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Plateau borders are liquid microchannels located at the contact between three bubbles in liquid
foams. They are stable, deformable and can be thought of as quasi-1D model systems to study
surface waves in fluid dynamics. We show that the burst of a bubble trapped in a PB produces
local constrictions which travel along the liquid channel at constant velocity, without significant
change in shape. These patterns are reminiscent of the depression solitary waves encountered in
nonlinear systems. By coupling flow inertia to capillary stresses, we derive a simple model that
admits solitonic solutions, which we characterized numerically and analytically in the limit of small
deformation. These solutions capture most of the features observed experimentally.

PACS numbers: 47.57.Bc, 68.03.-g, 47.55.nb

I. INTRODUCTION

The stability of liquid foams significantly depends on
the flow properties of the Plateau borders (PBs), which
are wall-free liquid microchannels found at the contact
between three bubbles [1]. Each Plateau border (PB)
is held by three soap films and has the very specific ge-
ometry highlighted in Fig. 1: the PB is inscribed in a
triangular prism and its cross section can be approxi-
mated by the tangential contact of three arcs of circles
of identical radius of curvature [2]. At the foam scale,
the PBs form an interconnected porous network through
which the liquid runs off (see [3, 4] for a review on foam
drainage). The flow properties inside a single PB have
also been the subject of several studies [5–11]. Structures
made of PBs are robust and most of the perturbations
- produced for example by adding liquid in excess - re-
lax to recover steady-state Plateau borders of homoge-
neous radius profile. The dynamics of the flow triggered
in each PB results from the coupling between the defor-
mation of the PB, the fluid properties and the stress at
the liquid/gas interface [4, 12]. In all the aforementioned
studies, the flow was assumed viscous, due to the small
radius of the channel (typically 10 to 100 microns) and
the small velocities measured (typically millimeters per
second or less).

We recently showed that the perturbation brought to
a single PB by making a droplet coalesce with it may
actually relax rather quickly (typical velocities are 0.1
to 1 meter per second), according to what we proved
to be an inertial regime [13, 14]. Under identified ex-
perimental conditions [13], the perturbation is dispersed
through the formation of structures analogous to hy-
draulic jumps driven by capillarity instead of gravity [15].
The occurrence and the dynamics of these capillary hy-
draulic jumps were satisfactorily modeled by assuming
an inertia-dominated plug flow in the PB.
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The present study differs from the drop-injected exper-
iment in the way we perturb the PB, leading to a dras-
tically different response of the system. Here, a small
bubble is brought to the PB, before being burst. Cap-
illary suction triggers a transient flow in the liquid mi-
crochannel and the relaxation process develops local con-
strictions of the PB. Each constriction travels at constant
velocity, without significant deformation over a distance
that is large compared to the size of the depression zone.
These localized-in-space patterns are reminiscent of soli-
tary waves first introduced by Russell [16] and found in
numerous non-linear systems [17]. Theory predicts de-
pression solitary waves as well as elevation ones [18]. In
addition to the well-known dark solitons in optics, de-
pression solitary waves were reported at the surface of a
thin layer of mercury [19] and at the surface of a levitated
water cylinder [20]. In this article, we aim at investigat-
ing these new structures observed to travel along PBs.
We show that they might be identified to depression soli-
tary waves.

The manuscript is organized as follows. We first de-
pict the bubble-burst experiment and report systematic
measurements. Then, we introduce a theoretical model
which leads to an ordinary differential equation, whose
solutions successfully capture the dynamics of the PB
radius of curvature.

II. MATERIAL AND METHODS

The setup is similar to the one implemented for the
drop-injected experiment (see [14] for details). By dip-
ping a triangular-prism frame into a surfactant solution,
we create a few-centimeter-long, horizontal PB held by
three soap films (Fig. 1a,b). The initial radius of cur-
vature of the PB is homogeneous and kept constant by
continuously injecting liquid into it; its value can be set
by tuning the flow rate. We deduce the local radius of
curvature of the PB, R, from its apparent thickness, e,
easily measurable on the side view (Fig. 2). The cali-
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FIG. 1. a) Sketch of the geometry of the Plateau border
and its three holding films. b) Cross section of the PB seen
through the liquid meniscus formed at the contact with a glass
plate.

FIG. 2. Image sequence of a typical bubble-burst experiment
(small bubble, 10 ms between consecutive images). The bub-
ble can be seen in the first picture; the dark spot which ap-
pears above the PB in each of the pictures is the tip of the
needle used to burst the bubble. Dashed lines are guides to
the eyes to follow the positions of two constrictions visible in
the pictures. These constrictions move at constant velocity
(0.13 m/s leftward for the constriction on the left, 0.27 m/s
rightward for the one on the right). See text for notations.

bration procedure that we perform prior to any experi-
ment (details can be found in [14]) shows that these two
quantities are proportional, and that the proportionality
constant is very close to 1. For the sake of simplicity, we
will hereafter speak of radius of curvature only. The sur-
factant solution used in the present study was composed

FIG. 3. a) Space-time diagram of the PB radius of curva-
ture built using the left half of the images recorded during
the experiment reported in Fig. 2. b) Space-time diagram
for an experiment performed with a larger bubble. The red
and yellow stripes on top of both diagrams arise from the im-
ages of the bubble at short times and of the needle tip at all
times. Dark-blue straight stripes reveal constrictions moving
along the PB (dashed black lines were plotted slightly offset
to emphasize these features).

of TTAB (tetradecyl trimethyl ammonium bromide) dis-
solved into de-ionized water to a concentration of 3 g/l.
It is characterized by tangential stress-free interfaces and
the physical properties of this solution are its density
ρ = 1030 ± 50 kg.m−3, its surface tension γ = 38 ± 1
mN/m and its dynamic viscosity η = 1.04 ± 0.02 mPa.s
[14].

A bubble, with an initial size small compared to the
length of the PB, is gently inserted and held in place
into the PB. The tip of a needle pierces the bubble to
burst it: this provokes a strong perturbation of the PB
at short times. The subsequent relaxation of the PB is
recorded with a fast camera at 4000 fps. Fig. 2 displays
a set of snapshots that shows the time evolution of the
PB. Space-time diagrams of the radius of curvature of
the PB are useful to highlight the relaxation dynamics:
a color is assigned to the local value of the PB radius of
curvature using a color scale that ranges here from dark
blue for the thinnest parts of the PB to light blue for the
thickest parts. At each time step of a given experiment,
the radius profile yields a vertical line of color pixels;
the horizontal stack of the columns computed from the
whole set of pictures generates the space-time diagram.
Two examples of such diagrams are shown in Fig. 3 for
two different initial bubble sizes.
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III. RESULTS

A few milliseconds after the bubble bursts, the PB ra-
dius profile shows constriction zones of small lateral ex-
tension, moving apart from the initial bubble location,
as evidenced in Fig. 2 and in the movie of the Supple-
mental Material [21]. Although the variations in radius
defining these localized patterns remain small (of the or-
der of ten percent), they can be detected unambiguously
and characterized.

Remarkably, the shape of each constriction zone is al-
most preserved during its propagation along the PB and
the constriction remains visible far from the initial bub-
ble position, over distances much larger than its typical
size. The minimal radius of curvature of the PB and the
width of the depression are denoted R− and w, respec-
tively. A slight asymmetry in the PB radius of curvature
is observed, with a small overshoot at the rear of the con-
striction. The difference between the PB radius of curva-
ture in front of and behind the constriction is nevertheless
very small, of a few percent at most. We note R+ the
radius of curvature of the PB as it overshoots. Ahead of
the constriction zone, the deformation of the PB tends to
zero, and its radius converges to its initial value. Another
noteworthy feature of the localized depression patterns is
that they travel along the PB at constant velocity, noted
c. All these characteristics appear straightforwardly by
considering space-time diagrams. The example of Fig. 3a
shows a dark-blue, straight stripe that reveals a thinner,
narrow zone of the PB, which travels at constant speed,
over more than 10 mm in distance. The lighter stripe
adjacent to the previous one stands for the overshoot of
the PB radius at the rear of the constriction.

The size of the initial bubble does not significantly af-
fect the constriction shape and dynamics. An increase
in the bubble size may only increase the number of con-
strictions that are created. On the space-time diagram
of Fig. 3b, which was obtained after the burst of a large
bubble, two constrictions traveling in the same direction,
away from the bubble location, are discernible on one half
of the PB. Note that a third constriction is also notice-
able, going in the reverse direction, as the result of the
reflection of some perturbation on the vertex. Interest-
ingly, when this third constriction collides with one of the
two others, they cross each other without any significant
change in velocity and nor in shape.

Measurements of R−, R+, w and c were performed
on 41 constriction waves, for various values of the initial
radius of curvature of the PB and of the bubble size.
R−, w and c are plotted as a function of the radius R+

in Fig. 4a, b, and c, respectively. R− and w appear to
be proportional to R+ (Fig. 4a and b), while c decreases
with R+ (Fig. 4c). Linear fits for R− and w give: R− =
(0.80± 0.15)R+ and w = (1.10± 0.15)R+.

An estimation of the Reynolds number around 100 is
found given typical values of c ∼ 0.2 m/s and R+ ∼
0.5 mm. This shows that the physics is controlled by a
balance between inertia and capillary forces, like in the

FIG. 4. Geometry and velocity dependence of the constric-
tions with respect to R+. a) Amplitude of the constrictions
R−. b) Width of the constrictions w. c) Velocity of the con-
strictions c. The black lines correspond to the adjustment of
the data as stated in the text.
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drop-injected experiment [13]. We thus introduce the

capillary-inertial velocity c0 =
√
γ/ρR+.

Given the experimental dispersion, the data on the ve-
locity c scale reasonably well with the R−0.5+ dependence
expected from c0: the black line in Fig. 4c corresponds
to the best fit by a power-law of exponent -0.5. The
adjustment leads to

cexp = (0.61± 0.12)c0. (1)

The capillary hydraulic jumps observed in the drop-
injected experiment are characterized by a velocity pro-
portional to c0 as well [13, 14]. The prefactor is equal to
1.07, which is roughly twice the one obtained for the de-
pression waves in the bubble-burst experiment. However,
it is important to note that hydraulic jumps and depres-
sion waves are two different kinds of responses of the PB
to a perturbation. Both their geometry and dynamics are
different. A capillary hydraulic jump separates two ex-
tended regions of distinct, uniform radii of curvature. In
that sense it can be regarded as a positive and extended
perturbation that requires a significant mass of liquid
to be added to the PB to occur. Conversely, depression
waves are localized and negative perturbations to an oth-
erwise uniform PB. They do not need an excess of mass
to appear. We have observed them in the bubble-burst
experiment but they could appear in other situations,
including in the drop-injected experiment. However, be-
cause their amplitude and velocity are small, the presence
of hydraulic jumps are likely to hide them.

IV. MODEL

As for capillary hydraulic jumps, the observations of
localized depression patterns traveling at constant veloc-
ity along the PB call for a capillary-inertial description
of the underlying flow. Assuming that the PB profile
and the flow are steady in a reference frame moving with
velocity c, Argentina et al. [15] wrote the mass and hor-
izontal momentum balance equations as:

∂Z
(
uR2

)
= 0

(2)

ρu2 + γ

(
1

R
− β1∂ZZR− β2

(∂ZR)
2

R

)
− 3η∂Zu =

d

R2
.

(3)

ρ, γ and η are the density, the surface tension and the
viscosity of the liquid, respectively. The velocity u is
assumed uniform on the PB cross section, so that both
the radius of curvature R and u are functions only of
Z = z − ct which defines the longitudinal distance along
the Plateau border in the reference frame moving with
velocity c. In Eq. (3), the mean curvature of the liquid-
gas interface involves two geometrical prefactors β1 ∼
β2 ∼ 0.1 related to the specific shape of a PB. For the

sake of simplicity, we set β1 = β2 = β. Finally, d is an
integration constant fixed by the boundary conditions at
infinity. The last term in the l.h.s. of Eq. (3) stands for
the viscous shear.

This ODE was able to retrieve the existence of the hy-
draulic jumps observed in the drop-injected experiment.
A quantitative agreement was found with the experimen-
tal data, and the theoretical prediction that all velocities
should fulfill c > c0/

√
2 proved to be satisfied. Remark-

ably, it was found that other solutions, localized in space
and traveling at velocities c < c0/

√
2, could also exist.

Their shape was numerically computed and found to be
a symmetric constriction [15]. Therefore, these solutions
appear as good candidates to explain the observations of
the bubble-burst experiment. They obey the boundary
conditions:

R(±∞) = R+ (4)

u(±∞) = −c (5)

which fixes d = ρ(cR+)2 + γR+. As done in [15], we
rewrite the equations in a dimensionless form by choosing
the scalings u = cv, Z = R+s and R = R+a:

v =− 1

a2
(6)

1

a4
− 1 + 1/We

a2
+

1

We

(
1

a
− β (∂ssa+

(∂sa)
2

a

))
− 1

Re
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a3
∂sa = 0, (7)

where we have introduced the Reynolds number, Re, and
the Weber number, We:

Re =
ρcR+

η
,We =

ρc2R+

γ
. (8)

For large values of the Reynolds number, we omit the last
term of Eq. (7). Following [15], the resulting equation
multiplied by a2∂sa is integrated once with respect to s:

a(s)2
(
1− βa′(s)2

)
2We

− (We+ 1)a(s)

We
− 1

a(s)
= −1 + 4We

2We
.

(9)
The right-hand side of Eq. (9) is the integration constant
imposed by the boundary conditions a(±∞) = 1. By
setting the local minimum of the constriction at Z = 0,
we have a(0) = a− = R−/R+, and a′(0) = 0, from what
we deduce the following relation between We and a−:

a2−
2We

− (We+ 1)a−
We

− 1

a−
= −1 + 4We

2We
, (10)

which reduces to a− = 2We. From Eq. (8), the velocity
c can thus be expressed as function of the constriction
aspect ratio a−:

c = c0

√
a−
2

(11)
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FIG. 5. Measured velocity cexp as a function of the prediction
cth for solitary waves of Eq. (11).

As a consequence, since a− < 1, the velocity is bounded:
c < c0/

√
2. This upper limit of the velocity can define the

group velocity. For flows with velocity higher than this
critical velocity, shock waves are expected to occur and
take the form of hydraulic jumps [15]. For their part, the
constrictions can be identified to subsonic solitary waves,
in a similar way as the surface waves observed for the
mercury and levitated water cylinder systems mentioned
previously [19, 20].

In Fig. 5, the experimental velocity of each constric-
tion is compared to the velocity predicted by Eq. (11)
when using the experimentally measured value for a−.
The agreement is satisfying considering that there is no
free parameter. In most of the experimental profiles we
measured a− ∼ 0.8, such that cth ∼ 0.63c0: the numeri-
cal prefactor is very close to the 0.61 value that has been
measured experimentally (Eq. (1)).

To proceed further, we compute the radius of curva-
ture profile of a depression solitary wave, analytically to
the first order in the limit of small deformations. Eq.
(9) can be integrated once with respect to s; we do not
report this calculation here neither its weighty resulting
expression. From this expression and using perturbation
theory, a simple analytical expression for the constric-
tion can be explicitly computed as follows. In the limit
of small deformations, we write a− = 1 − ε, assuming
ε� 1. By inserting the Ansatz:

a = 1− εa1
(
s

√
ε

2
√
β

)
+O

(
ε2
)

(12)

into Eq. (9), we obtain

1

4
(∂ta1(t))

2 − a1(t)2 + a1(t)4 = O(ε), (13)

where t = s
√
ε

2
√
β

. This equation admits a1(t) =

FIG. 6. a) Enlargement of a constriction zone. The width
of the constriction w, the radius of the constriction R− and
of the overshoot R+ are emphasized. b) Radius of curvature
profile measured experimentally (light gray) and adjustment
by Eq. (14) of the model (dark dashed curve).

1/ cosh(t)2 as a solution. Finally, the profile of the lo-
calized structure obeys

a(s) = 1− (1− a−)

cosh2

(
s

√
1−a−
2
√
β

) +O
(

(1− a−)
2
)
. (14)

The above formula was tested by looking for the best fit
of the experimental profile reported in Fig. 6a with β as
a free parameter. The adjustment yields the theoretical
profile superposed with the experimental profile in Fig.
6b. The value 0.04 is obtained for β, which is consistent
with the expected 0.1 value as mentioned above and in
[15].

V. CONCLUSIONS

By means of an experimental study, we have shown
that the relaxation dynamics of Plateau borders may ex-
hibit structures having the characteristics of depression
solitary waves [18]: these newly observed structures are
localized in space, travel at constant velocity without de-
formation and cross each other without significant change
in shape nor in velocity; their velocity depends on their
amplitude.

We derived a model which admits two kinds of solu-
tions, namely shock waves and subsonic depression soli-
tary waves. The former were identified to the capillary
hydraulic jumps reported in [13]. The latter compare
very well to the experimental data from the bubble-burst
experiment, in favor of identifying the constrictions ob-
served to solitons.

The present model is unable to predict the value of the
dimensionless contraction amplitude a−, which is found
experimentally to be almost constant, close to 0.8. This
feature might be explained by dissipative effects that we
neglected at the first order. As it is the case for the
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capillary hydraulic jumps [15], a selection mechanism for
the velocity could arise from the viscous shear. The
slight asymmetry of the patterns observed experimen-
tally could also result from some difference in dissipation
on the two sides of the constriction in relation to the
convergent/divergent nature of the flow.

To conclude, this study emphasizes the role of inertia
in the relaxation dynamics of a Plateau border and that

this liquid foam microchannel can be used as a quasi-1D
model system to study highly non-linear surface waves in
fluid dynamics.
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