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Abstract –We report the experimental observation of the bifurcation at the origin of localization
of the deformation in a granular material submitted to uniaxial compression. We present a quan-
titative characterization of the heterogeneity in the strain field repartiton allowing to evidence
objectively the existence of a bifurcation initiating the shear bands formation process. We show
that this bifurcation is supercritical and has no clear signature on the stress-strain curve. At the
bifurcation, a symetry breaking occurs characterized by the emergence of a well-defined orienta-
tion corresponding to the Mohr-Coulomb angle. Yet, plasticity is still diffuse and the shear band
extension is of the order of the sample width. While loading proceeds, the shear band narrows
until it reaches, after the peak of the stress-strain curve, a stationary width.

Introduction. – Granular materials and geomateri-
als submitted to homogeneous stresses display localization
of the deformation: failure planes, called shear bands, are
observed for large enough deviatoric stress [1–3]. Because
this localization of the deformation is closely linked to the
failure of the material and consequently has obvious con-
nection with stability of soils or fault formation, numerous
works have been devoted to its prediction. In the context
of elastoplasticity, localization is described as a bifurcation
phenomenon [2, 4, 5] which corresponds to the emergence
of solutions presenting discontinuities in the strain rate
field. The condition yields solely a direction, without any
prediction concerning the number of bands, their thickness
or their position. A more elaborated theory introducing
a lengthscale by using Cosserat continuum mechanics al-
lows a prediction of the thickness of the band [2, 6]. It
predicts an infinite shear-band thickness at the bifurcation
point. After the bifurcation, the thickness of the band is
finite and decreases with the loading towards a stationary
value [2].

Experimentally, setup allowing a full-field observation of
the strain repartition during the loading are scarce [3,7,8]
and there has been a long debate if shear bands emerge
before, at or after the peak of the loading curve. Recent
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progresses in the detection methods [9,10] have allowed to
observe intermittent inhomogeneities in the strain field oc-
curing before failure [11–13]. Those results have renewed
the interest for this field of research with a particular in-
terest for the understanding the microscale processes at
the origin of the shear bands formation [14,15]. All those
studies show that the localization process initiates well
before the peak of the loading curve and cannot be iden-
tified has the sudden propagation of a failure plane from
a defect. Surprisingly, a clear experimental signature of
the bifurcation coining the initiation of the localization
process is still missing.

As granular materials are amorphous materials, an ap-
proach to understand the physics underlying the shear lo-
calization processes is to tackle the problem from the soft
glassy materials point of view. Indeed, recent progresses
in the understanding of the elementary mechanisms at the
origin of their plastic response have been made [16] and
similarities in the behavior of different materials (foams,
colloidal glasses, granular materials, metallic glasses) al-
low to hope for a universal description of the plastic flow
in amorphous systems. Failure and shear bands forma-
tion in this framework are supposed to originate from the
elastic long-range coupling between the elementary plastic
events which initiates avalanches of correlated rearrange-
ments. Corresponding to this picture, recent numerical
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and theoretical works show that the failure of amorphous
materials can be seen as a critical phenomenon [17, 18].
Practically, depending on the material and on the loading
conditions, the precise form and nature of the shear bands
differ from one system to another [19]. It is thus not clear
if the universality of the mechanism of plasticity at the
elementary scale hold when the plasticity self-organizes at
a larger scale into shear bands.

In the present report we present an experimental study
of the whole process of failure in a granular sample sub-
mitted to a biaxial test, from the initial homogeneous de-
formation to final permanent shear bands. Using image
analysis tools, we quantify the anisotropy in the spatial
distribution of the strain and exhibit objective quantities
to characterize shear bands formation. We demonstrate
experimentally the existence of a bifurcation during the
loading process corresponding to a symetry breaking and
to the birth of a definite direction in the strain field. We
show that this bifurcation is supercritical: no discontinu-
ity occurs in the observed field during the loading and at
the bifurcation, the strain field is still diffuse in the ma-
terial. As the loading proceed, the thickness of the shear
band decreases until it reaches a stationary value.

In a first part, we describe the experimental setup. In
a second part we present the image analysis tools which
allow us to give an objective measurement of the spatial
repartion of the deformation in the sample and we apply
it to the analysis of three experiments. In the last part, we
discuss our results in the framework of different theories.

Experimental setup. – The setup is a biaxial com-
pressive test extensively described in another publica-
tion [11] and schematized in Figure 1. The material con-
sists in dry glass beads of diameter d = 70− 110 µm. It is
placed between a preformed latex membrane (85 × 55 ×
25 mm3) and a glass plate. A pump produces a partial vac-
uum inside the membrane, creating a confining pressure
−σxx. The preparation of the sample ensures reproducible
experiments at a volume fraction of ≈ 0.60. The prismatic
sample thus obtained is placed in a testing machine which
enforces the following conditions: (i) the back plate and
the front glass plate forbid displacements normal to their
plane and thus ensure plane strain conditions; (ii) a roller
bearing at the bottom allows for a translational degree of
freedom. This feature is a modification of the setup of
ref. [11] which allows a breaking of symmetry when failure
occurs as we will see in the following; (iii) the upper plate
is displaced vertically by a stepper motor with a veloc-
ity of 1 µm/s leading to a deformation rate of 1.1× 10−5

s−1. A sensor fixed on the top plate measures the force
exerted in the y direction from which the stress on the
plate is deduced. The value of the confining stress for all
the experiments presented here is 30 kPa so that crushing
of particles is not expected. The loading curves of three
different experiments prepared in the same conditions are
shown in Figure 1(c). Such curves are very similar to
loading curves reported in the literature for not too dense

samples. A plateau with a local maximum can be identi-
fied for each of those curves indicating a modification in
the response of the material. Those changes in response
are usually identified as indicator of the failure of the ma-
terial: after this point the sample is supposed to be best
represented as separated in blocks in relative solid trans-
lation. In our experiments those local maxima occur at a
value of the deviatoric stress in the range 80 to 90 kPa,
corresponding to an axial deformation of 5 to 6.5 %. From
the value of stress at those points, the Mohr-Coulomb an-
gle, θMC , can be deduced for each experiment [20]. Our
measures give an average of 62.5◦ ± 1.5◦.

Fig. 1: (a) Schematic of the biaxial test. (b) Example of a
correlation map with the color code scale. The square region
of interest (ROI) used for image analysis is shown in blue. (c)
Loading curves for three different runs. The values of the Mohr-
Coulomb angles deduced from the loading curves are given for
each run (θMC). Upper insets: correlation maps at the plateaus
with direct measurement of the shear bands inclination. The
gray box indicates roughly the position of the bifurcation for
all three experiments (see Fig 3).

We use a full-field method based on dynamic light scat-
tering for the measurement of the spatial repartition of
the deformation. This method has been described in de-
tails in previous publications [10, 21]. A laser beam (532
nm) is expanded to illuminate the material. The light is
multiply scattered inside the sample and we collect the
backscattered light. The multiple light rays interfer to
form a speckle pattern. The image of the front side of
the sample is recorded by a 7360 × 4912 pixels camera.
Images are subdivided in square zones of size 16 × 16 pix-
els. For each zone the correlation between two successive
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Fig. 2: (a) Graphical representation of the inertia tensor P computed from the pixels of the image using eq. 2. (b) to (e):
Principle of the projection method. (b) and (c) The intensities of the pixels are averaged along the direction orthogonal to a
line given by its slope β ((b) β = 30◦, (c) β = 151◦). (d) and (e) Unidirectional curve of averaged intensity obtained for each
value of β. Those curves can also be represented using a colorscale as shown underneath each curve. (f) Juxtaposition of the
projected profiles obtained for all values of β. From the value of the maximum of the map, the principal orientation in the
initial image can be deduced.

speckle patterns 1 and 2 is computed as:

g
(1,2)
I =

〈I1I2〉 − 〈I1〉〈I2〉√
〈I21 〉 − 〈I1〉2

√
〈I22 〉 − 〈I2〉2

(1)

where I1 and I2 are intensities of the pixels of two succes-
sive images and the averages 〈·〉 are done over the 16 ×
16 pixels of a zone. Each computed value gives a pixel
in the final correlation map and corresponds to a vol-
ume of area in the front plane 2d × 2d and depth of a
few d. An example of a map of correlation is shown in
Fig. 1(b). The normalisation of the correlation function
ensures that the correlation values are in the interval [0, 1]
and the colorscale used in all the following is shown in Fig-
ure 1(b). The decorrelation of the scattered light comes
from relative beads motions, i.e. combination of affine and
nonaffine bead displacements and rotation of nonspherical
beads. In the following, the axial deformation increment
between the two images used to obtain a map is 3.2 ×10−5.

Spatial repartition of the deformation. – A
movie of the successive correlation maps during the load-
ing is in supplemental material. The general phenomelogy
observed during the loading has been already described
elsewhere [11,12]. Strain repartition in the sample is inho-
mogeneous. Intermittent micro-bands are observed from
the beginning of the loading until the final shear bands are
established. This microstructure has been studied before
and the orientation of the micro-bands differ from the ori-
entation of the final shear bands. The former corresponds
to the orientation predicted by elasticity for stress released
by local plastic rearrangements (Eshelby’s quadrupolar re-
distribution [22]) and does not depend of the frictional
properties of the material. On the other hand distinct fi-
nal shear bands are observed in all our experiments with
an orientation in agreement with the Mohr-Coulomb angle
deduce from the loading curves [20] as is shown in insets
of Fig. 1(c).

The goal of the present letter is to study the process of
formation of the final shear bands. For our purpose, we
need to exhibit objective quantities from our deformation

maps. To remove intermittent fluctuations, we average
stacks of 50 consecutive maps to obtain a smooth strain
field. We underline that no further image treatment is
done on the images. In the following, we first present
the image analysis tools we use to characterize the degree
of localisation in the sample and the orientation of the
observed large-scale structure. In a second part, we use
those tools to study shear band formation.

Image analysis. To quantify the emergence of an ori-
ented structure at a large scale and its degree of localiza-
tion, we use two different tools that we call in the following
anisotropy measurement for the first one and projection
analysis for the second one. For those two methods we
need that information encoded in the image (i.e. defor-
mation) have the largest weight when the correlation is
low. Consequently we define for each correlation map its
invert image which we call activity image. The values of
the pixels of those images are given by IA(~r) = 1 − gI(~r)
and all the subsequent analyses are done on the activity
images.

To characterize the degree of anisotropy in an image we
use a method extensively described elsewhere [23]. Con-
sidering the value of each pixel of an activity image as a
weight, we compute the center of mass of the image G and

the inertia tensor P which quantify the spatial repartition
of the weights around G (see Fig. 2(a)):

P =
∑
~M

IA( ~M)
−−→
GM ⊗−−→GM (2)

This tensor has two positive eigenvalues noted λ1 > λ2 >
0. The eigenvector associated with the largest eigenvalue
gives the principal direction of the anisotropy in the image
and the anisotropy index a = 1− λ2

λ1
gives a measure of the

degree of anisotropy between 0 (isotropic) and 1 (maximal
anisotropy). A visualization of the tensor can be given
by an ellipse of axis determined by the eigenvalues and

eigenvectors of P (see Fig. 2(a)).
The second method consists in projecting the intensity

of the activity image on a line going through the origin and
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with an angle β with the x−axis [24] (see Fig. 2(b) and
(c)). Different values of β provide different projection pro-
files of the same image as shown in Fig. 2(d) and (e) which
are the profiles obtained for respectively Figure 2(b) and
Figure 2(c). The aggregation of all the profiles obtained
for all possible values of β are shown in Figure 2(f). The
line for which the profile present a maximum provides an
orientation of the structure (orthogonal to the line) and
the full width at half maximum (FWHM) of the profile
provides a width of the structure. Note that this method
is very close in spirit to the Hough transform [25].

Results. Figure 3(a) shows the anisotropy of the spa-
tial distribution of the deformation as a function of the
axial deformation ε for three different experiments (same
color code as Fig. 1(c)). We observe a good reproducibil-
ity from one experiment to the other. The black curve is
the mean anisotropy obtained by an average over the dif-
ferent experiments. At the very beginning of the loading
(ε . 1%), the settlement of the sample leads to spuri-
ous heterogeneous effects that leads to unrelevant large
anisotropy values (see movie in supplemental material).
For axial deformations between 1% and about 4.5% the
anisotropy is low (about 0.1) and the spatial repartition
of the strain can be considered as isotropical on average.
From a value of the axial deformation of about 4.5%, the
anisotropy increases steadily until it reaches a maximal
value at about 6.8%. Beyond this value, depending on
the experiment, the anisotropy stays for further loading
roughly constant or decreases. Decreases are due to the
emergence of a secondary shear band, conjugated to the
initial one (see movie in supplemental material).

Figure 3(b) shows the principal orientation of the strain
distribution (projection analysis). For an axial deforma-
tion smaller than ∼4.5%, the direction obtained are ran-
domly distributed and the errors on the determination of
the angles are large, indicating that no clear orientation
can be defined in the images. Beyond ε ' 4.5 %, each
experiment displays a well-defined, constant, orientation.
Depending on the experiment this direction is either about
60◦ or 120◦, but the ensemble of orientations collected on
all the experiments are symetrical compared to 90◦. There
has been thus a symetry breaking between two possible di-
rections. For one of the experiments (green triangles), the
uncertainty on the angle stays large until ε ' 5.3 %. Still,
its anisotropy is increasing steadily from ε ' 4.5 % show-
ing that an orientation has emerged even if the band is less
clearly defined compared to the other two experiments.

Figure 3(c) displays the evolution of the FWHM of the
profile obtained along the principal orientation of the spa-
tial distribution of the strain using the projection method.
For values of the axial strain smaller than 4 %, the pro-
jected profiles are mainly flat with noise so that thickness
measurements lead to noisy values of the order of size of
the ROI. Thus, FWHM are clearly defined only when the
orientation have been determined with small uncertainty.
We have added an indication of the axial deformation for

Fig. 3: (a) Anisotropy of the spatial distribution of the defor-
mation as a function of the axial deformation. Data points
correspond to the three experiments of Fig. 1(c). The black
solid line is the average of those measures. (b) Principal orien-
tation of the deformation as a function of the axial deformation
for the three same experiments. Horizontal dashed line: 90◦.
Vertical dashed lines indicate the axial strain from which the
orientation has been unambiguously chosen (drastic decrease
of the uncertainty) for each experiment. The shadow box has
been traced from the mean and standard deviation of those
values of the axial strain (4.7 ± .4 %). (c) Thickness of the
shear band rescaled by the mean diameter of the beads as a
function of the axial deformation.

which the orientation is well-defined for each run (vertical
dashed lines). We observe that for all the experiments,
the width of the band is still very large (of the order of
half the size of the ROI) even though the orientation is
unambiguously established and that we are sure that the
bifurcation has been crossed. For further loading, a de-
crease of the width is observed until a stationary value
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is reached. This stationary value is about 50d and stays
roughly constant for further loading (i.e. above 8%).

Discussion and conclusion. – The first result that
emerges from Fig. 3 is that localization of deformation is
indeed initiated by a bifurcation that occurs at an axial
strain of about ε ' 4.5 %. The observed bifurcation coins
a breaking of symetry in the distribution of the strain (see
Fig. 3(b)) simultaneous to an increase of the anisotropy
of this strain distribution (see Fig. 3(a)). This bifurcation
does not correspond to a sudden localization of the strain
distribution in the form of a failure plane. On the contrary,
the deformation is still largely diffuse in the sample at the
bifurcation (see Fig. 3(c)). This bifurcation is thus super-
critical : neither the anisotropy (Fig. 3(a)), nor the width
of the band (Fig. 3(c)) present a discontinuity. This ex-
perimental observation confirms the prediction of several
theories that the bifurcation corresponds to the emergence
of a direction without any definition of a particular plane
or a finite thickness. It is interesting to note that this
supercritical feature is closely linked to the progressive or-
ganization of plasticity in the material and hence to the
ductile nature of the failure.

The location of the bifurcation is reported in Fig. 1(c)
as a shaded region. It can be seen that this bifurcation oc-
curs well before the plateaus of the loading curves except
for one of the experiment. It has to be noted that this par-
ticular experiment (red squares) is the one that localizes
the first in Fig. 3(b) so that the bifurcation also happened
before the maximum in this experiment. After the bifur-
cation, the finite direction that has emerged stays constant
for further loading as can be seen in Fig. 3(b). Its value
corresponds to the Mohr-Coulomb angle which can be de-
duced from the plateaus of each stress-strain curves. This
result is surprising: the Mohr-Coulomb angle emerges in
the material before the yield stress is reached and the in-
ternal friction manifests itself while the system cannot be
represented as two blocks sliding one against the other as
a rough picture of the Mohr-Coulomb model would sug-
gest [20].

After the bifurcation, the band is progressively forming
as can be characterized by the decrease of its thickness (see
Fig. 3(c)). It reaches a stationary value at an axial strain
of about ε & 6.5 %. The shear band thickness we measure
(∼ 50d) is significantly larger that the ones reported in
the litterature [2, 7] by more direct measurements which
are generally about ∼ 10 − 20d. This is due to the high
sensitivity in strain of our measurement method. Indeed,
it is indeed now well-established that the transition be-
tween the liquid-like and solid-like regions of a granular
material are not well-defined [26] and that creeping flow
with an exponential decay of the velocity can be detected
even very far from a shear band (see e.g. [27] and refer-
ences therein). In fact, recent experiments show that in
presence of a shear band the whole material is flowing and
no solid part can be properly defined [28, 29]. Because
our measurement method is able to detect deformation of

order 10−5 [11], the shear bands we observe in our cor-
relation maps are larger than the ones obtained by more
direct measurement.

Bifurcation theories that describe failure in soil mechan-
ics [2,4] rely on the assumption of the existence of discon-
tinuous solutions of the strain rate field. As experimen-
tally such discontinuities are not observed, those models
are not fully satisfying to describe the behavior of the
system. The need to describe the strain field during lo-
calization as a smooth inhomogeneous field calls for new
models.

Nonlocal rheological models inspired by theoretical
works on soft glassy materials have been proposed to de-
scribe the rheology of granular materials [30, 31]. Those
models belong to continuum mechanics and introduce a
new variable to describe the local state of the material,
the fluidity. Spatial heterogeneities in the flow emerge
because this fluidity obey to a partial differential equa-
tion (PDE) coupled to the constitutive law. This PDE
describes the spatial dynamics of the fluidity by a diffu-
sive term and introduces a lengthscale, the “cooperative
length” which roughly represents the extension of the per-
turbation caused by a flowing zone (see reference [31] for
a discussion of the differences between the models). Such
models are able to describe heterogeneous dense flows in
numerous configurations as well as slow flows far from the
shear bands [32]. Still, they have been developed to de-
scribe steady flows, in particular they don’t consider any
volume change, and it is unclear if they could describe the
process of failure, which is, by nature, a transient. It could
seem unlikely that a partial differential equation including
a diffusive term for the ability to flow (Laplacian of the
fluidity) could describe the spontaneous narrowing of the
band after the bifurcation. In fact, dispersive effects can
be cancelled by non-linear effects, leading to soliton-like
solution as has been shown in a very recent theoretical
work [33]. Shear bands could then be seen as localized
solution in the dynamical systems meaning of the term.
Nevertheless, a clear physical picture of the competing ef-
fects at play in the process is still missing, which points out
the necessity of a clear understanding of what is hidding
behind the fluidity state variable.

To conclude, we have shown experimentally that the
failure of a granular material in uniaxial compression is
linked to a supercritical bifurcation. This bifurcation
coined the emergence of a definite orientation in the dif-
fuse plasticity field. The experimental results thus point
towards shear bands of infinite size at the bifurcation. The
orientation observed corresponds to the Mohr-Coulomb
angle deduced from the plateau of the loading curve but
its emergence preceeds this plateau. A strong narrowing
of the band follows as the loading proceed until a station-
ary size is reached. In the present work, the fluctuations
of the strain field have been removed by the averaging
process that allows image analysis. Those fluctuations in
the vicinity of the bifurcation are awaited to play a major
role [17,18] and are probably linked to the micro-bands ob-
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served at the earlier stages of the loading [12]. The study
of those fluctuations is the subject of a future work.
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