	1117.00	0.027538

(iii) In best case, all the edge weights of G are the same. So, the algorithm terminates in just one iteration and hence W = O(|E|).
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