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Résumé This paper deals with an approach to identify geometrical deviations of flexible
parts from optical measurements. Each step of the approach defines a specific issue which
we try to respond to. The problem of measurement uncertainties is solved using an original
filtering method, which permits to only consider a few number of points. These points are re-
gistered on a mesh of the CAD model of the constrained geometry. The shape resulting from
deflection can be identified through the finite-element simulation of the part’s deformation
due to its own weight and the measuring set-up. Finally, geometrical deviations are obtained
by subtracting geometrical deflections to measured geometrical deviations. The method is
illustrated in an experimental test case.

Keywords Measurement · shape deviation · flexible part · optical measurement

1 Introduction

Knowledge of intrinsic part geometry is essential to assembly simulations [1]. Indeed,
the geometry of manufactured parts differs from their nominal geometry due to manufactu-
ring process variations. The actual geometry is generally obtained by surface measurements.
The objective is to compare measured data with the design model (more generally the CAD
model) to determine whether the manufactured surface lies within the tolerance zone. The
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alignment of one surface to another is generally carried out by a 3D transformation (rigid
transformation). The more common approach to this process is the Iterative Closest Point
approach (ICP) [2].

The inspection of flexible parts is not straightforward as gravity loads as well as part
fixturing induce part deformations [3][4]. Flexible part shape is generally assessed when
components are in assembly configuration. However, the assembly process generates defor-
mations because of the application of forces and restrictions at fixation points.

In this direction, Ascione and Polini [4] propose to assess part geometry using a fixtu-
ring equipment designed in order to reproduce the configuration (location and orientation)
of the part to be inspected in its use configuration after assembly. The measurement is per-
formed using a contact probe, which involves a displacement which is negligible compared
to the part geometry deviations. The fixture’s over-constrained configuration can become an
active component of the measurement system and plays a central part in the measurement
repeatability. This approach is not automated and it is limited, as it requires to reproduce the
configuration for each case.

Recent methods use numerical approaches. Classical techniques for flexible part inspec-
tion consist in the acquisition of the part surface and the comparison of the measured data
to its CAD model, after performing a transformation to align the data against its nominal
model. The acquisition is carried out using optical means as contact probes may involve
additional deformations (geometry variations) [5]. The transformation is generally a rigid
transformation followed by a deformation applied to the mesh of the CAD model. In [6], a
displacement field is added in order to consider the deformations induced by the fixturing,
the gravity and those due to the manufacturing process. The objective is to find the form
deviation due to the manufacturing process only. Then an identification method is proposed
to separate the profile deviation from the part deformation that is due to its flexibility. The
method seems promising but the application is performed on simulated data only. Radvar-
Esfahlan and Tahan propose an inspection process for non rigid part based on simulation
using Finite Element Analysis (FEA) [7]. First the part is set-up onto well-known loca-
tion support points defining a non over-constrained configuration. Then, deformations due
to gravity loads are evaluated by using FEA for which fixturing points are used as boun-
dary conditions. Therefore, the real geometrical deviations can be calculated by considering
the rigid transformation from the pre-processed CAD model to the scanned data. Some au-
thors used a similar approach (component measurements and FEA analysis) with the aim of
predicting over-constrained assemblies but not component shape deviations [8]. In [9], the
method does not require the knowledge of all the fixturing points and only considers partial
views of the part. Authors focus on the regions where inspection is required, and use the
concept of characteristic points that are part of the partial data model. The use of a partial
model implies more simplicity for calculations and for the surface acquisition process that
does not need to be complete. In this approach, characteristic points found in different partial
views, such as fixation points, holes, corners, etc, are matched with the CAD model. There-
fore, the method is similar to classical ones but only takes into account an estimation of the
missing fixation points. This method is specifically applied to plastic parts. In another inter-
esting approach, a spring-mass model is defined instead of FEM to simulate deformations
on a polygonal mesh [10]. Indeed, the polygonal model of the part can be sampled into a set
of punctual masses connected to each other by massless springs. The stiffness of the spring
associated to the bending is calculated considering the part thickness and the geometry of
the triangular faces of the mesh.

The aim of this paper is to obtain the form deviation of flexible components from part
measurements independently of the assembly of the configuration of use. The originality is
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that the form deviations only due to the manufacturing process are determined relatively to
the free-state of the component instead of the CAD model, as is classically the case. For this
purpose, the free shape is evaluated from the CAD model by FEA simulations. Then, the
component is measured, using optical means because of their main advantages, in a given
configuration for which the set-up is well-known. From the measured shape and considering
FEA simulations once again, the form deviations can be calculated. Before detailing our
approach it is necessary to clearly define what the geometry of a flexible part is.

2 Geometry of a flexible part

The free state of a component is the shape it should have in the state of absence of
gravity [11]. Actually, the shape of the component is generally defined in its configuration
of use, i.e. when assembled to other components subjected to external loads. This defines the
constrained geometry which is the support to the definition of the CAD model, referred to as
ST

nom. The free shape, referred to as ST
free, is defined when both constraints and effect of

gravity are not present. In other words, when all the constraints are applied to the theoretical
free shape, the geometry of the component is the one defined by the CAD model (figure 1).
It is thus possible to define a relationship given in (1) :

ST
nom = ST

free +Edef
nom (1)

Where Edef
nom represents the deformation of the shape under gravity and other applied

constraints. The deformation can be calculated using a FEA approach.

FIGURE 1: Definition of theoretical free shape.

Due to the manufacturing process, the actual shape differs from the theoretical shape,
for it includes form deviations.

To obtain form deviations, the component is measured in a measuring configuration
which gives the measured shape Smeas

conf . This measured shape includes form deviations but
also deformations which are due to the combined effect of the measuring set-up and of the
component own weight. These deformations, Edef

conf can be easily simulated using FEA.
Thus, as the free shape is known, it will become simple to identify form deviations. This is
detailed in the next section.
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FIGURE 2: Theoretical definition of form deviation.

3 Evaluation of the form deviation

3.1 Principle of the method

The measurement of a flexible component is usually performed in a given configuration,
using an over-constrained measuring set-up. In this configuration, the actual shape corres-
ponds to the theoretical free shape, added to the form deviation and the deformation under
the combined effect of the measuring set-up and the component’s own weight. The treat-
ment of the raw measurement data, detailed in sect. 3.2, yields to the measured shape Smeas

conf

which can be expressed by eq. (2) :

Smeas
conf = ST

free +Edef
conf +Eshape (2)

where Eshape is the form deviation. As stated before, the free shape can easily be deduced
from the CAD model using eq. (1) which leads to :

ST
free = ST

nom −Edef
nom (3)

where Edef
nom is calculated thanks to FEA simulations. In the same way, Edef

conf is evaluated
thanks to the simulation of the part deflection under its weight and considering the fixtu-
ring of the corresponding measuring configuration. FEA simulations are detailed in subsec-
tion 3.4. Finally, the form deviation of the flexible component can be calculated from the
measured shape in a configuration using (4) :

Eshape = Smeas
conf −Edef

conf − ST
free (4)

The form deviation of a part can be mathematically expressed as a field which is intrinsic
to the part and defined in each point of the part surface. Incorporating eq. (3) into eq. (4)
yields to :

Eshape = Smeas
conf −Edef

conf − ST
nom +Edef

nom (5)

So, defining the measured geometrical deviation field, Emeas as Emeas = Smeas
conf −

ST
nom, which represents deviations of the measured shape from the CAD model, the form

deviation field is given by :

Eshape = Emeas −Edef
conf +Edef

nom (6)

Eq. (6) gives the form deviation of the part expressed in a finite number of points. This
corresponds to the geometrical deviation expressed at each node of the mesh which is the
support of the FE simulation. The measured geometrical deviation field, Emeas, must then
be defined at each node of the mesh too as detailed in the next section.
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3.2 From measured points to the measured geometrical deviation field

The part is scanned using an optical measuring system to avoid contact, so that the part
shape is not impacted during the measurement. As it is interesting to characterize the shape
of large parts in short time, a laser plane sensor is chosen to scan the part. The result of
the measurement stage is a point cloud, which is dense, non homogeneous and noisy [12].
This point cloud represents the shape of the component in its measuring configuration. As
mentioned earlier, the measured geometrical deviation field must be expressed at each node
of the mesh. A processing of the raw data is thus necessary to match one node of the mesh
to the corresponding point of the point cloud for which the deviation will be calculated. Due
to the point density of the scanned data, and considering limit uncertainties associated with
optical measuring systems, in particular digitizing noise, it seems relevant to estimate the
deviation between the node and its closest neighbors belonging to the point cloud. The use
of a vicinity to define the actual geometrical deviation between a measured part and its CAD
model has been used in [13]. Authors define the neighborhood by the facets between four
points in close correspondence with the considered point, and the geometrical deviation cor-
responds to the minimum normal distance between the point and each facet. Our approach
is quite different as the neighborhood is defined by a cylinder and as we define the geome-
trical deviation at the considered point by the mean value of all the normal distances. This
is performed as follows (see figure 3) :

— Estimation of the normal vector ni for each node Pi of the mesh .
— Extraction of the nearest neighbors of the node belonging to the point cloud : the

nearest neighbors are the points Mj that belong to a cylinder of radius R (with R =
1 mm in the present work) and whose axis is the normal vector.

— Calculation of the distance eij =
−−−→
PiMj .

−→ni for each Mj .
— Evaluation of the geometrical deviation di = mean(eij) corresponding to the node

Pi

‘

FIGURE 3: Evaluation of the local geometrical deviation

The deviation at each node Pi of the mesh is thus calculated as the mean value of the
deviations eij corresponding to the deviation evaluated along the vector normal between
the node and each one of its neighbor. The calculation is only performed if the number of
neighbors is greater than a threshold Nt, arbitrarily fixed at Nt = 10 in the present work,
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that means if the cylinder of radius R whose axis is ni contains more than 10 points. During
this step, the standard deviation of the deviations is also calculated as follows :

σi =

√√√√ 1

p− 1

p∑
j=0

(eij − di)2) (7)

The evaluation of σi gives a cartography of the digitizing noise. The points for which
the digitizing noise is high are removed. This leads to areas for which the geometrical de-
viation di cannot be evaluated directly from the measurement. Besides, in some cases, the
completeness of the measurement can not be ensured due to accessibility reasons. As a re-
sult, the acquired point cloud may present some digitizing holes. In these areas, the direct
evaluation of the geometrical deviation is not possible either. Then, for digitizing holes and
for highly noisy areas, an extrapolation method of the measured shape is proposed to obtain
a complete cartography of the measured geometrical deviations. The approach developed
to obtain this complete cartography is summarized in figure 4. First a coarse registration
of the rough point cloud to the mesh of the CAD model is manually carried out using the
points that define the part set-up. This rough registration allows the alignment of the point
cloud to CAD model at about 0.01mm. Following this step , geometrical deviations di are
calculated along with local noise (as the standard deviation estimated by eq. (7)). Nodes for
which the noise is too high are removed, leading to points for which geometrical deviations
are assessed. To obtain the field of measured deviations Emeas at each node of the mesh, a
stage of extrapolation based on a modal decomposition is carried out. This step is detailed
in the next section.

FIGURE 4: From measured points to measured deviations

3.3 Shape deviation expressed as modal coordinates

3.3.1 Modal decomposition

The expression of shape deviation as the discrete field Eshape is not entirely satisfying as
it still highly depends on the measurement process definition that leads to a certain amount
N of measured points for instance. With no further work to express the measurement result
as the intrinsic shape deviation of the part, it is impossible to re-use it for other purposes
such as assembly simulation.

Huang and Ceglarek [14] used a decomposition based on direct cosine transform to ex-
press the shape deviation of a part. This technique requires to have a structured mesh of the
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part. This is not always possible. Franciosa et al. [15] proposed to use mesh morphing tech-
niques derived from the computer graphics community to express shape deviation. Although
it can describe complex shapes without any assumption on the nominal geometry of the
considered parts, the identification of a proper set of morphing operators to fit the evaluated
shape deviation can be difficult. Samper and Formosa [16] proposed to express the shape
deviation of a part using a modal decomposition based on the part’s natural modes. This
technique combines both the applicability to whatever part shape and the well-established
strategy to identify a finite set of parameters describing the shape deviation. The part’s na-
tural modes are given by the solution of the linear dynamic equation :

M · ü+K · u = 0 (8)

with :
— u the displacement of each node for each degree of freedom (DOF) of the meshed

part elements ;
— K the stiffness matrix modeling the mechanical behavior of the measured part ;
— M the mass matrix modeling the mass distribution of the measured part.
The solutions of eq. (8) can be written as :

ui(t) = qi · cosωit (9)

with ωi the natural pulsation of the mode i and qi its amplitude vector.
The number of natural modes that can be computed equals the number of DOFs of the

problem, which is 6Nn considering the entire finite element model described in subsect. 3.4.
The natural mode amplitude vectors have the property defined in eq. (10) :

qi
t ·M · qj = δij (10)

with δij the Kronecker symbol, equal to 1 if i = j and otherwise zero. Hence the qi

mode amplitude vectors are a basis of the displacement space and the dot product defined in
eq. (11) can be used to project any displacement field u on this basis.

< a, b >= at ·M · b (11)

As explained in eq. (12) Samper and Formosa use this dot product to identify the modal
coordinates {λi} of a particular shape deviation, considering its discrete expression u given
for each node of the meshed component.

∀i ∈ {1, . . . , 6Nn}, λi = qi
t ·M · u (12)

With the ωi sorted in growing values, the mode amplitude vectors qi are sorted in in-
creasing complexity. As the wavelength of the mode decreases with the frequency, the entire
basis is usually not necessary to depict the shape deviation. A residual noise eNm

kept at the
same order of magnitude as the measurement uncertainty provides an efficient criterion to
assess the relevance of the selected number Nm of modes of the truncated basis.

eNm
=

√√√√(u− Nm∑
i=1

λiqi

)t

·

(
u−

Nm∑
i=1

λiqi

)
(13)

Even for complex geometry, around 30 modes provide a difference smaller than 5µm
between modal decomposition and actual measurement results [16].



8 François Thiébaut et al.

The modal coordinates describing the shape deviation of the part no longer form a dis-
crete description but a parametric one. It can then be used for other purposes such as as-
sembly simulation or best fit. The identification of modal coordinates only requires that the
deviation is expressed at each node of the mesh. But this requirement can not always be
fulfilled in practice.

3.3.2 Modal decomposition on incomplete set of measurement results

In this paper, the displacement field u is not considered to be known at each node of the
meshed used for modal decomposition. Only a subset of its component, written ũ, can be
extracted from the shape deviation Eshape obtained according to eq. (4). The same dimension
reduction that yields ũ out of u is applied to provide the reduced mode amplitude vectors
q̃i out of each qi and the reduced mass matrix M̃ out of M . Then :∀i ∈ {1, . . . , Nm}, µi =

√
q̃i

t · M̃ · q̃i

∀(i, j) ∈ {1, . . . , Nm}2, i 6= j, µij =
√
q̃i

t · M̃ · q̃j

(14)

and : {
∀i ∈ {1, . . . , Nm}, λ̃i = q̃i

t · M̃ · ũ
∀i ∈ {1, . . . , Nm}, |λ̃i − λi| < max

i∈{1,...,Nm},j 6=i
|µij | (15)

The λ̃i are the approximated modal coordinates identified with the shape deviation de-
fined on a subset of the mesh nodes. The impact of the dimension reduction on the modal
coordinates identification can be assessed by evaluating the maximum value of the µij .

Shape deviation expressed only for local areas of the part – due to accessibility issues
– is likely to increase the value of the µij . It is the consequence of the inability of global
techniques such as modal decomposition to express local results.

A comprehensive expression of the shape deviation will provide negligible µij and then
an accurate evaluation of the modal coordinates. With the shape deviation expressed for all
the nodes of the meshed part, the µij will equal 0. This particular case is the one for which
the strategy proposed in [16] and described in subsubsect. 3.3.1 is applicable.

3.4 Gravity and constraint effect

As mentioned in subsect. 3.1, the deformation Edef is due to both the gravity and to
the constraints associated with the configuration (which can be the measuring configuration
or the nominal configuration). Considering that the mechanical behavior of the part to be
measured is known, it can be predicted thanks to a simulation model. As in many approaches
presented in the literature, some of them detailed in [1,7], a finite element simulation model
has been found appropriate to predict this behavior.

As the finite element simulation required the part to be meshed, all the discrete deviation
fields Eshape, and Edef are expressed on a subset of N points corresponding to the nodes of
the part mesh.

Meshing almost always involves simplification of the part geometry. This paper ad-
dresses the measurement of flexible parts that are usually thin, such as sheet metals parts.
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This type of parts can be well-modeled with shell elements, requiring the part to be simpli-
fied as a single surface. Even if it can be bypassed, using the simplified measured surface
makes the flow quite easier. This particular case is assumed in the following.

With the same notations used in eq. (8), a finite element simulation can be mathemati-
cally described as consisting in finding u satisfying the following equations :{

K · u = f +M · g
C · u = d

(16)

with :
— g a vector modeling the gravity at each node of the meshed part and along each

DOF ;
— f a vector describing the external mechanical actions apart from gravity, such as

clamping forces ;
— C and d a matrix and a vector modeling the kinematic boundary conditions, such as

an imposed displacement due to known contact on the measurement set-up.
Classically, the small perturbations hypothesis is adopted. The displacement of each

point is assumed to be small, and the gradient of deformations can be neglected before the
unit. As an obvious result, actual stiffness and nominal stiffness can be merged. Therefore,
loading can be applied on the nominal mesh as well as on the deformed mesh. Considering
the meshed part has Nn nodes with 6 DOF each 1, the solution u of the finite element
problem has 6Nn components.

The value of the deformation Edef, giving the part deflection for N of the Nn nodes of
the part can be directly derived from u by extracting the displacements of the N nodes for
which deviations are assessed. First, the approach is used to obtain Edef

nom, the deformation
corresponding to the nominal configuration. Once Edef

nom is known, another simulation is
performed to obtain Edef

conf , the deformation associated with the measuring configuration.
Finally, the discrete shape deviation field Eshape is obtained by subtracting the deformations
to the measured deviation Emeas as proposed in eq. (6).

4 Experimental validation

In order to illustrate the proposed method, a sheet metal part in aluminum alloy is mea-
sured. The CAD model of the part is a cylinder surface of radius R = 1m set in an over-
constrained configuration defined by 4 contact pads. First, a simulation is necessary to obtain
Edef

nom.
For this purpose, the part is meshed, and the simulation is performed considering that

normal displacements are not allowed at the 4 contact points, and that the part is under the
effect of gravity. Finite Element simulations are conducted using CATIA V5 c©, considering
2D shell elements. The simulation yields Edef

nom. ST
free is thus obtained using equation (3)

(see figure 6).
Next, the part is set in different equally-constrained configurations considering only 3

contact pads, as displayed in figure 5. The use of more than one configuration will highlight
the method ability to evaluate the intrinsic shape deviation of the part independently from
the measurement setup. The configuration is easily modified by changing the locations of
these contact pads. As the part is flexible, the part is scanned using a laser-plane sensor

1. 3 translations and 3 rotations.
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FIGURE 5: Part measurement.

FIGURE 6: Calculation of ST
free

mounted on a CMM whose geometrical errors are negligible (about 4 µm in the working
space). The sensor orientation is kept constant during the whole measurement step. As only
one sensor orientation is used, there is no additional error due to sensor repositioning. The
sensor accuracy is assessed via a protocol. The trueness is evaluated to 10 µm for a gauge of
35 mm, which is consistent with the order of magnitude of the expected deformations [18].

Once the part is measured, the following step is the calculation of the measured deviation
field, Emeas as detailed in subsection 3.2. For each node of the CAD mesh, the deviation
di is calculated along with the standard deviation σi given by equation (7). As proposed
in our approach (see figure 4), data are pre-processed and filtered by removing points for
which the digitizing noise (δi = k.σi, with k = 1) is greater than the mean noise associated
with the sensor. The mean noise of the sensor is generally evaluated thanks to a protocol
and according to the digitizing distance and the digitizing angle [12] [17]. For the used
measuring conditions, the mean noise associated to the sensor is equal to δsensor = 0.02
mm. As a result, points for which δi > 0.03 mm are tagged as too noisy. For such points, the
geometrical deviation cannot be directly calculated and the measured deviation field is thus
extrapolated at the corresponding nodes thanks to the method detailed in subsection 3.3. This
is illustrated for first measurement configuration in figure 7. Considering the cartography of
the local noise (figure 7-a), deviations are only calculated for nodes such as δi < 0.03 mm.
This yields to an incomplete cartography of measured deviations ((figure 7-b). Following,
the field of measured deviations is reconstructed using the modal decomposition (figure 7-c).

The next step is Finite Element simulations, considering the measurement configuration
to obtain Edef

conf . The normal displacements are not allowed at the 3 contact points defi-
ning the measurement set-up (boundary conditions), and once more, the external force is
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FIGURE 7: Evaluation of the measured deviation field, Emeas

only gravity. Finally, the field of shape deviation is calculated using equation (6). This is
illustrated in figure 8 for configuration 1.

FIGURE 8: Evaluation of the shape deviation field

The whole approach is applied to the second configuration. The measurement set-up is
modified by moving the positions of 2 of the 3 contact pads. Only the final result is reported
in figure 9. To compare both fields, the result for the second configuration is registered on the
contact points of the first configuration. The figure clearly highlights that the field of shape
deviations is quite identical for both configurations. In particular, the cartography of the
difference between the fields obtained with the two configurations shows that the difference
is less than 0.02 mm for most of the part. The difference reaches up to 0.06 mm at the
left corner. This is likely due to deviation field reconstruction in this area (see figure 7-b)).
Reconstruction is less efficient in areas where the lack of points is significant.

5 Conclusion

An efficient approach to evaluate shape deviations of flexible parts has been proposed
in the paper. The method relies on part measurements coupled with FE simulations in or-
der to take into account the deformation associated with gravity and with the measurement
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FIGURE 9: Difference between deviation fields considering 2 measurement configurations

configuration. Applied to a simple part for which the mechanical model is well-known, the
method allows the identification of the form deviations whatever the measurement confi-
guration. Differences between the deviation fields obtained from 2 different configurations,
around a few micrometers, lay within the measurement uncertainty which shows that the
method is promising. Future works will focus on more complex parts. In this case, FE simu-
lations require the simplification of the geometrical model and an a priori model registration
to simplify calculations. Finally, the approach proves to be an interesting tool to obtain the
component’s geometry of an assembly in its use configuration, thus eliminating the use of
jigs, generally very expensive.
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