
HAL Id: hal-01358210
https://hal.science/hal-01358210v1

Submitted on 31 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Productivity of a High Level Synthesis Compiler
versus HDL

Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, François Berry

To cite this version:
Maxime Pelcat, Cédric Bourrasset, Luca Maggiani, François Berry. Design Productivity of a High
Level Synthesis Compiler versus HDL. 2016 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling and Simulation (IC-SAMOS 2016), Jul 2016, Agios Konstantinos,
SAMOS, Greece. �10.1109/SAMOS.2016.7818341�. �hal-01358210�

https://hal.science/hal-01358210v1
https://hal.archives-ouvertes.fr

Design Productivity of a High Level Synthesis
Compiler versus HDL

Maxime Pelcat∗‡, Cédric Bourrasset†, Luca Maggiani§‡ and François Berry‡
∗INSA Rennes, IETR, UBL, Rennes, France, 35708, Email: mpelcat@insa-rennes.fr

†Atos/Bull Center for Excellence in Parallel Programming, CINES, Montpellier, France, Email: see http://www.atos.net
‡Institut Pascal, Aubière, France 63178, Email: francois.berry@lasmea.univ-bpclermont.fr

§Scuola Superiore Sant’Anna, Pisa, Italy, Email: see http://www.santannapisa.it

Abstract—The complexity of hardware systems is currently
growing faster than the productivity of system designers and
programmers. This phenomenon is called Design Productivity
Gap and results in inflating design costs.

In this paper, the notion of Design Productivity is precisely
defined, as well as a metric to assess the Design Productivity of a
High-Level Synthesis (HLS) method versus a manual hardware
description. The proposed Design Productivity metric evaluates
the trade-off between design efficiency and implementation qual-
ity. The method is generic enough to be used for comparing
several HLS methods of different natures, opening opportunities
for further progress in Design Productivity.

To demonstrate the Design Productivity evaluation method,
an HLS compiler based on the CAPH language is compared to
manual VHDL writing. The causes that make VHDL lower level
than CAPH are discussed. Versions of the sub-pixel interpolation
filter from the MPEG HEVC standard are implemented and a
design productivity gain of 2.3× in average is measured for the
CAPH HLS method. It results from an average gain in design
time of 4.4× and an average loss in quality of 1.9×.

I. INTRODUCTION

One major challenge of electronic system design is cur-
rently a growing Design Productivity Gap, as stated by the
International Technology Roadmap for Semiconductors [1].
The Design Productivity Gap refers to a faster increase in
the complexity of systems than in the productivity of system
designers. In order to solve this problem, the world of
Electronic Design Automation (EDA) is currently evolving
towards higher levels of architecture abstraction [2]. The
most commonly used languages for EDA logic synthesis
today are the Hardware description language (HDL) languages
VHDL, Verilog and SystemVerilog. HDL languages are used
to describe a hardware implementation at a Register Transfer
Level (RTL). However, High-Level Synthesis (HLS) methods
are currently becoming market practice in the industry [2].
They raise the level of abstraction of the code manipulated by
designers higher than RTL. HLS methods ambition to improve
design efficiency while maintaining solid implementation qual-
ity, or Quality of Results (QoR).

The main motivation behind HLS is to improve the produc-
tivity of hardware designers by providing some correct-by-
construction features and by separating the correctness design
concern from the timing design concern.

Depending on the HLS method, different higher-level lan-
guages are used such as the imperative C and C++ languages

and their extensions SystemC and OpenCL, or the BlueSpec
functional language [3]. Dataflow HLS, based on the Dataflow
Process Network (DPN) paradigm [4], is an alternative to
classical HLS methods where the input language does not
follow an imperative paradigm. The DPN paradigm is suited to
signal processing problems where limited control is necessary
and computation should be triggered by data availability [4].
Dataflow languages for HLS exist both in academia (e.g. CAL
[5] and CAPH [6]) and in the industry (e.g. Cx [7]).

This paper defines a metric for evaluating the Design
Productivity (DP) of an HLS method versus manual HDL
writing. The study does not intend to promote a particular HLS
language or method or to display advanced quality metrics
on a given Field-Programmable Gate Array (FPGA). Instead,
this paper defines a precise and reproducible procedure for
assessing design productivity. While difficult, this task is
fundamental to drive the future developments of HLS methods.
To our knowledge, this paper is the first one that aims to clarify
the HLS modalities of “raising the abstraction” and Design
Productivity.

The application chosen for applying the method is the
MPEG High Efficiency Video Coding (HEVC) [8] inter-
polation filter. This 2-dimensional separable Finite Impulse
Response (FIR) filter is a simple yet costly operation that
requires fine implementation tuning. Moreover, the convolu-
tions composing this filter are canonical examples of signal
processing. The compiler chosen for evaluating DP assessment
is the CAPH compiler, compiling the CAPH language [6].
CAPH is a dataflow language based on a functional paradigm.

This paper is organised as follows: Section II presents
the related work. Then, the proposed protocol for evaluat-
ing design productivity is presented in Section III and the
experimental set-up in Section IV. Experiments using HDL
and HLS are detailed respectively in Sections V and VI.
Finally, experimental results are presented in Section VII and
Section VIII concludes the paper.

II. RELATED WORK

The success of HLS tools such as Catapult [9] and the
release of integrated tools by major FPGA companies (i.e.
Xilinx Vivado HLS and Altera SDK for OpenCL) demonstrate
the industrial interest in raising the level of abstraction of
hardware design. When discussing the benefits of HLS, design

productivity is often invoked (e.g. in [10], [11]) but a precise
definition of design productivity has never been proposed.

In [11], many different HLS tools are compared qualitatively
but no precise quantitative comparison is developed. An HLS
productivity increase of 8× w.r.t. manual writing of a Wireless
LAN baseband processor is evoked. Authors refer to the
design time gain as the gain in design productivity, without
considering design quality.

In [10], a sphere decoder implementation with the AutoESL
HLS tool is compared to equivalent manual HDL. Approxi-
mate development times (in man-weeks) are given, as well
as resource information including Look-Up Tables (LUTs),
registers, DSP48 blocks and 18K RAMs on a Xilinx Virtex
5 FPGA. The design frequencies are not displayed and the
results focus on area. The proposed study analyzes more
generally the pros and cons of an HLS method, taking into
account many dimensions of design quality.

In [12], authors compare two implementations of the
MPEG-4 Simple Profile video decoder, one written in the CAL
language and one in VHDL. The type of FPGA is not precisely
defined and the efforts of development are approximatively
expressed in man-months (12 for VHDL and 3 for CAL).
The protocol proposed in this paper intends to make design
productivity from different studies of this type comparable.

In [13], CAPH and CAL designs are compared to VHDL
designs in terms of implementation quality. The considered
applications include motion detection, connected component
labeling and parts of a JPEG encoder. The method proposed
in this paper adds the notion of design efficiency.

The study in [14] compares the Xilinx Vivado HLS method
to manual HDL. The metric used to evaluate design efficiency
is called Non-Recurring Engineering (NRE) effort and consists
of measuring design time. This paper goes further than the
work in [14] by defining a metric of design productivity and
a precise protocol to evaluate the benefits of HLS. Moreover,
a discussion on the origins of HLS benefits is developed.

III. EVALUATING THE DESIGN PRODUCTIVITY OF HLS

The performance of an HLS method is a trade-off between
a system quality to optimize (frequency, area, memory...) and
design efficiency. It can be illustrated by a radar chart such
as the one in Figure 1. The smaller the polygon is, the
higher the productivity because it means that both design
efficiency and implementation quality are high. Note that
period = 1/frequency is minimized to maximize frequency.

Next sections introduce 3 metrics to assess an HLS method:
the gain in NRE design time GNRE evaluating design effi-
ciency, the quality loss LQ evaluating implementation quality
and finally the design productivity PD evaluating the trade-off
between design quality and design efficiency.

A. Evaluating Design Efficiency

Design efficiency results from a combination of many
parameters including the complexity of the design under de-
velopment, the amount of Non-Recurring Engineering (NRE)
tasks to execute (i.e. the cost of the new code to produce),

Design time Debug time

Operating periodSilicon Area

Design efficiency

Implementation quality

Des
ign

 Productivity

Fig. 1. Example of a trade-off radar chart with implementation quality and
design efficiency parameters.

the expressiveness, and “developer friendliness” of the design
languages, the designer’s experience, the testability of the
results, the simulation time (influencing the time of design
and verification steps), and the maturity of the design tools.

Quantitative quality metrics can be computed to characterize
the HLS and HDL codes. System development time can be
divided into:

— 1.a NRE design time, i.e. time necessary for writing the
code of a functionality,

— 1.b NRE verification time, i.e. time used for building a
testbench and unit testing,

— 1.c the system integration time, i.e. time necessary to build
from components a system respecting its requirements.

The system integration time, comprising verification and
validation, depends on features that go beyond digital system
design (analog to digital conversion, energy management,
physical environment, etc.). Reducing integration time by an
HLS method would require a system completely defined with
the HLS method, including for example I/O drivers. The
system tested in this paper, like all systems using HLS today,
integrates HLS generated blocks within a framework written
with standard HDL. Integration time is thus considered out of
the scope of this study.

Design times are controversial because they depend on the
designer’s experience. Different times may be required for a
design by a junior hardware designer and a senior hardware
designer. In the experiments, design times measured for HDL
and HLS reflect the time required by a single developer
experienced on software signal processing but novice in both
VHDL and CAPH languages. The experiments reflect the
capacity of HLS to offer a high-level API to a novice designer.
This choice is consistent with the important objective of HLS
to open hardware design to a broader public of developers.
A selection of the time taken into account in measurements
reduces the subjectivity of the approach. The time taken to
refer to books and papers for syntactic details is excluded
from the measured time. The development times are thus sums
of short design and verification times with a quantum of 1’
(minute) and an average length of 15’.

Code properties complement the timing results:

— 2.a number of Source Lines Of Code (SLOC) (excluding
blank lines and comments),

— 2.b number of characters in the code (excluding blank
lines and comments).

These grades reflect the complexity and expressiveness of
the languages. A lower number of lines in the HLS code than
in the HDL code reflects the abstraction of some implementa-
tion concerns. These numbers do not fully reflest complexity,
as for instance, one line of regular expression may have a
greater complexity than 20 lines of C code. As a consequence,
this information is not used in the DP metric but rather as an
additional information.

B. Evaluating Implementation Quality

On an FPGA implementation, quality metrics are divided
into area and time information:
— 3.a number of Look-Up Tables (LUTs)
— 3.b number of registers,
— 3.c number of Random Access Memory (RAM) blocks,
— 3.d number of Digital Signal Processor (DSP) cores.
— 4.a processing latency,
— 4.b minimum operating period.

One number cannot reflect the capacity of an HLS method
to improve a designer’s productivity. In order to make more
objective the comparison between methods, a list of elements
is displayed, providing a multi-dimensional evaluation of the
Quality of Results (QoR). Even in this multi-objective context,
giving a main DP metric to a method is necessary to compare
different methods.

C. A New Metric of HLS Design Productivity

As HLS aims at reducing design time, the gain in global
NRE time GNRE is the most important metric of design
efficiency. GNRE is defined formally as:

GNRE =
tHDLdesign + tHDLverif

tHLSdesign + tHLSverif

(1)

where tHDLdesign and tHDLverif are respectively the design and veri-
fication times when writing the application in HDL. Similarly,
tHLSdesign and tHLSverif are the design and verification times when
writing the application in HLS. A time gain GNRE greater
than 1 reflects the ability of an HLS method to save design
and/or verification time. If only design and verification times
are evaluated to assess an HLS method, methods resulting in
a fast design with low quality are favored. In the proposed
method, a quality degradation metric is included that penalizes
low quality systems.

Implementation quality metrics depend on the constraints
of the design (strict frequency constraint, strong resource
limitations...). To take into account in a single cost the different
quality metrics constituting a QoR vector, the implementation
cost is defined as the weighted sum of normalized features
to minimize [15]. The normalization of the different hardware
quality metrics is done with respect to the maximum amount
on the chosen system. For instance, the maximum period of
the design obtained with HDL is computed as:

prdHDLnorm = prdHDL/prdsystemmax , (2)

where prdsystemmax is the maximum period for supporting the
application (for instance, to ensure the frame rate). In the
general case of HLS DP measurement, we define quality loss
as:

LQ =

∑
φHLS
i ∈ΦHLS αi × (φHLSi)∑

φHDL
i ∈ΦHDL αi × (φHDLi)

, (3)

where ΦHLS is the sets of normalized quality metrics to
minimize and αi are normalizing coefficients. In particular,
in the case of an FPGA, we can define quality loss as:

LQ =
α1 × lutHLSnorm + α2 × regHLSnorm + α3 × ramHLS

norm+

α1 × lutHDLnorm + α2 × regHDLnorm + α3 × ramHDL
norm+

α4 × dspHLSnorm + α5 × latHLSnorm + α6 × prdHLSnorm

α4 × dspHDLnorm + α5 × latHDLnorm + α6 × prdHDLnorm
(4)

where lutHDLnorm and lutHLSnorm are numbers of LUTs (3.a),
regHDLnorm and regHLSnorm are numbers of registers (3.b), ramHDL

norm

and ramHLS
norm are numbers of RAM blocks (3.c), dspHDLnorm

and dspHLSnorm are numbers of DSP blocks (3.d), latHDLnorm and
latHLSnorm are latencies (4.a), and prdHDLnorm and prdHLSnorm are
operating periods (4.b).

The parameters αi can be tuned to favor different hardware
features. We propose 2 approaches: 1) architecture-relative
where each alphai is set to 1, and 2) fair to place all metrics
on an equal footing, where each (non null) pair of values is
normalized to its maximum:

αi =

{
0, if max(φHLSi , φHDLi) = 0.

(max(φHLSi , φHDLi))−1, otherwise.
(5)

for φHLSi ∈ ΦHLS and φHDLi ∈ ΦHDL. The architecture-
relative approach is specific to a single device because it favors
metrics that are sparse on the measured platform. Experimental
results (Section VII) focus on the fair approach, putting all
parameters on the same footing.

Quality loss LQ reflects the loss due to rising the level
of abstraction. A low LQ reflects a good HLS generated
code quality. We introduce the HLS Design Productivity (DP)
metric as a unique grade to assess the trade-off between design
efficiency and quality. HLS DP ratio is defined as:

PD = GNRE/LQ (6)

An HLS method can be considered successful if its DP
is greater than 1. Two HLS methods can be compared in
terms of DP, provided that the same approach is used for both
methods, a greater DP reflecting a better trade-off between
design efficiency and implementation quality.

D. Design Productivity Assessment Protocol

A few rules must be respected to evaluate in practice the DP
of an HLS method versus HDL: the same hardware platform
and the same synthesis (back-end) tools should be used for
both HLS and HDL, the designer should have similar experi-
ence in both the HLS and the HDL methods, the developed
use case should have precise specifications and requirements,
design periods in both languages should be interleaved, and the
same (preferably default) synthesis tool configurations should
be used for both HLS and HDL. A particular effort is made
in this paper to obtain reliable DP measurements by following
these different rules.

IV. EXPERIMENTAL SET-UP TO MEASURE THE DESIGN
PRODUCTIVITY OF AN HLS COMPILER VERSUS HDL

In this section, details are given on the use case and the
tools that this study leverages on to assess HLS vs. HDL.

A. The HEVC Interpolation Filter Use Case

The motivations for using HEVC interpolation filtering as
the application for design productivity assessment are three-
fold. The use case is specifically chosen because it requires
bit-exact implementation to conform to the HEVC standard.
Moreover, it is based on canonical DSP operations. Finally, the
HEVC interpolation filter requires only fixed point operations
that are efficiently implementable on an FPGA.

Video compression leverages on redundancies between im-
ages to reduce data rate. The performance of the latest video
compression algorithms such as MPEG HEVC [8] is mostly
due to a precise matching between blocks in an image and the
corresponding blocks in near images. This matching must be
precise also when a motion has occurred that is not an exact
multiple of the pixel size. HEVC interpolation filters provide
fractional-pixel motion compensation between images with a
quarter-pixel precision on luminance.

The HEVC interpolation filter generates a shifted version of
a block of pixels by applying a filter with coefficients (taps)
generated from a Discrete Cosine Transform (DCT) and an
Inverse Discrete Cosine Transform (IDCT) [8]. The block can
be left shifted of 1/4, 1/2 or 3/4 of a pixel by the filter displayed
in Figure 2. The upper part of the figure is a shift register.
The filter coefficients tap[i] depend on the selected sub-pixel
position σ. The filter has 8 taps for the 1/2 pixel position and
7 taps for the 1/4 and 3/4 positions [8].

x[t]
tap[7]

tap[6]

x[t-1]

tap[5]

x[t-2]

tap[4]

x[t-3]

tap[3]

x[t-4]

tap[2]

x[t-5]

tap[1]

x[t-6]

tap[0]

x[t-7]

y[t-7]

8

16 16 16 16 16 16 16 16

8 888888

16

/64 10 clip8 8

horizontal filter
input pixel flow

filtered pixel flow

Fig. 2. Signal flow of an HEVC interpolation filter for horizontal shift of
1/4, 1/2 or 3/4 of a pixel.

Figure 2 only represents horizontal filtering. The extension
to a 2-D filtering version requires 8 horizontal filters. The re-
sults of these filters undergo a second 8-tap filtering operation
with equivalent coefficients for 1/4, 1/2 and 3/4 upper shifts.
This bidirectional filter is illustrated in Figure 3 where line
First In, First Out data queues (FIFOs) delay the pixels of
one line length L to correctly synchronize the outputs of the
different horizontal filters.

horizontal filter

horizontal filter

horizontal filter

horizontal filter

horizontal filter

horizontal filter

input
pixel
flow picture line FIFO

x[t]

x[t-L]

x[t-2L]

x[t-3L]

x[t-4L]

x[t-5L]

x[t-6L]

x[t-7L]

8

16

16

16

16

16

16

horizontal filter

horizontal filter 16

16

22

22

22

22

22

22

22

22
22 /642

10

clip8

8

filtered
pixel
flow

y[t-7L-7]

tap[0]

tap[1]

tap[2]

tap[3]

tap[4]

tap[5]

tap[6]

tap[7]

Fig. 3. Signal flow of a 2-dimensional HEVC interpolation filter for horizontal
and vertical shift of 1/4, 1/2 or 3/4 of a pixel.

The use case being normative, data sizing is derived from
the standard specifications. This is an important point because
it limits the design choices and helps comparing different
versions of the code. The presented filters correspond to the
core of the luminance filters. In the next sections, the presented
filters serve as the basis for the HLS vs. HDL study.

B. Used Design Tools and Platform

The software tools and versions used for the study are:
• Altera Quartus II versions 13.1.0.162 and VHDL 2008,
• Mentor Graphics Modelsim ASE, delivered with Quartus,
• CAPH Compiler version 2.7.0.
A golden reference of the filter Design Under Test (DUT) is

coded in C language. This implementation is out of the scope
of the study and serves for verifying both the HDL and the
CAPH implementations. The HDL code is ported to an FPGA-
based smart camera named DreamCAM [16]. This camera
embeds an Altera Cyclone III EP3C120F780C7N FPGA.
Using a camera aims at making the study close to designer’s
best practices by not limiting the study to simulations. A
complex pattern of data valid signals makes the filter not trivial
to port on the camera.

V. DESIGNING HEVC INTERPOLATION FILTERS IN VHDL

In this section, the use case is implemented in HDL and
qualitative as well as quantitative elements are given on
the design effort. VHDL [17] is a language for hardware
description standardized in 1987 and revised in 1993, 2000,
2002, and 2008. A VHDL program consists of explaining how
a digital circuit is structured and what the behavior of each

component is. These behaviors can be purely combinatorial,
sequential or more commonly mixed.

A. Writing the MPEG HEVC Interpolation Filters in VHDL

1) Assumptions and Verification of the Use Case Design:
The number of possible designs in HDL for a filter such
as the ones presented in Section IV is large. Accesses to
external memory to store intermediate values can alter much
the quality. It is also possible to use existing Semiconductor
Intellectual Property Core (IP) blocks or “design templates”
(especially for FIR filters). The choice of parallelizing or
sequencing operations is also very important.

In order to narrow the design space, some assumptions
are taken on the input and output pixel streams of our use
case. The filter is synchronous to a unique clock and has
asynchronous reset. The input pixel stream comes in raster
order (i.e. scanning the image from left to right and from top
to bottom) in a stream of 8-bit pixels. A data valid signal
states whether the current clock event corresponds to a data
value. Each filter configuration (1/4, 1/2 or 3/4 horizontal and
vertical shifts) is studied independently and coefficients are
considered constant. In an HEVC encoder or decoder, the filter
must then be duplicated for the different positions. A sufficient
number of clock events without data is given for the filter to
resume execution at the end of a pixel line. The last assumption
is compatible with most CMOS image sensors that provide
horizontal and vertical blanking. The assumptions foster a
pipelined design with FIFOs such as the ones illustrated in
Figures 2 and 3. Several versions of the filter are designed with
their test benches. The golden reference code in C language
provides reference values for debug.

2) VHDL Version 1: Horizontal Filter with Minimal Inter-
faces: In this version of the filter, implementing the diagram
in Figure 2, the stream of input pixels is considered continuous
(1 clock event = 1 data). A transition to zero of the data valid
signal resets the filter. It is interpreted as the beginning of
a new line and thus, the filter needs to gather 8 data before
outputting the first valid data. Based on the writing of this
HDL filter, the time needed to describe the pipelined quarter
pixel filter in HDL is 358’ for design and 288’ for verification,
including time for writing the test bench, RTL simulation, and
debug.

The algorithm description time includes all the reflections
on the description (data types, generics, sizing, the use of
functions, data conversions, use of best practices...) and the
writing, from scratch, of the VHDL files.

3) VHDL Version 2: Horizontal Filter with Interfaces for
the DreamCAM Camera: When porting the filter onto the
camera, the VHDL block must input and output a data valid
signal (indicating pixel validity for each clock event) as well as
a frame valid signal. The frame valid signal is continuously
set during the reception of a frame and reset at the end of
the frame. Clock events that do not carry data happen pseudo
randomly during the reception of an image.

The time needed to describe the filter in HDL is 162’ for
design and 783’ for debug, including 152’ on a test bench and

631’ on the DreamCAM platform. VHDL Version 2 shows that
porting an algorithm onto a real platform has a large cost, even
when the algorithm has already passed some RTL verification
process.

4) VHDL Version 3: 2-D Filter with Interfaces for the
DreamCAM Camera: This filter is designed by reusing the
VHDL version 2 horizontal filter and combining filter results
of several lines such as in Figure 3. The time needed to
describe the filter in HDL is 232’ for design and 775’ for
verification.

The main difficulties comes again from the control part of
the filter that determines when a data is valid or not and on
which cycle it must appear on a given signal. In particular,
synchronizing data valid and frame valid signals have neces-
sitated most of the time. Next section discusses the sources
of VHDL non-optimality in terms of design productivity that
make room for HLS methods.

B. Discussion on the Origins of VDHL Complexity

1) The Counterpart of VHDL Versatility: In order to build
verifiable logic, it is recommended to design a fully syn-
chronous system. Using VHDL, a designer is however free to
design asynchronous circuits and gated clocks that are chal-
lenging to verify. For instance, while rarely being necessary,
latch constructs may be generated by mistake with VHDL,
for instance with an incomplete IF THEN ELSE statement
in a combinatorial process. Latches are strongly discouraged
in literature [17] and this type of “low level implementation
bugs” is at the heart of the need for HLS methods [3].

2) A Unique Language for Different Objectives: A dif-
ficulty of VHDL comes from the combination, in a single
language, of simulation-oriented and implementation-oriented
features. For example, operators such as modulus MOD or
remainder REM are generally not synthesizable [17].

3) Some Unintuitive Properties: The absence of precedence
in logical operators makes the following expression:

y <= a and b or c and d

equivalent to:
y <= ((a and b) or c) and d.

This property stands in contradiction to the mathematical
order of operation and can cause errors that are difficult to
detect for a new programmer.

4) The Historical Reasons: Some difficulties of the VHDL
language come from the different techniques available to im-
plement a single functionality. For instance, an 8-bit unsigned
integer signal data can be declared by

SIGNAL data : INTEGER RANGE 0 TO 255;

or by
SIGNAL data : UNSIGNED (7 DOWNTO 0);

Choosing between the two solutions requires a knowledge
that is not related to system design but rather to language
implementation details. The integer style is typically used to
manipulate data within a design while the unsigned style is
used for designing I/Os.

5) The Fundamental Reason: The main productivity lim-
itation while using VHDL is the tangle of value and timing
concerns. A value is considered as correctly received only if
it arrives at an exact predefined clock event. During design,
a lot of time is spent to obtain a value one cycle later or,
worse, one cycle sooner than what the current design outputs.
As an input signal of an entity must be present when its
corresponding valid signal occurs, much of the design time
is spent to synchronize data and control signals.

Now that VHDL design characteristics have been presented,
next section details for comparison the design of the same filter
versions with the CAPH HLS language.

VI. DESIGNING HEVC INTERPOLATION FILTER IN CAPH

A. Introduction to the CAPH Language

CAPH [6] is a domain-specific language (DSL) for de-
scribing and implementing stream processing applications
on configurable hardware, such as FPGAs. CAPH was first
released in 2011 and is based upon the dataflow model of
computation where an application is described as a network
of autonomous processing elements (actors) exchanging tokens
through unidirectional channels (FIFOs).

As the CAPH language is not mainstream like the VHDL
language, details on the syntax and semantics are given in this
section. The behavior of individual actors in CAPH is specified
using a set of transition rules, where a rule consists of a set
of patterns, involving inputs and local variables, and a set
of expressions, describing modifications of outputs and local
variables. Tokens circulating on channels and manipulated by
actors are either data tokens (carrying actual values, such as
pixels for example) or control tokens (acting as structuring
delimiters). With this approach, fine grain processing (down
to the pixel level) is expressed without global control or
synchronization.

Listing 1. An actor computing the sum of values along lists in CAPH.

actor suml
in (i: signed<8> list)
out (o: signed<16>)
var st: {S0,S1}=S0
var s : signed<16>
rules

(st:S0, i:’<) -> (st:S1, s:0)
| (st:S1, i:’v) -> (st:S1, s:s+v)
| (st:S1, i:’>) -> (st:S0, o:s)

As an example, the actor coded in Listing 1 com-
putes the sum of a list of values. Given the input stream
< 1 2 3 > < 4 5 6 >, — where 1, 2, . . . represent data
tokens and < and > control tokens respectively encoding the
start and the end of a list — the CAPH program produces
the values 6, 15. For this, the CAPH code uses two local
variables : An accumulator s and a state variable st. st
indicates whether the actor is actually processing a list or
waiting for a new list to start. In the first state, the accumulator
keeps track of the running sum. The first rule can be read
as : when waiting for a list (st=S0) and reading the start
of a new one (i=’<), then reset accumulator (s:=0) and
start processing (st=S1). The second rule says : When

processing (st=S1) and reading a data value (i=’v), then
update accumulator (s:=s+v). The last rule is fired at the
end of the list (i=’>); the final value of the accumulator is
written on output o. This style of description fits a stream-
based execution model where pixels are processed “on the
fly”.

For describing the structure of dataflow graphs, CAPH
embeds a textual Network Description Language (NDL). NDL
is a higher-order, purely functional language in which dataflow
graphs are described by defining and applying wiring func-
tions. A wiring function is a function accepting and returning
wires (graph edges). This concept is illustrated in Figure 4,
where the dataflow graph on the left is described by the CAPH
program on the right. In this example, two wiring functions
are defined : neigh13 and neigh33. The former takes a
wire and produces a bundle of three wires representing the
1×3 neighborhood of the input stream, by applying twice the
one-pixel delay actor dp. The latter takes a wire and produces
a bundle of nine wires representing the 3×3 neighborhood of
the input stream, by applying the previously defined neigh13
function and the dl actor (one-line delay)

net neigh13(x) =
 x,
 dp x,
 dp (dp x);

net neigh33(x) =
 neigh13 x,
 neigh13 (dl x),
 neigh13 (dl (dl x));

net
 (o11,o12,o13),
 (o21,o22,o23),
 (o31,o32,o33)
= neigh33(i);

DPDP

DL DP DP

DL DP DP

i

o11

o12

o13

o21

o22

o23

o31

o32

o33

Fig. 4. Example of a graph description in CAPH.

The tool chain supporting the CAPH language comprises a
reference interpreter and a compiler producing both SystemC
and synthetizable, platform-independent VHDL code. The
SystemC back-end is used for verification.

B. Writing the MPEG HEVC Interpolation Filters in CAPH

1) Assumptions and Verification of the Use Case Design:
The assumptions on the filter are the same as in the VHDL
description case: pixel flow in raster order, unique clock, valid
signal and sufficient blanking (Section V-A1).

Data validation is automated by the CAPH compiler based
on the structural tokens < and > in the bitstream (Sec-
tion VI-A). The CAPH environment provides FIFOs im-
plemented in VHDL that automate data valid management.
Moreover, a VHDL wrapper for the CAPH-generated VHDL
code exists for the DreamCAM camera, driving inputs and
FIFOs with the data valid signals of the camera. These features
may appear unfair for the comparison between VHDL and
CAPH but, in our opinion, VHDL and CAPH are treated on
an equal footing, as they are both ported to the platform with
tools helping the connection of their communication means

(signals in VHDL, FIFOs in CAPH) to their environment (a
CMOS sensor and a USB port).

2) CAPH Version 1: Horizontal Filter with Minimal Inter-
faces: In version 1 of the HEVC filter in CAPH, the code is
composed of a single actor receiving the image bitstream and
sending the horizontally filtered data. The test bench represents
only 5 lines of code connecting the actor to the input and
output streams. This simple test bench is possible because the
HLS compiler performs only functional verification and time
verification is left to the synthesizer. The actor implements a
shift register and a counter discards the 7 first output tokens
that do not represent valid data. The actor has four transition
rules and most of the design time is taken to find the right
way to represent the shift register in CAPH. In this version,
the shift register is made of a set of internal variables in the
CAPH actor. The filter is functionally equivalent to its VHDL
counterpart after 103’ for design and 65’ for writing the test
bench and debugging the filter with a SystemC simulation.

3) CAPH Version 2: Horizontal Filter with Interfaces for
the DreamCAM Camera: Similarly to its VHDL counterpart,
this version 2 of the filter in CAPH is adapted to the Dream-
CAM needs, resetting the filter at the end of each line and
adding modularity to the description. The filter is decomposed
into 8 pipelined multiply-accumulate actors. The last actor in
the pipeline has a different code. It gathers the intermediate
products into a filtered and clipped value and generates the
output flow. The main difficulty comes from getting rid of
unwanted tokens, i.e. tokens that appear while the pipeline is
filled up and emptied. The time for designing this version,
composed of 9 actors, can be decomposed into 71’ for design
and 72’ for verification.

4) CAPH Version 3: 2-D Filter: In this 2-D version of the
filter, 7 new delay actors are first instantiated and connected.
CAPH higher order functions are used to create a large number
of actors with a code of limited size. Delay actors insert L
first dummy tokens in the stream, where L is the length of a
picture line, and then forward the arriving pixel values. The
time needed to describe the 2-D filter in CAPH is split into
187’ for design and 169’ for verification.

C. Discussion on the Reduction of Complexity when using
CAPH HLS Instead of VHDL

A dataflow Model of Computation (MoC) abstracts two
elements:
• time. Instead of reacting to clock events, actors react to

the arrival of data tokens,
• amount of data stored in FIFOs. The MoC assumes

FIFOs of sufficient size to store pending tokens.
These two abstractions make it possible a first verification

of the process independently from the notion of time. The de-
signer can thus verify very early in the design process whether
the output values conform to the specification. Moreover,
by generating SystemC code for simulation and verification,
the CAPH compiler leverages on an optimized simulation
environment. Writing the test bench in CAPH is also fairly
less complex than in VHDL.

TABLE I
VHDL VS. CAPH DESIGN EFFICIENCY AND QUALITY FIGURES

(TIME IN MINUTES AND FREQUENCY IN MHZ).

VHDL CAPH VHDL CAPH VHDL CAPH
v1 v1 v2 v2 v3 v3

NREdt 358 103 162 71 232 187

NREvt 288 65 783 72 775 169

SLOCs 147 43 333 61 805 194

chars 4114 1351 9465 2395 22072 6099

LUTs 193 226 282 3161 2868 11398

(445) (3380) (11636)

Regs 81 103 115 2209 1252 7557

(269) (2375) (7723)

RAM 0 0 (1) 0 0 (1) 18 14

Freq. 64.7 68.0 71.8 83.0 65.2 84.2

These advantages come at the cost of a higher memory
consumption, mostly due to the allocation of FIFO queues be-
tween actors. Experimental results in the next section evaluate
the DP of the CAPH HLS method w.r.t. VHDL by assessing
both their resulting design quality and design efficiency.

VII. EXPERIMENTAL RESULTS: EVALUATING THE DESIGN
PRODUCTIVITY OF THE CAPH HLS COMPILER

A. Overview of the Experimental Results

Table I summarizes the experimental results of the different
versions of the use case and Figure 5 illustrates them. Con-
cerning CAPH results, values reported in brackets correspond
to the total hardware resources including the overhead of the
transformation from the platform signals (frame and data valid)
to the token representation. These numbers are the fairest
to compare to VHDL so they are the ones used for quality
assessment.

Figure 5 displays values normalized to the largest of the
two values. One can see that HLS is obtaining gains on design
efficiency because, in the upper part of the charts, the CAPH
values are smaller than the VHDL values (smaller is better).
Conversely, there is a quality loss due to HLS that makes
the VHDL values smaller than the CAPH values in the lower
part of the chart. The CAPH HLS method is efficient for
frequency; it even obtains slightly better minimum period than
manual VHDL. This effect can be explained by the insulation
of each actors by FIFOs that build a pipeline. However, CAPH
presents a large overhead in terms of LUTs and registers.
This effect is explained by the automatic insertion of FIFO
queues between actors that are not present in VHDL (VHDL).
Improving the footprint of the VHDL generated from CAPH
is thus an important objective to make this HLS method
competitive. Globally, a smaller area in the clear red zone
than in the dark blue zone is a good indicator that HLS is
reaching a higher DP than VHDL; this fact will be confirmed
in the next sections.

B. Gain in NRE Design Time of CAPH vs. Manual VHDL

Table II shows for each use case version the Gain in NRE
Design Time GNRE introduced in Section III-C. In average,

NREdt

NREvt

SLOC

LUTs

Regs

prd

(a) v1

NREdt

NREvt

SLOC

LUTs

Regs

prd

(b) v2

NREdt

NREvt

SLOC

RAM

LUTs Regs

prd

(c) v3

Fig. 5. Design efficiency and implementation quality chart (the smaller the
better) for each filter in CAPH (clear red) and VHDL (dark blue).

TABLE II
GAIN IN NRE DESIGN TIME GNRE , QUALITY LOSS LQ AND DESIGN

PRODUCTIVITY PD OF CAPH VS. MANUAL VHDL.

CAPH vs. CAPH vs. CAPH vs. Average
VHDL v1 VHDL v2 VHDL v3

GNRE 3.84× 6.60× 2.82× 4.42×
LQ 1.70× 2.53× 1.47× 1.90×
PD 2.26× 2.61× 1.92× 2.26×

designing the use case versions with the CAPH HLS method
took 4.42× less time than writing and testing VHDL by hand.
The standard deviation is large (1.96). This fact shows that,
depending on the code type (raw 1-D filter, 1-D filter with
control or 2-D filter), the gain in design time varies.

C. Quality Loss of CAPH vs. Manual VHDL

The quality loss, defined in Section III-C, is evaluated to
study the productivity of the HLS method. We focus in this
paper on the fair approach, putting all parameters on equal
footing to make results not very dependent on the type of
FPGA so normalization to maximum values is skipped and
parameters αi are computed by equation 5.

Numbers of DSPs and latency are ignored in quality loss
computation (α4 = 0 and α5 = 0) because the use case
does not generate multipliers and the latency of a few cycles
introduced by VHDL and CAPH is negligible when compared
to the latency of several picture lines, mandatory in the 2-D
filter, so latency does not reflect system quality.

Quality loss LQ figures are displayed in Table II. They show
that, when putting all quality metrics on an equal footing, there
is in average a quality loss of about 2× due to using the CAPH
HLS method when compared to VHDL manual writing. The
standard deviation of 0.6 is limited.

D. Design Productivity of CAPH HLS versus Manual HDL

From the previously computed gain in NRE design time
and quality loss, we can derive the Design Productivity PD
for the different use case versions. The values of PD are shown
in Table II. The HLS Design Productivity (DP) metric for the
tested CAPH compiler version 2.7.0 is 2.2×. This number
is an evaluation of the gains obtained by the HLS compiler.
The small standard deviation of 0.34 between the different
versions is an encouraging sign of the relevance of the DP
metric evaluation method proposed in this paper. Finally, one

can see in Figure I that while verification takes in average 3×
the time of design in VHDL, it takes in average only 85% of
the design time in CAPH.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, the notion of Design Productivity (DP) has
been defined, as well as a method to assess the DP gains
of an HLS method versus a manual HDL description. Using
this method, an HLS compiler based on the CAPH dataflow
programming language has been compared to manual VHDL.

The framework for design productivity estimation pro-
posed in this paper can be extended to any type of HLS
and to any type of hardware systems. Figures of merit for
the implementation quality and design efficiency should be
adapted to the system under test. However, the method and
recommendations remain valid. Crossbreeding different HLS
methods and combining their best features in a unique method
could drive the future of very-large-scale logic design.

ACKNOWLEDGMENT

This work has been partially supported by the HPeC ANR
project.

REFERENCES

[1] “International technology roadmap for semiconductors - design,” 2011.
[2] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”

IEEE Design & Test of Computers, no. 4, pp. 18–25, 2009.
[3] H. Ren, “A brief introduction on contemporary high-level synthesis,” in

2014 IEEE International Conference on IC Design & Technology, 2014.
[4] E. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of

the IEEE, vol. 83, no. 5, pp. 773–801, 1995.
[5] J. Eker and J. Janneck, “Cal language report: Specification of the cal

actor language,” 2003.
[6] J. Sérot, F. Berry, and S. Ahmed, “CAPH: a language for implement-

ing stream-processing applications on FPGAs,” in Embedded Systems
Design with FPGAs. Springer, 2013, pp. 201–224.

[7] Synflow, “The Cx programming language,” http://cx-lang.org, 2015,
accessed: 2015-09-25.

[8] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 22, no. 12, 2012.

[9] T. Bollaert, “Catapult synthesis: a practical introduction to interactive c
synthesis,” in High-Level Synthesis. Springer, 2008, pp. 29–52.

[10] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 30, no. 4, pp. 473–491, 2011.

[11] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, “An
overview of todays high-level synthesis tools,” Design Automation for
Embedded Systems, vol. 16, no. 3, pp. 31–51, 2012.

[12] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet, J. W.
Janneck, I. D. Miller, and D. B. Parlour, “Dataflow/actor-oriented
language for the design of complex signal processing systems,” in DASIP
Conference 2008, 2008, pp. 1–8.

[13] S. Ahmed, “Application of a dataflow programming language to the high
level synthesis of real-time vision systems on reconfigurable hardware,”
These de doctorat, U. Clermont, vol. 2, 2013.

[14] M. D. Zwagerman, “High level synthesis, a use case comparison with
hardware description language,” Master Thesis, Grand Valley State
University, 2015.

[15] O. Grodzevich and O. Romanko, “Normalization and other topics in
multi-objective optimization,” in Proceedings of the Fields - MITACS
Industrial Problems Workshop, 2006.

[16] M. Birem and F. Berry, “Dreamcam: A modular fpga-based smart
camera architecture,” Journal of Systems Architecture, 2014.

[17] V. A. Pedroni, Circuit design with VHDL. MIT press, 2004.

