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X - 2 CHRISTENSEN ET AL.: SCALE SELECTION IN COLUMNAR JOINTING

Abstract. Many natural fracture systems are characterized by a single8

length scale, which is the distance between neighboring fractures. Examples9

are mudcracks and columnar jointing. In columnar jointing the origin of this10

scale has been a long-standing issue. Here we present a comprehensive study11

of columnar jointing based on experiments on cooling stearic acids, numer-12

ical simulations using both discrete and finite element methods and basic an-13

alytical calculations. We show that the diameter of columnar joints is a non-14

trivial function of the material properties and the cooling conditions of the15

system. We determine the shape of this function analytically and show that16

it is in agreement with the experiments and the numerical simulations.17
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1. Introduction

Spectacular geometric patterns, such as Giant’s Causeway at the Irish shoreline, Devil’s18

Tower in Wyoming or Svartifoss in Iceland (Figure 1a), are examples of columnar joint-19

ing in igneous rocks. Several hypotheses for the physical process resulting in columnar20

jointing have historically been proposed, such as the columns being crystals of quartz or21

the columns being regular packings of spherulites [Tomkeieff , 1940]. It is now widely22

accepted that columnar jointing in igneous rock is a result of thermal contraction, an23

idea developed in the late 19th century [Mallet , 1875]. As the igneous body cools it con-24

tracts. If the contraction is uniform, no stress will be generated in the rock, whereas a25

non-uniform contraction, e.g. due to temperature gradients, will generate stress. Above26

the glass transition temperature of the rock, TG, the stress is viscously dissipated, but27

below TG stress starts to accumulate. When the stress exceeds the fracture threshold,28

the accumulated elastic energy is transformed to surface energy by fractures. As the rock29

further cools with time, the TG isotherm propagates toward the interior of the rock and30

with it the fracture front. In that way a network of fractures, or so-called joints, is created31

and it divides the rock into columns.32

Igneous columnar jointing occurs in lava flows, lava lakes, sills, dikes and ash-flow tuffs33

[Hetényi et al., 2012; Spry , 1962]. The columns are commonly polygonal shaped, with34

the diameter being approximately constant over a significant fraction of their height. The35

observed diameters range from a few cm up to 3m while the column height can be up36

to 30m. The regular columns tend to have 5, 6 or 7 sides, although 3-, 4-, and 8-sided37

columns exist as well [Hetényi et al., 2012; Phillips et al., 2013; Spry , 1962]. As illustrated38
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X - 4 CHRISTENSEN ET AL.: SCALE SELECTION IN COLUMNAR JOINTING

in Figure 1b, the regular columns can be intersected by a highly disorganized region39

with smaller curvy columns. The two types of regions are commonly termed colonnade40

and entablature, respectively [Tomkeieff , 1940]. Figure 1c illustrates striations on the41

surface of columnar joints. The striations are linear bands oriented perpendicular to the42

crack propagation direction and are produced by stepwise crack advance, where the crack43

advance length corresponds to the striae height, s [Ryan and Sammis , 1981].44

Under certain conditions, columnar jointing can be reproduced at the lab scale in des-45

iccating starch slurries [Goehring et al., 2015, 2006; Müller , 1998, 2001; Toramaru and46

Matsumoto, 2004]. In general, desiccation cracks differ from columnar jointing, since the47

contraction of the desiccating substance, e.g. mud, is limited to the surface in contact48

with air. The cracks therefore have a short penetration depth [Groisman and Kaplan,49

1994]. In contrast to columnar jointing, mud cracks typically have a hierarchical struc-50

ture, where domains bounded by existing cracks are divided by secondary cracks meeting51

existing cracks at 90 degree angles [Bohn et al., 2005]. Hierarchical fracture patterns are52

also produced by serpentinization processes in e.g. dyke-host complexes [Iyer et al., 2008]53

and by weathering processes [Røyne et al., 2008]. Common for most hierarchical fracture54

patterns is the lack of a maturation process similar to that observed in cooling basalt,55

where the fracture network has time to mature as it propagates with the cooling front56

[Hofmann et al., 2015].57

The internal stress generated by the contraction of a material, β = αT∆T , will in a linear

elastic approximation be proportional to Eβ/(1−2ν), where E is the Young modulus, αT

the coefficient of linear thermal expansion, ∆T a temperature change and ν the Poisson

ratio. The stress generation will be lower if the material contraction changes from 0 to

D R A F T February 6, 2022, 10:10am D R A F T



CHRISTENSEN ET AL.: SCALE SELECTION IN COLUMNAR JOINTING X - 5

β over a length scale w and in the limit of large w, the stress becomes vanishingly small.

Inspired by desiccating thin films and mud, we write the magnitude of the internal stress

σ in terms of a scaling function f :

σ = Eβf(w, ν, . . .) (1)

The internal stress is dependent on material properties, such as Young’s modulus E,58

Poisson’s ratio ν and coefficient of linear thermal expansion αT , as well as on the externally59

imposed cooling conditions determined by the temperature change ∆T and the length scale60

w. The internal stress might depend on further material properties such as the thermal61

diffusivity D, the fracture toughness KI,c or cooling conditions.62

Asymptotic shapes of such a scaling function has been suggested in [Hayakawa, 1994].63

For desiccation in thin film systems, the scaling function can be estimated analytically64

[Cohen et al., 2009]. Here, we will determine the shape and dependencies of the scaling65

function, f , for columnar jointing from simple analytical models and from numerical66

simulations and compare with experiments on cooling stearic acid.67

1.1. Heat extraction mechanism

The stress accumulation in a cooling igneous body is controlled by the magnitude of68

the temperature gradients, which again is controlled by the heat transport in the mate-69

rial. Two main modes of heat transport during columnar jointing have been considered70

in the literature, bulk heat conduction and crack aided convective cooling, respectively.71

In general, conductive cooling leads to a temperature profile flattening as time progresses72

and therefore results in an increase of column diameters with time. In contrast, convec-73

tive cooling can maintain a steep temperature profile and therefore also a fixed column74
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diameter. Below we shall focus on the convective cooling mode and only briefly discuss75

the conductive mode.76

1.1.1. Conductive cooling77

As a simple model, one can consider the igneous body as a homogeneous and isotropic

half space X ≥ 0 where we imagine the X-axis to point into the igneous body. Due to the

assumed homogeneity and infinite extent of the Y - and Z-dimensions, the temperature

field is only a function of X. For pure bulk heat diffusion the temperature field is governed

by:

∂T (X, t)

∂t
= D∇2T (X, t) (2)

At the interface, X = 0, the igneous body is in contact with a cooling surface which

we assume efficiently removes heat, such that the temperature of this surface is always

T0, i.e. T (X = 0, t) = T0. The initial temperature of the body at t = 0 is taken to be

homogeneously T1, i.e. T (X > 0, t = 0) = T1. If we do not consider latent heat, the

present boundary conditions yield:

T (X, t) = T0 + (T1 − T0) erf
(

X

2
√
Dt

)
(3)

where the error function is defined as: erf(η) = 2√
π

∫ η
0
e−τ

2
dτ . If we assume that the78

igneous body can be described as a linear elastic material (infinite in the Y - and Z-79

dimensions), then from Eq. (3), we see that the only natural length scale in the system80

must be proportional to
√
Dt. We would therefore expect the stria height as well as the81

average column diameter to increase with the square root of time, or equivalently, the82

distance from the cooling surface. Here, we have neglected the latent heat, but the result83

from including latent heat is qualitatively identical. The profile again flattens proportional84

to the square root of time. While an increase in striae height has been observed within a85
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few meters from the cooling surfaces [Ryan and Sammis , 1978; Degraff and Aydin, 1993],86

jointed igneous rock commonly has a constant striae height over much of the column87

height [Goehring and Morris , 2008; Phillips et al., 2013]. The constant stria height could88

be explained if the system had one fixed length scale. A fixed length scale is a possibility89

in convective cooled systems.90

1.1.2. Convective cooling91

Borehole temperature measurements of the Kilauea Iki lava lake [Hardee, 1980] showed

a constant temperature of 100◦C in the upper part of the solidified basalt. This suggests,

that the mechanism responsible for stabilizing the heat extraction rate and thereby the

speed of the temperature profile is convection of water/steam in the joints. We shall

therefore assume that the water and steam zone propagates through the cooling body

at a constant velocity v = vX̂ and that the entire convection zone is at temperature

T0 = 100◦C. The water and steam convection results in a moving boundary condition of

T (X, t) = T0 at the position X − vt = 0 for the heat diffusion equation in Eq. (2). To

implement this boundary condition, we change the reference to a frame moving with the

convection zone and rescale by a characteristic length, `, of the system, x = (X − vt)/`.

In steady state, the heat diffusion equation in the moving frame reduces to:

1

Pe

∂2T

∂x2
+
∂T

∂x
= 0, (4)

where we have introduced the Péclet number Pe = v`/D which is the ratio of the heat

advection and heat diffusion rates. The Péclet number can also be thought of as the ratio,

Pe = `/w, between the column diameter ` and the width of the thermal front w = D/v.
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The general solution to Eq. (4) is:

T (x) = ∆T
(
1− e−Pex

)
θ(x) + T0, (5)

where θ(x) is the Heaviside step function, ∆T = T1 − T0 and T0, T1 are the temperatures92

at x = 0 and x = ∞ respectively. T0 is the temperature of the convection zone and93

T1 is the emplacement temperature. This temperature profile is similar to the profile94

employed by [Hardee, 1980] which yielded good agreement with borehole measurements95

at the Kilauea Iki lava lake. Eq. (5) has a fixed shape in the frame of reference moving with96

the convection zone and is therefore expected to result in columnar joints with constant97

diameter, `, and constant striae height, s.98

1.2. Scaling of the column diameter

Basalt columns typically have a constant column diameter over most of their height99

[Peck and Minakami , 1968; Goehring and Morris , 2008; Phillips et al., 2013]. The speed100

of the temperature front, which is proportional to the cooling rate, is widely considered101

the governing quantity of the column diameter [Budkewitsch, 1994; Grossenbacher and102

McDuffie, 1995], with faster cooling leading to slenderer columns. As Budkewitsch [1994]103

notes, the rate of heat extraction from a convectional cooled igneous body is equal to the104

heat transferred from the hot interior to the crack network. Assuming that 1m of crack in105

the plane perpendicular to the column axes can only transport a certain amount of heat,106

the length of the crack network in this plane would have to increase with increased cooling107

rate, i.e the column diameter would decrease. Based on data from desiccating starch108

experiments and the igneous columnar joints at the Island of Staffa and the Columbia109

River Basalt Group, it was observed that the column diameter, `, correlates with the110
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inverse of the temperature front speed, 1/v [Goehring et al., 2009]. From the definition of111

the Péclet number, it was proposed that igneous columnar jointing proceeds at a constant112

Péclet number of Pe = 0.3± 0.2.113

Hetényi et al. [2012] further found, that the geological setting (lava flow, lava lake, lava114

dome, sill, dyke) exerted control on the columnar diameter, through control of the surfaces115

where heat can be exchanged with the environment and thereby the cooling rate. When116

the bodies were geometrically unconstrained (lava flows), they found chemistry to play117

a role, through its control of material properties and through its control of emplacement118

geometry, which in turn affects the cooling rate.119

Though thermal contraction is widely believed to be the mechanism governing the120

column formation process, other models where fingering in the solidifying lava governs121

the column scale, such as large scale constitutional supercooling [Guy , 2010; Gilman,122

2009] or double-diffusive convection [Kantha, 1981], have been proposed. These models123

were not found consistent with a small-scale study of a single basalt column [Bosshard124

et al., 2012], and do not fully explain the striking similarity between columnar jointing in125

basalt and corn starch.126

All the above considerations assume a one-to-one relation between material properties,127

cooling parameters and the resulting column diameter. Alternatively, one might imagine128

that there is a range of possible column diameters for each set of material properties and129

cooling parameters. Goehring et al. [2006] found in desiccating corn starch experiments,130

that for the same initial evaporation rate there existed a column diameter stable over a131

range of final evaporation rates. Jagla and Rojo [2002] numerically studied the evolution132

of a parallel array of cracks in a directionally dried system. They found that the distance133
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between the parallel cracks was governed by the typical length scale at the surface where134

cooling was initiated. In contrast to this finding, Bahr et al. [2009] deduced from a135

numerical bifurcation analysis in three dimensions, the existence of a smallest possible136

column diameter for each value of the crack front propagation velocity.137

For columnar jointed igneous rock, there is to our knowledge no clear evidence of a one-138

to-one relation between material properties (such as E,αT , D,KI,c), cooling parameters139

(such as ∆T,w) and the column diameter. Though the studies of column diameter versus140

geological emplacement and column diameter versus cooling rate show correlations, none141

of these data sets are strong enough to imply a one-to-one relationship. We will therefore142

explore the idea of a range of possible columns diameters.143

1.3. Organization of the article

In this article, we shall investigate the scaling of columnar joints through three-144

dimensional numerical simulations, available field data and a new experimental system145

based on the cooling of stearic acid. The stearic acid experiments are presented in Sec-146

tion 2. A simple two-dimensional model for columnar jointing is introduced in Section147

3, and the idea of a range of possible columns diameters for each system configuration148

is explored analytically and numerically in Section 4. We use the numerical simulations149

and analytical arguments to derive a quantitative relation between the Péclet number and150

material properties and cooling conditions. While the analytical arguments follow from151

two-dimensional considerations, we show from numerical simulations that the arguments152

are also valid in three dimensions. Finally, we compare our findings with experiments153

on cooling stearic acid and field observations on igneous columnar jointing. Concluding154

remarks are offered in Section 5.155
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2. Experiments on cooling stearic acid

We propose stearic acid as a new model system for columnar jointing. As opposed to156

the widely studied corn starch model system, columnar jointing in stearic acid is driven157

by thermal contraction and not by dessication.158

Experiments were performed on stearic acid (a fatty acid of chemical formula C18H36O2).159

It is a waxy solid at room temperature with a solidification temperature TS = 69.3◦C.160

The products are provided by VWR Chemicals (technical grade) and contains a minimum161

of 90% of stearic and palmitic acids.162

Initially, the wax is melted and brought to a temperature of T1 = 120◦C. The liquid163

is poured inside a cylindrical aluminum can that is placed inside a coolant liquid, liquid164

nitrogen at T0 = −196◦C, and solidification occurs from the can edges towards the bulk165

of the sample. At the end of the solidification process, the sample is broken into pieces to166

image the inner structure. A columnar structure appears inside the solid stearic acid at167

the contact with the aluminum can and extends roughly 2 cm inwards (Figure 2a). On168

the rest of the sample, no organized structure is observed. At the end of the experiment,169

the sample exhibits a volume decrease of approximately 10%.170

Post-solidified samples are imaged in depth by X-ray microtomography (Figure 2c-2f).171

The scanner is a SkyScan1172, with a source voltage of 59 kV and a source current of172

167 µA. The stearic acid samples have a surface of order 15 × 15 mm2 and a depth of173

about 20 mm. The average area of the columns is analyzed and plotted as a function174

of the depth from the cooling surface in Figure 2b. We find that the column area is175

rather constant through the jointed region though an increasing trend might be present.176
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Assuming perfect hexagonal columns, the average column area is used to estimate the177

column diameter, ` = (2± 1) mm.178

The solidification front velocity is estimated by stopping the solidification of similar179

samples at different times (liquid stearic acid is removed from the can in less than 2s) and180

measuring a posteriori the solid thickness. We find that the velocity is rather constant181

with a typical solidification front velocity of 5µm/s.182

In situ measurements are performed as well by immersing an array of thermocouples183

(0.4mm between each of them spanning 5.6mm in total) inside the liquid stearic acid.184

The thermocouple measurements confirm the constant solidification front velocity found185

previously and give indications about the temperature profile. The temperature profile186

is flattening with time because the width of the temperature front, w, is increasing, but187

also because the temperature difference, ∆T = T1−T0, between the melt and the coolant188

liquid is slightly decreasing. In fact, the emplacement temperature, T1, is decreasing in the189

experiment from its initial value to the solidification temperature, TS, and consequently190

∆T is varying over 15%. This variation is rather small, and does not significantly affect191

the temperature profile predicted by the conductive cooling model, Eq. (3), but seems192

to be enough to affect the front velocity. While the flattening of the temperature profile193

should induce a front velocity decrease, the fact that T1 approaches TS as the experiment194

proceeds seems to counteract the former effect and maintain a constant solidification front195

velocity. The value of the temperature front width, w, is determined as the width over196

which the temperature changes from the coolant temperature, T0, to the solidification197

temperature, TS. The value of w increases with time and we estimate its range of values198

as w = (4 ± 2)mm for our thermocouple measurements. The experimental values for199
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the average column diameter and front width are used to estimate a Péclet number of200

Pe = `/w = 0.5± 0.4 for the stearic acid system.201

We interpret the termination of the columnar joints after 2 cm to be caused by the202

flattening of the temperature profile, such that the temperature gradient falls below a203

threshold needed for fracturing to occur. We noted the presence of columns with other204

coolant liquids. Using water at 0◦C, we could observe a columnar structure with about the205

same column diameter but the columns extended only a few millimeters into the sample.206

For the water-cooled samples, the temperature difference, T1 − T0, is about one third of207

the temperature difference obtained with nitrogen as coolant. The temperature gradient208

therefore decreases below the threshold value necessary for fracture to occur faster than209

in the nitrogen cooled case and the columns do not extend as far into the sample.210

We noticed that purer samples of stearic acid led to the formation of crystalline struc-211

tures spreading through the whole sample while it solidified and cooled down. In this case,212

no columnar structure was observed. Addition of palmitic acid (5-50% in mass), as found213

in the technical grade, leads to the formation of columns but with a smaller diameter, a214

better cohesion and with a shiny aspect suggesting the presence of larger crystals. The215

presence of impurities in the technical grade might prevent the formation of larger crystal216

structures.217

Tensile loading measurements were performed on cylindrical samples (5mm in diameter,218

5 cm in height) prepared as follows: after the wax is melted, we let the liquid stearic acid219

cool down and solidify slowly at room temperature to prevent the formation of columnar220

structures. At room temperature, the tensile strength is σc = (0.34± 0.06)MPa and the221

Young modulus E = (410± 50)MPa.222
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If a better control of the temperature evolution is gained, we suggest that the stearic223

acid experiments can be used as a model system for igneous columnar jointing in order to224

gain insight into the effect of an initial surface crack pattern, to study if two crack fronts225

approaching each other can produce an entablature like region and to study the effect of226

the confining geometry. Also the possibility of a range of possible column diameters for227

each set of material properties and cooling parameters could be investigated. Since we do228

not yet have the required control of the temperature evolution, the models developed in229

this paper will instead mainly be compared to numerical simulations and available field230

measurements for basalt.231

3. A two-dimensional model of columnar jointing

To model the idea of a range of possible column diameters, we consider the idealized232

version of a system undergoing columnar jointing shown in Figure 3a. We will further233

simplify the model to an array of semi-infinite cracks in a two-dimensional linear-elastic234

strip as displayed in Figure 3b. The two-dimensional strip can be thought of as resulting235

from a plane cut along the red dashed line in Figure 3a. Due to the symmetry of the236

system, the same plane cut will be encountered repeatedly with a distance of approxi-237

mately 2` as one moves in the perpendicular Z-direction. We thus expect the Z-direction238

to be of less importance than the X and Y -directions. Real columnar joint formations are239

neither two-dimensional, nor perfectly hexagonal, and the validity of the two-dimensional240

model thus ultimately relies on the agreement between the three-dimensional numerical241

simulations presented in Section 4 and the predictions of the two-dimensional model.242

The two-dimensional strip is displayed in Figure 3b together with a temperature profile,

Tw,a(X), of the Eq. (5) type, which is expected to lead to columnar jointing with a constant
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diameter, `. This temperature profile has a fixed shape in a frame of reference moving

with the convection zone at speed v as discussed in Section 1.1.2. In contrast to previous

sections, we now take the coordinate system (X, Y, Z) to be the frame of reference moving

with the convection zone and the crack tips, with the crack tips located at Z = 0. For

the purpose of calculating thermal contraction, we are only interested in the temperature

deviation from the un-contracted molten interior at infinity and we therefore consider:

Tw,a(X) = ∆T
(
1− e−(X+a)/w

)
θ(X + a)−∆T (6)

where ∆T = T1−T0 is the maximal temperature difference with respect to the temperature243

of the undeformed system, a is the signed distance between the temperature front and the244

crack tips and the length scale, w, describes the width of the temperature profile. T1 is245

taken to be the emplacement temperature of the lava and T0 = 100◦C is the temperature246

of the steam filled cracks. For columnar jointing in igneous rock, only a > 0 is relevant,247

since the case a < 0 would imply that the steam/water convection zone penetrates further248

into the rock than the cracks. We will therefore refer to a as the crack lead length.249

In dimensionless form, the temperature field in Eq. (6) in the moving frame of reference

become:

TPe,δ(x) =
Tw,a(X)

∆T
=
(
1− e−(x+δ)Pe/2

)
θ(x+ δ)− 1 (7)

where we have defined the dimensionless moving frame coordinates:

x =
X

b
y =

Y

b
(8)

and the dimensionless control parameters:

δ =
a

b
Pe =

2b

w
=

`

w
=
v`

D
(9)
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where δ is the dimensionless crack lead length and the Péclet number, Pe, is the inverse250

dimensionless width of the temperature profile. For later convenience, we have scaled the251

parameters with half the column diameter, b, and not the full column diameter, ` = 2b,252

as in Eq. (5). The only difference generated is a factor of one half in the exponent of253

Eq. (7).254

In order to determine the crack growth, we are interested in calculating the mode I255

stress intensity factor of the crack tips. We therefore need to know how its value depends256

on the distance between the crack tips and the temperature front δ. We further need to257

know how it depends on the parameters of the temperature front ∆T and Pe as well as258

on parameters of the solidifying material itself E,αT , and KI,c. Here E is the Young’s259

modulus, αT the coefficient of linear thermal expansion and KI,c the critical mode I stress260

intensity factor (fracture toughness).261

We assume that the cracks propagate straight, such that the mode II stress intensity

factor is always zero. Due to the periodicity in the y-direction, we only need to consider

the region Y ∈ [−b, b] or equivalently y ∈ [−1, 1], which is colored gray in Figure 3b.

It is also assumed, that the changes in the thermal fluxes happen on a time scale much

larger than the time needed for the material to reach elastostatic equilibrium. This is a

reasonable assumption since the speed of sound in basalt is of the order 103 m/s [Gleason,

2010] whereas the speed of the thermal front is of the order 10−8m/s [Hardee, 1980]. We

will not consider the effect of temperature dependent elastic parameters. We define the

dimensionless stress, σij, and strain, εij:

σij =
σIJ

EαT∆T
εij =

εIJ
αT∆T

(10)
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where i, j runs over the dimensionless parameters x, y and I, J refers to the corresponding

parameters X, Y with dimension of length. Under plane stress conditions, the elastostatic

mechanical problem is described by three sets of equations:

Force balance:
∂σij
∂xj

= 0 (11)

εxx = (σxx − νσyy) + TPe,δ(x)

Constitutive relations: εyy = (σyy − νσxx) + TPe,δ(x)

εxy = (1 + ν)σxy (12)

Compatibility: 2
∂2εxy
∂x∂y

=
∂2εxx
∂y2

+
∂2εyy
∂x2

(13)

In order to calculate the stress tensor components, we make use of the dimensionless Airy

stress function, φ(x, y), which is related to the stress components through the following

derivatives:

σxx =
∂2φ

∂y2
, σyy =

∂2φ

∂x2
, σxy = − ∂2φ

∂x∂y
. (14)

By inserting Eq. (12) in Eq. (13) and simplifying using Eq. (11), we finally obtain from

Eq. (14) the equation:

∇2∇2φ(x, y) = −∇2TPe,δ(x) (15)

The boundary conditions follow from the periodicity of the system and the fact, that σyy

must vanish on the crack faces, whereas the dimensionless displacement in the y-direction,
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uy = uY /b, must vanish on the rest of the crack line.

σxy(x, 1) = σxy(x,−1) = 0 (16)

σxy(x, 0) = 0 (17)

uy(x, 0) = 0 (18)

σyy(x, 1) = 0 for x < 0, uy(x, 1) = 0 for x > 0 (19)

4. Results

The calculation of the stress field from Eq. (15) on the entire x-axis is made complicated

by the mixed boundary condition in Eq. (19) and has to our knowledge not previously

been performed. We have used the Wiener-Hopf method along the lines of [Marder , 1994]

to implement the mixed boundary condition, and solve for the stress intensity factor at

the crack tip. The solution is derived in Appendix A and we obtain the dimensionless

mode I stress intensity factor κI = KI/(EαT∆T
√
b):

κI(Pe, δ) = hPe(δ) (20)

where δ = a/b is the dimensionless crack lead length and the Péclet number, Pe = 2b/w, is262

the inverse dimensionless width of the temperature profile. The function hPe(δ) is found263

analytically in the Appendix, Eq. (A26), and the stress intensity factor is plotted for264

different values of Pe and δ in Figure 4.265

Crack advance in columnar jointing basalt occurs incrementally, producing striae as

mentioned in the introduction. However, we will not try to model this feature, but

consider the crack propagation to be in steady state, such that KI = KI,c always holds at

the crack tip, where KI,c is the material dependent critical mode I stress intensity factor

(fracture toughness). The crack thus propagates continuously with the same speed as the
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temperature front. If we define the dimensionless critical stress intensity factor, κI,c, and

the mechanical loading length, bmin, as:

κI,c =
KI,c

EαT∆T
√
b

=

√
bmin
b

(21)

then the fracture criteria KI = KI,c can be restated as:

κI(Pe, δ) = κI,c (22)

and a minimum column spacing, b = bmin, is obtained in the case of a uniform contraction266

where Pe = 0 and the stress intensity factor reaches its maximal value κI(0, δ) = 1 for all267

crack lead lengths, δ.268

For a given material and temperature profile (fixed bmin and w), the fracture criterion269

in Eq. (22) can be fulfilled for all b ≥ bmin by changing the crack tip position, δ = a/b,270

and thus adjusting κI(Pe, δ) in the interval [0; 1]. The physical mechanism behind the271

continuous set of possible (Pe, δ)-pairs for fixed material and temperature parameters,272

can be thought of as follows: If the fracture spacing, and thus the Peclét, Pe, is imagined273

to increase slightly, then the resulting fracture density decreases and the stress intensity274

at the crack tips increases. To accommodate this change, the crack tips can move further275

in to the hot un-contracted region by increasing δ and thus bring the stress intensity at276

the crack tips back to the original level.277

In summary, the two-dimensional model of an infinite array of cracks predicts, that

there is a minimum column diameter for a given material and temperature profile:

b ≥ bmin (23)

where bmin = (KI,c/EαT∆T )2 and the range of b-values fulfilling Eq. (23) are equally278

possible within the framework of the model.279
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To test whether a range of column diameters occurs, we have performed a set of dis-280

crete element simulations (Appendix B). In the simulations the temperature front in281

Eq. (6) is propagated through a three dimensional linear elastic material. The material282

is represented by discrete elements, i.e. connected springs which thermally can contract283

and which can break if a critical stress or strain is reached. An example of the resulting284

fracture network is shown in Figure 5. The dimensionless fracture toughness, κI,c, and285

the temperature front width, w, are simulation parameters, whereas the column diame-286

ter, 〈`〉, is measured when the system reaches a state of steady crack propagation with287

constant column diameter. From the measured column diameter, the Péclet number of288

the simulation, Pe = 〈`〉 /w, can be found.289

We have performed simulations where the width of the temperature front, w, is either290

suddenly or slowly increased/decreased for fixed κI,c. In general, we observe a corre-291

sponding increase/decrease in the column diameter such that the Péclet number stays292

approximately constant. If all column diameters in the range b ≥ bmin were equally pos-293

sible, we would expect to see instances where the column width remains constant at the294

cost of a change in distance between the temperature profile and the crack tips. As w295

changes, but b stays fixed, the result is a change of the Péclet number. In summary, the296

simulated systems seem to select one specific column diameter, `, for each temperature297

profile width, w, leading to a one-to-one correspondence between the Péclet number, Pe,298

and the dimensionless fracture toughness, κI,c. However, the possibility of a narrow but299

finite range of allowed Péclet numbers, and thus column widths, can not be ruled out from300

the present simulations.301
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We expect the approximate one-to-one correspondence between Pe and κI,c to be caused302

by a bifurcation instability [Hofmann et al., 2011; Bahr et al., 2009]. If we consider all303

pairs of (Pe, δ) fullfilling Eq. (22) there will be a minimum value of the Péclet number304

below which the system is unstable to a small advance of one crack tip relative to its305

neighbors, leading to a doubling of the column width. It can be motivated, that steady306

columnar joint formation with a constant width occurs close to the stability limit, by307

considering the cooling history of the system. When cooling is initiated, the cooling308

effect of the cracks in the material surface is negligible compared to the external diffusive309

cooling from e.g. the underlying ground. As the diffusive cooling front slows down with310

time, a series of bifurcation events are induced as the stability limit for the column width311

is encountered, and the system coarsens. Eventually, convectional cooling becomes the312

dominant cooling mechanism, and the temperature field and crack propagation reaches a313

steady state. The column width will thus approximately correspond to the stability limit.314

To obtain a quantitative relationship between the column width and the dimensionless

fracture toughness, we will in the following assume a one-to-one correspondence between

the Péclet number, Pe, and the fracture toughness, κI,c. This assumption together with

Eq. (22) implies, that δ, must also be a function of the Péclet number. In addition to

the three-dimensional simulations, we have performed simulations in two dimensions, to

test more directly the analytical calculations and the relation between Pe and δ. In two

dimensions, we have measured the average separation between cracks, 〈`〉, and the crack

lead length, 〈δ〉. Figure 6 indicates a power law relation between the Péclet number, Pe,

and the crack lead length, δ, measured in two dimensions:

δ = g(Pe) = c1 Pe
c2 (24)
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As the error-bars are large, we propose the coefficients c1 = 5.4 and c2 = −1.4 which are315

in agreement with the 2D simulation measurements, see Figure 6, and furthermore yield a316

best fit between the pairs of κI,c and measured Pe from the three-dimensional simulations,317

see Figure 7. We note that the data in Figure 6 could be consistent with a narrow but318

finite range of crack lead lengths, δ, possible for each Péclet number.319

Here we assume the power law relation in Eq. (24). The power law relation allows us

to replace δ with a function of the Péclet number δ = g(Pe), and thus analytically obtain

a one-to-one relation between the system parameters in κI,c, and the Péclet number. The

fracture criteria in Eq. (22) can be restated as:

f(Pe) = κI(Pe, g(Pe)) = κI,c (25)

where we have defined the scaling function f(Pe) = κI(Pe, g(Pe)). The scaling function,320

plotted in Figure 7, is in excellent agreement with three-dimensional discrete element321

simulations. This supports the validity of a one-to-one relationship between the Péclet322

number and the dimensionless fracture toughness, κI,c. The scaling function agrees rea-323

sonably well with estimates of κI,c and Pe for the Kilauea Iki lava lake and stearic acid,324

where the speed, v, of the temperature front has been directly measured. The estimate of325

Pe and κI,c for the Kilauea Iki lava lake is based on the parameters listed in Table 1 and326

a column diameter assumed similar to that of the Prehistoric Makaopuhi lava lake. The327

Kilauea Iki lava lake is to our knowledge the only published field data, where the speed,328

v, of the thermal front has been measured directly. The stearic acid estimate of Pe and329

κI,c is based on the parameters listed in Table 2.330

We stress, that the column width ` predicted by Eq. (25) is a function of both the331

material properties (E,αT , D,KI,c) and the externally imposed cooling conditions (∆T, v).332
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4.1. Prediction of the temperature front propagation speed from the scaling

function
The scaling function, Eq. (25), allows us to estimate the Péclet number of a process333

Pe = f−1(κI,c), from the dimensionless fracture toughness κI,c = KI,c/EαT∆T
√
b. From334

the Péclet number, Pe = `/w = v`/D, the temperature front propagation speed, v, can335

be estimated, if the thermal diffusivity, D, and the column diameter, ` = 2b, is known.336

Figure 8 shows the temperature front speed, v, estimated from our model using the337

parameters in Table 3 and field measurements of 〈`〉 for sites in the Columbia River338

Basalt Group available from the supplementary material of [Goehring and Morris , 2008].339

The corresponding estimated Péclet numbers are in the range Pe ∈ [0.2− 0.3].340

The figure also shows the estimates of v for the same sites based on field measurements341

of the striae heights, 〈s〉, as presented in [Goehring et al., 2009]. The model’s estimates,342

based on 〈`〉, systematically predict values of v which are a factor two smaller than the343

estimates based on 〈s〉. The two estimates are close, when keeping in mind that the two344

methods use independent field data, 〈`〉 and 〈s〉, and different models for the system. We345

propose our model as a way to quickly estimate the temperature front speed, v, when no346

striae height measurements are available.347

5. Conclusion

We have used stearic acid as a new model material for columnar jointing caused by348

thermal contraction. If better temperature control is gained in the stearic acid experi-349

ments, we expect that our experimental system could further be used to investigate the350

entablature formation as well as the possibility of a range of column diameters for each351

set of material properties and cooling parameters.352
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Based on numerical simulations and analytical calculations, we argued that one Péclet353

number is selected for each dimensionless critical stress intensity factor, though a narrow354

finite range of Péclet numbers could not be ruled out.355

We derived the functional form of the relation between the Péclet number and the356

dimensionless critical stress intensity factor and finally showed that our derivations are in357

reasonable agreement with data obtained from stearic acid experiments, three-dimensional358

numerical simulations and field data. We suggest our scaling function as a quick way to359

determine the rate by which the fracture front and therefore the cooling front advances360

in a system using as input basic properties of the material, the emplacement temperature361

and field measurements of the column diameter. Alternatively, an estimate of the column362

diameter can be obtained from the scaling function if the fracture front speed is known.363

Appendix A: Analytical solution for the stress intensity factor

A1. The Wiener-Hopf Equation

We want to solve Eq. (15), which is defined on the entire x-axis with the boundary

conditions in Eq. (16-19). For convenience, Eq. (15) is here reproduced as Eq. (A1):

∇2∇2φ(x, y) = −∇2TPe,δ(x) (A1)

and the boundary conditions are reproduced as Eq. (A2-A5):

σxy(x, 1) = σxy(x,−1) = 0 (A2)

σxy(x, 0) = 0 (A3)

uy(x, 0) = 0 (A4)

σyy(x, 1) = 0 for x < 0, uy(x, 1) = 0 for x > 0 (A5)
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where x, y are dimensionless coordinates, σij, εij are dimensionless stress and strain,364

TPe,δ(x) defined in Eq. (7) is the dimensionless temperature front, δ is the dimensionless365

distance between the crack tips and the temperature front and Pe is the dimensionless366

width of the temperature front.367

We note, that had we instead of plane stress worked with plain strain conditions, the368

modification of the constitutive relations would result in a factor of 1/(1−ν2) multiplying369

the right hand side of Eq. (A1). All calculations to be performed in this section can370

therefore easily be modified to a plane strain setting.371

If we introduce the partly unknown functions u−(x, 1) and σ+(x, 1):

u−(x, 1) =

{
uy(x, 1) for x ≤ 0

0 for x > 0
(A6)

σ+(x, 1) =

{
0 for x ≤ 0

σyy(x, 1) for x > 0
(A7)

then the boundary condition for uy(x, 1) in Eq. (A5) can be extended to the entire x-axis

and restated as:

uy(x, 1) = u−(x, 1) for all x (A8)

where u−(x, 1) is partly unknown so far.372

Eq. (A1) can be Fourier transformed in the x-direction and turned into a fourth order

inhomogeneous ODE. We denote the dimensionless transform variable q and the trans-

formed functions by a tilde:(
q4 − 2q2 ∂

2

∂p2
+

∂4

∂p4

)
φ̃(q, p) = q2 T̃Pe,δ(q) (A9)

We now consider the Fourier transform of the functions in Eq. (A6-A7) utilizing that they

both vanish on half of the x-axis. For the Fourier transform of σ+(x, 1) we use a complex
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parameter q = α + iτ , where α and τ are real:

σ̃+(q, 1) =

∫ ∞
−∞

eiqxσ+(x, 1) dx

=

∫ ∞
0

eiqxσ+(x, 1) dx

=

∫ ∞
0

eiαxe−τxσ+(x, 1) dx (A10)

Assuming that the behavior of |σ+(x, 1)| is O(eτσx) as x → ∞, then the integral in373

Eq.(A10) converges in the complex half plane given by τ > τσ. I.e., σ̃+(q, 1) is analytic in374

this half plane.375

If σ+(x, 1) has algebraic growth, is constant or decays slower than an exponential func-376

tion for x→∞, then τσ = 0. So the real axis is only a part of the region of analyticity if377

σ+(x, 1) has exponential decay at infinity.378

We can define ũ−(q, 1) by doing similar considerations. We know that u−(x, 1) vanishes

in the uncracked material for x > 0:

ũ−(q, 1) =

∫ ∞
−∞

eiqxu−(x, 1) dx

=

∫ 0

−∞
eiαxe−τxu−(x, 1) dx (A11)

Assuming the behavior of |u−(x, 1)| is O(eτux) as x→ −∞, then the integral in Eq. (A11)379

converges in the complex half plane given by τ < τu, such that ũ−(q, 1) is analytic in this380

region.381

Solving Eq. (A9) with the boundary conditions of Eq. (A2-A4, A8) yields the Wiener-

Hopf Eq. (A12):

σ̃+(q, 1) = DPe,δ(q) + F (q)ũ−(q, 1) (A12)
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where ũ−(q, 1) is still partly unknown. The functions F (q) and DPe,δ(q) are defined as:

F (q) =
q

2

[
coth(q) + q csch2(q)

]
(A13)

DPe,δ(q) = −T̃Pe,δ(q) (A14)

A2. Solving the Wiener-Hopf Equation

The Wiener-Hopf method allows us, to use our knowledge of the asymptotic behavior382

of u−(x, 1) and σ+(x, 1) to express σ̃+(q, 1) in Eq. (A12) purely in terms of the known383

functions F (q) and DPe,δ(q) and without reference to the partly unknown u−(x, 1).384

The first step is to separate Eq. (A12) into a right hand side analytic in a half plane385

τ < τu and a left hand side analytic in a half plane τ > τσ. Provided that the two half386

planes overlap, i.e. τσ < τu, then the right hand side represents the analytic continuation387

of the left hand side into the entire complex plane and vice versa.388

To accomplish the separation of Eq. (A12), we need to factorize the function F (q) into389

two parts that are analytic in each their respective half plane of the complex plane. The390

function F (q) has poles on the imaginary axis for q = iπn with n ∈ Z/{0} and increases391

linearly as q/2 for |q| → ∞.392

We choose to factorize F (q) into a fraction F (q) = F−(q)/F+(q) where F−(q) has no

poles or zeros for τ < τF− and F+(q) has no poles or zeros for τ > τF+, where we again

use the complex Fourier variable q = α+ iτ . The factorization was performed numerically

using 32 Chebyshev polynomials following the strategy of Liu and Marder [1991]. The

large q behavior of F+ and F− was chosen to be:

lim
|q|→∞

F+(q) ∼
√

2

−iq
(A15)

lim
|q|→∞

F−(q) ∼
√
iq

2
(A16)
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which produces the correct behavior lim|q|→∞ F (q) ∼ q/2 for large |q|. Using the factorized

F (q) we can rewrite the Wiener-Hopf Eq. (A12) as:

σ̃+(q, 1)F+(q) = DPe,δ(q)F+(q) + F−(q)ũ−(q, 1)

= e−iqδDPe,0(q)F+(q) + F−(q)ũ−(q, 1) (A17)

where we have used the translation properties of the Fourier transform to pull the ex-

ponential e−iqδ out in the last line. We need to separate the product DPe,0(q)F+(q) into

regions of analyticity. We use the Fourier convolution theorem:

DPe,0(q)F+(q) =

∫ ∞
−∞

eiqxdx

∫ ∞
−∞

DPe,0(x′)F+(x− x′)dx′

=

∫ ∞
−∞

eiqxhPe(x) dx

=

∫ 0

−∞
eiqxhPe(x) dx+

∫ ∞
0

eiqxhPe(x) dx

= h−(q) + h+(q) (A18)

Where h+(q) does not have any poles in the upper τ > τh+ half of the complex plane and

h−(q) does not have any poles in the lower τ < τh− half of the complex plane. With this

factorization, the Wiener-Hopf Eq. (A17) takes the form:

σ̃+(q, 1)F+(q)− h+(q)e−iqδ = h−(q)e−iqδ + F−(q)ũ−(q, 1) (A19)

The left hand side is analytic in the upper half plane τ > max(τσ, τF+, τf+), and the right

hand side is analytic in a lower half plane τ < min(τu, τF−, τf−). Provided that the right

hand side and the left hand side overlap in some non-empty open subset like a line or

a small area, they are each others analytical continuation into the other half plane and
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equal to the same entire function W (q):

σ̃+(q, 1)F+(q)− h+(q)e−iqδ = h−(q)e−iqδ + F−(q)ũ−(q, 1)

= W (q) (A20)

We expect that uy(x, b) goes to a constant for x → ∞ which means that τu = 0. There393

will be an overlap of the two regions of analyticity if σyy(x, 1) has just a slight exponential394

decay for x→∞, such that τσ = −ε where ε is a small positive real number. The overlap395

is depicted as the gray shaded area in Figure 9 and an overview of the regions of analyticity396

is shown in Table 4. It is not physically unreasonable to expect a slight exponential decay397

of σyy(x, 1) as x→∞, since we know σyy(x, 1) does decay in this limit.398

Assuming τσ = −ε, the function W (q) is entire. To determine the constant value of

W (q) we use Abel theorems, which relate the asymptotic behaviors of a function g(r) and

its one sided Fourier transforms g̃+(q) or g̃−(q). We will use the following Abel theorem

[Freund , 1990, Sec. 1.3] rewritten for a plus type Fourier transform with q = α+iτ , where

both α and τ are real:

lim
x→0+

Γ(1 + γ)x−γg(x) = lim
τ→+∞

(−iq)1+γg+(q) (A21)

Which is valid for γ > −1. We can extract the asymptotic behavior of the Fourier

transformed stress function using the Abel theorem:

lim
x→0+

σyy(x, 1) ∼ lim
x→0+

1√
x
⇒ lim

τ→+∞
σ+(q, 1) ∼ lim

τ→+∞

1√
−iq

(A22)

From the behavior of F+(q) and DPe,0(q) we directly have:

lim
|q|→∞

h+(q) ∼ lim
|q|→∞

√
2

−iq

(
1

iq

)
(A23)
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If we consider the left hand side of Eq. (A20), using the asymptotic results of Eq. (A15,

A22, A23) we get:

lim
τ→+∞

W (q) = lim
τ→+∞

(σ̃+(q, 1)F+(q)− h+(q))

∼ lim
τ→+∞

[
1√
−iq
·
√
− 2

iq
−
√

2

−iq

(
1

iq

)]
= lim

τ→+∞

[ √
2

τ − iα
+

√
2

τ − iα

(
1

τ − iα

)]
= 0 (A24)

Now,W (q) is analytic in the entire plane, bounded and equal to zero at infinity. Therefore,

by Liouvilles Theorem, it must be identical zero in the entire plane. This allow us to finally

determine σ̃+(q, 1) from Eq. (A20) without any reference to the partly unknown ũ−(q, 1):

σ̃+(q, 1) =
1

F+(q)
h+(q)e−iqδ

=
1

F+(q)

∫ ∞
0

dx eiqxhPe(x+ δ)

=
1

F+(q)

∫ ∞
−∞

dx eiqxθ(x)hPe(x+ δ) (A25)

We note, that from Eq. (A18) we can also express hPe(x) as:

hPe(x) =

∫ ∞
−∞

dq

2π
e−iqxF+(q)DPe,0(q) (A26)

where the inverse Fourier transform integral has to be performed within the strip of399

analyticity of the integrand.400

A3. Extracting the stress intensity factor

The Abel theorems in Eq. (A21) allow us to infer the x→ 0+ behavior of σyy(x, 1) from401

the τ →∞ behavior of σ̃+(q, 1), where again q = α + iτ .402
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We define the dimensionless mode I stress intensity factor κI as:

κI(δ) = lim
x→0+

√
2π x1/2σyy(x, 1) (A27)

= lim
τ→+∞

√
2π

Γ
(

1
2

)(−iq)1/2σ̃+(q, 1) (A28)

= lim
τ→+∞

√
−2iq σ̃+(q, 1) (A29)

To go from Eq. (A27) to Eq. (A28), we have used the Abel theorem in Eq. (A21) for

γ = −1/2. From Eq. (A25), we see that the large q behavior of σ̃+(q, 1) is partly due to

the 1/F+(q) factor and partly due to the integrand. The large q behavior of the integrand

in Eq. (A25) is governed by the step function discontinuity of the integrand at x = 0.

The large q behavior of the integrand becomes:

lim
|q|→∞

∫ ∞
−∞

dx eiqxθ(x)hPe(x+ δ) = lim
|q|→∞

(
−1

iq

)
hPe(δ) (A30)

where the Fourier transform of the step function θ(x) is −1/iq and exists for τ > 0. The

large q behavior of F+(q) we already know from Eq. (A15). Collecting our knowledge on

σ̃+(q, 1) we arrive at:

κI(δ) = lim
τ→+∞

√
−2iq

√
−iq

2

(
−1

iq

)
hPe(δ)

= lim
τ→+∞

√
2(τ − iα)

√
τ − iα

2

(
1

τ − iα

)
hPe(δ)

= hPe(δ) (A31)

This is the result stated in Eq. (20) of the main text.403

Appendix B: Three-dimensional discrete element simulations of the columnar

joint formation

To model the cracking of an elastic medium, we use a discrete element method with

nodes arranged in a cubic lattice with a lattice constant L0. The nodes are interacting
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with their nearest-neighbors (NN) and next-nearest-neighbors (NNN) through Hookean

springs with spring constants k1 and k2 for NNs and NNNs, respectively. The spring

connecting the nodes i and j has an equilibrium length Leqij and holds an elastic energy

quadratic in the deviation from the equilibrium length,

Uij =
1

2
kij(Lij − Leqij )2 (B1)

where xi denotes the position of the i’th node and Lij = |xi − xj|. The total energy

of the system is given by the sum over all springs U tot =
∑
Uij. The elasticity tensor

corresponding to these interactions can be written in the form [Hayakawa, 1994]:

Ciiii = (k1 + 2k2)/L0 (B2)

Ciijj = Cijji = Cijij = k2/L
0. (B3)

The thermal contraction of the system is modeled by changing the local equilibrium

distance between the nodes. Like in the previous section, we shall consider a contraction

front on the form of Eq. (6):

Leqij (X,X0) = L0
ij

[
1 + αT∆T

(
1− e−

X−X0
w

)
θ (X −X0)

− αT∆T
]

(B4)

where X0 = vt = D
w
t is the position of the temperature front, which moves through

the system with time. Since elastic relaxation happens many orders of magnitude faster

than thermal relaxation, the simulations proceed by advancing the contraction front a

length dX0, relaxing the system to elastostatic equilibrium, and repeating the process.

The value of dX0 does not affect the resulting fracture pattern. The state of elastostatic

equilibrium or force balance is reached by minimizing the elastic energy, i.e. finding the

lattice configuration for which ∇U = ∇
∑
Uij = 0. To that end, we apply a conjugate
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gradient method in the multidimensional configuration space. In the simulations, we use

a failure criterion where an elastic bond in the lattice is broken when it is strained, εij,

beyond a critical strain εc:

εij > εc. (B5)

With this threshold, bonds do not break during compression, i.e. the fractures forming404

the columnar joints will mostly grow at the trailing edge of the contraction front. Note,405

that while this asymmetry in the fracture criterion have little impact on the morphology406

of the steady state patterns, it may influence the fracture patterns formed close to the407

boundary of the system, i.e. where the front is initiated.408

If more than one bond is strained beyond the critical level, the bond with the highest409

strain is broken and the lattice is relaxed to the new state of elastostatic equilibrium. We410

then check whether other bonds still exceed the critical stress. If a bond still exceeds411

the critical stress the process is repeated until no such bond exists and then finally we412

advance the contraction front by a small increment, dX0. In that way, bonds are broken413

one-by-one until none of them exceeds the critical strain.414

Note that in the simulations the temperature profile starts out with the steady state415

shape and therefore the initial cracks nucleating at the surface of the simulation system416

might not have any resemblance to the columns close to the cooling surface in real system.417

After a transient dynamics over a length of approximately 2w, the cracks in the simulations418

form a regular polygonal pattern equivalent to the columnar joints. An example of a419

simulation is shown in Figure 5. When the regular polygonal crack pattern has formed,420

then the average column diameter 〈`〉 is measured. From this measurement, the Péclet421

number Pe = 〈`〉 /w for the simulation can be determined.422
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The fracture criterion KI = KI,c of section 4 is in the simulations implemented through423

a critical strain. The dimensionless critical stress intensity factor is related to the critical424

strain as: κI,c = KI,c/(EαT∆T
√
b) = εc/(αT∆T ). This should not affect the above425

observations.426

Appendix C: Three-dimensional finite element simulations of the columnar

joint formation

To model the cracking of an elastic medium and test the results of the discrete element427

method in Appendix B we use the finite element method (FEM). The material undergoing428

cooling is approximated by a box [0, 4]× [0, 1]× [0, 1] with periodic boundary conditions429

applied on the faces parallel to the X-axis. The computational domain is finely discretized430

using tetrahedral elements (4 million tetrahedra). We assume the material to be isotropic431

and Cauchy elastic in the simulation, with the Young’s modulus E and Poisson ratio432

ν = 0.25. The assumption of small displacements is valid in the context of columnar joint433

formation and the elasticity model is appropriate for simulating infinite systems.434

We use the von Mises yield criterion, which states that failure occurs when the von Mises435

stress, σM , exceeds the material’s yield strength, σc, chosen in simulation to be equal436

σc = 0.01E. We use a standard, linear Galerkin method to discretize the constitutive437

equation.438

The propagating temperature front and corresponding thermal contraction are modeled

as a body force:

β(X,X0) = αT∆T
(

1− exp−(X−X0)/w
)
θ(X −X0)− αT∆T (C1)

where the maximum contraction is αT∆T = 0.2, the contraction front is located at X0 =439

vt = D
w
t and the slope 1/w varies between 12 and 18. The simulation method at each440
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time step advances the contraction front a step dX0, updates the equilibrium von Mises441

stress values, and proceeds to fracture resolution. The fracture resolution is performed442

by finding the element with the maximum von Mises stress exceeding σc and removing443

it from the computational mesh (by labeling it as air). This is followed by reassembling444

the stiffness matrix and re-equilibrating the system. Those two steps are then repeated445

as long as there are elements with σM > σc in the mesh. Re-equilibration, which amounts446

to solving the constitutive equations with a new stiffness matrix, is a computationally447

intensive process hence, in order to improve the method’s performance we introduce two448

simplifications:449

• System relaxation in the fracture resolution step is performed on a submesh composed450

of elements lying in the X-distance 0.1 from the temperature front (which is equivalent451

to treating the excluded region as fluid).452

• Instead of only removing a single element at a time, all elements whose von Mises453

stress are greater than γσc, γ > 1 are all removed at once, where γ is chosen in a way454

that it does not affect the resulting fracture pattern (determined in our simulation to be455

γ = 1.1).456

The resulting set of removed tetrahedra displayed in Figure 10 gives a representa-457

tion of the columnar fracturing pattern, and can be used to measure the typical col-458

umn diameter 〈`〉. The FEM results for pairs of (Pe, κI,c) obtained for fixed w and459

κI,c = KI,c/(EαT∆T
√
b) = σc/(EαT∆T ) are in agreement with the discrete element sim-460

ulation results, see Figure 7. In the figure, κI,c is multiplied with (1−ν) to be comparable461

with the scaling function which is derived for 2D.462
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Figure 1. a) Exposed columnar joint formation at Svartifoss, Iceland. b) Sketch

of a columnar jointed basalt flow cooled from the top and the bottom. The colonnade

contains regular polygonal columns with a more or less constant diameter, whereas the

entablature region is highly disorganized with small and curvy columns. c) The diameter,

`, of the column is approximately constant over most of its height. The incremental crack

propagation leaves striations on the faces of the column, here indicated by gray lines. The

distances between striations marks, s, is the vertical distance the crack front propagated

in one crack advance event.
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Figure 2. a) Columnar joints in solid stearic acid. The structure is obtained by breaking

a post-solidified sample, individual columns can easily be detached. The structure initiates

at the contact with the aluminum can (here top) and propagates to a depth of about 2 cm.

No organized structure is observed beyond (here bottom). b) X-ray microtomography

analysis. The average area of the columns as a function of the depth is plotted for two

samples with identical parameters inside a cylindrical aluminum can. About 3 mm from

the cooling surface, the area stabilizes and is approximately constant as indicated by the

gray line. c-f) X-ray microtomography scans of a stearic acid sample in a cylindrical

aluminum can. Depths from the cooling surface are: c) 3.6mm, d) 7.2mm, e) 10.8mm

and f) 14.4 mm.
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Figure 3. a) Infinite array of perfectly hexagonal columns with diameter ` = 2b. The

columns extend from X = −∞ to X = 0 and the uncracked material extends from X = 0

to X = ∞. The front of crack tips is indicated with a black dashed line and is located

at X = 0. The system is subject to a temperature field Tw,a(X), which varies only in the

X-direction. Red indicates hot regions and white indicates colder regions. We emphasize

that the coordinate system (X, Y, Z) is moving at speed v with the convection zone. It

is only in this moving frame, that the temperature front has a constant shape. b) The

gray strip results from a vertical cut along the red dashed line in Figure 3a. We only

need to consider one column, since the 2D plane cut is periodic in the y-direction. The

gray strip is infinite in the X-direction and periodic in the Y -direction with Y = +b

equal to Y = −b. The semi-infinite cracks centered at Y = ±b are indicated with zigzag

lines and extend from X = −∞ to X = 0. The crack tips at X = 0 are indicated with

diamonds. The strip is subject to the temperature profile Tw,a(X) in Eq. (6), where a

is the signed distance between the crack tips and the temperature front, w is the width

of the temperature profile and ∆T = T1 − T0 is the maximal temperature difference with

respect to the temperature of the undeformed state. Note, that a in principle can be

both positive and negative in the model, but positive a is the case relevant for columnar

jointing in igneous rock and was assumed when producing this drawing.D R A F T February 6, 2022, 10:10am D R A F T
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Figure 4. The dimensionless mode-I stress intensity factor, κI , as a function of the

distance between the temperature front and the crack tips, δ = a/b, for different Péclet

numbers, Pe = 2b/w. The analytical solution is represented by solid lines and the dotted

lines indicate minus the dimensionless temperature front, −TPe,δ(x = 0). For small Péclet

numbers, the temperature gradient is small and a crack tip located at x = 0, a distance

δ ahead of the temperature profile, experiences an essentially uniform contraction equal

to −TPe,δ(x = 0). For larger Péclet numbers, the temperature gradient kicks in and the

stress intensity factor ceases to be equal to −TPe,δ(x = 0). The value κI = 1 corresponds

to the stress intensity factor for a uniform temperature field (Pe = 0).
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Figure 5. Example of a discrete element simulation of columnar jointing. The system

size is 140× 140× 100 and the parameters used are w = 5, αT∆T = 0.02 and εc = 0.009.

The simulations are described in Appendix B. Similar simulations were carried out in 2D

to produce Figure 6.
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Figure 6. Discrete element simulations were performed in 2D and the average column

diameter, 〈`〉, as well as the average crack lead length, 〈a〉 , were measured. We observe

a power law relation between the Péclet number, Pe = 〈`〉 /w, and the crack lead length,

δ = 〈a〉 /(〈`〉 /2). The plotted power law is given by δ = g(Pe) = c1 Pe
c2 with c1 = 5.4

and c2 = −1.4.
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Figure 7. The three-dimensional discrete element (DE) simulations are in good

agreement with the scaling function f(Pe). In the simulations, κI,c and the temper-

ature front width, w, are simulation parameters, whereas the column width, 〈`〉, and

thus the Péclet number, Pe = 〈`〉 /w, is measured. A few finite element (FEM) sim-

ulations of the crack propagation (Appendix C) were run to check the validity of the

discrete element scheme. The results are displayed as full circles and correspond closely

to the DE simulations. For small Péclet numbers, the stress intensity factor approaches

−TPe,δ(x = 0) as seen in Figure 4, and the asymptotic behavior of the scaling function

becomes f(Pe) → −TPe,g(Pe)(x = 0) for small Péclet numbers. The scaling function is

also in reasonable agreement with data from the stearic acid experiments and estimates

for the Kilauea Iki lava lake, where the velocity of the temperature front was measured

directly.
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Table 1. Physical properties of basalt and parameters of the temperature front at the

Kilauea Iki lava lakea

Property Symbol Value Source

Fracture toughness KI,c 2.2 MPa
√
m 1

Young’s modulus E (54.5± 5.5) GPa 2b

Poisson’s ratio ν 0.22 2

Linear coefficient αT (5± 3) · 10−6/◦C 2

of thermal expansion

Thermal diffusivity D 5 · 10−7 m2/s 3

Max. temperature difference ∆T 970◦C 3

Temperature front speed v 6.7 · 10−8 m/s 3

Column diameter ` (3.5± 0.4) m 2c

a The values are taken from 1: Degraff and Aydin [1993], 2: Ryan and Sammis [1981]

and 3: Hardee [1980].
b A 10% deviation of E is inferred from Figure 2 of Ryan and Sammis [1981].

c ` is the column diameter of the Prehistoric Makaopuhi lava lake, which is assumed

similar to the Kilauea Iki lava lake. The average column face width has been converted

to diameter using a hexagonal column shape.
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Table 2. Physical properties of stearic acid and parameters of the temperature fronta

Property Symbol Value Source

Tensile strength σc (0.34± 0.06) MPa 3

Young’s modulus E (410± 50) MPa 3

Poisson’s ratio ν 0.4 3b

Linear contraction αT∆T 1
3

10% 3

Temperature front width w (4± 2) mm 3

Column diameter ` (2± 1) mm 3
a The values are all taken from 3: this paper, section 2. The temperature front width

w is from thermocouple measurements.
b No measurements of the Poisson’s ratio of stearic acid were found in the literature,

and it was therefore estimated to be about ν = 0.4 based on the Poisson’s ratio of other

hydrocarbon materials.
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Figure 8. The temperature front propagation speed, v = PeD/`, is estimated for dif-

ferent field locations using two different methods requiring different input measurements:

column diameter, 〈`〉, and striae height, 〈s〉, respectively. The v-values on the y-axis are

calculated using the scaling function Pe = f−1(κI,c), and field measurements of the aver-

age column diameter, 〈`〉, from [Goehring and Morris , 2008]. The v-values on the x-axis

are calculated on the basis of field measurements of striae heights, 〈s〉, at the same sites

following [Goehring et al., 2009]. Each point represents one field location.
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Table 3. Physical properties of basalt and parameters of the temperature front in the

Columbia River Basalt Groupa

Property Symbol Value Source

Fracture toughness KI,c 2.2 MPa
√
m 1

Young’s modulus E 50 GPa 5

Poisson’s ratio ν 0.2 5

Linear coefficient αT 7 · 10−6/◦C 5

of thermal expansion

Thermal diffusivity D 6.5 · 10−7 m2/s 5

Max. temperature difference ∆T 990◦C 5
a The values are taken from 1: Degraff and Aydin [1993] and 5: Goehring and Morris

[2008]. The maximum temperature difference, ∆T , is calculated as the emplacement

temperature minus 100◦C, which is the temperature of the steam convection zone.

D R A F T February 6, 2022, 10:10am D R A F T



X - 52 CHRISTENSEN ET AL.: SCALE SELECTION IN COLUMNAR JOINTING

Figure 9. Regions of analyticity in the complex plane for different functions. The left

hand side of Eq. (A20) is analytic in the region indicated by the blue arrow, whereas

the right hand side of Eq. (A20) is analytic in the region indicated by the green arrow.

The common strip of analyticity is gray shaded and covers the region −ε < τ < 0 in the

complex plane q = α + iτ .

Table 4. Overview of the regions where the +/− functions are analytical and non-

zero. The zeros of F (q) closest to the real axis were numerically determined to be at

τ = ±2.1062. Thus, the zeros occur closer to the real line than the first poles at τ = ±π,

and the value of τF− and τF+ are set by these zeros.

Upper half plane Lower half plane

τσ −ε τu 0

τh+ -2.1062 τh− 0

τF+ -2.1062 τF− 2.1062

max τ −ε min τ 0
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Table 5. List of simulation parameters used in the discrete element simulations.

Simulation parameter Value

Poisson’s ratio ν = 0.2

Critical strain εc ∈ [0.07, 2.60] · 10−2

Maximal contraction αT∆T ∈ [0.01, 0.04]

Dim.less. critical stress intensity factora κI,c = εc
αT∆T

Temperature front width w ∈ [1, 24]

a In Figure 7 the value of κI,c has been multiplied with (1− ν) to make it comparable

with the scaling function derived for 2D.

Table 6. List of simulation parameters used in the finite element simulations.

Simulation parameter Value

Poisson’s ratio ν = 0.25

Tensile strength σc = 0.01E

Maximal contraction αT∆T = 0.02

Dim.less. critical stress intensity factora κI,c = σc
EαT∆T

= 0.5

Temperature front width w ∈ [1/18, 1/12]

a In Figure 7 the value of κI,c has been multiplied with (1− ν) to make it comparable

with the scaling function derived for 2D.
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Figure 10. Example of the resulting fracture network in a finite element simulation of

columnar jointing for w = 1/15 and the parameters displayed in Table 6.
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