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OPTIMAL FUNCTIONAL INEQUALITIES FOR FRACTIONAL
OPERATORS ON THE SPHERE AND APPLICATIONS

JEAN DOLBEAULT AND AN ZHANG

Abstract. This paper is devoted to the family of optimal functional inequal-
ities on the n-dimensional sphere Sn

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2
≤ Cq,s

∫
Sn
F LsF dµ ∀F ∈ Hs/2(Sn)

where Ls denotes a fractional Laplace operator of order s ∈ (0, n), q ∈
[1, 2) ∪ (2, q?], q? = 2n/(n − s) is a critical exponent and dµ is the uniform
probability measure on Sn. These inequalities are established with optimal
constants using spectral properties of fractional operators. Their consequences
for fractional heat flows are considered. If q > 2, these inequalities interpolate
between fractional Sobolev and subcritical fractional logarithmic Sobolev in-
equalities, which correspond to the limit case as q → 2. For q < 2, the inequali-
ties interpolate between fractional logarithmic Sobolev and fractional Poincaré
inequalities. In the subcritical range q < q?, the method also provides us with
remainder terms which can be considered as an improved version of the optimal
inequalities. Finally, weighted inequalities of Caffarelli-Kohn-Nirenberg type
involving the fractional Laplacian are obtained in the Euclidean space, using
a stereographic projection and scaling properties. The case s ∈ (−n, 0) is also
considered.

1. Introduction and main results

Let us consider the unit sphere Sn with n ≥ 1 and assume that the measure
dµ is the uniform probability measure, which is also the measure induced on Sn
by Lebesgue’s measure on Rn+1, up to a normalization constant. With λ ∈ (0, n),
p = 2n

2n−λ ∈ (1, 2) or equivalently λ = 2n
p′ where 1

p + 1
p′ = 1, according to [38], the

sharp Hardy-Littlewood-Sobolev inequality on Sn reads

(1)
∫∫

Sn×Sn
F (ζ) |ζ − η|−λ F (η) dµ(ζ) dµ(η) ≤

Γ(n) Γ
(
n−λ

2
)

2λ Γ
(
n
2
)

Γ
(
n
p

) ‖F‖2
Lp(Sn) .

For the convenience of the reader, the definitions of all parameters, their ranges and
their relations have been collected in Appendix C.
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By the Funk-Hecke formula, the left side of the inequality can be written as

(2)
∫∫

Sn×Sn
F (ζ) |ζ − η|−λ F (η) dµ(ζ) dµ(η)

=
Γ(n) Γ

(
n−λ

2
)

2λ Γ
(
n
2
)

Γ
(
n
p

) ∞∑
k=0

Γ(np ) Γ( np′ + k)
Γ( np′ ) Γ(np + k)

∫
Sn
|F(k)|2 dµ

where F =
∑∞
k=0 F(k) is a decomposition on spherical harmonics, so that F(k) is a

spherical harmonic function of degree k. See [33, Section 4] for details on the com-
putations and, e.g., [42] for further related results. With the above representation,
Inequality (1) is equivalent to

(3)
∞∑
k=0

Γ(np ) Γ( np′ + k)
Γ( np′ ) Γ(np + k)

∫
Sn
|F(k)|2 dµ ≤ ‖F‖2

Lp(Sn) .

By duality, with q? = q?(s) defined by

(4) q? = 2n
n− s

or equivalently s = n (1− 2/q?), we obtain the fractional Sobolev inequality on Sn

(5) ‖F‖2
Lq? (Sn) ≤

∫
Sn
F KsF dµ ∀F ∈ Hs/2(Sn)

for any s ∈ (0, n), where

(6)
∫
Sn
F KsF dµ :=

∞∑
k=0

γk
(
n
q?

) ∫
Sn
|F(k)|2 dµ

and
γk(x) := Γ(x) Γ(n− x+ k)

Γ(n− x) Γ(x+ k) .

With s ∈ (0, n), the exponent q? is in the range (2,∞). Inequalities (1) and (5) are
related by q? = p′ so that

p = 2n
n+ s

and λ = n− s .

We shall refer to q = q?(s) given by (4) as the critical case and our purpose is to
study the whole range of the subcritical interpolation inequalities

(7)
‖F‖2

Lq(Sn) − ‖F‖
2
L2(Sn)

q − 2 ≤ Cq,s
∫
Sn
F LsF dµ ∀F ∈ Hs/2(Sn)

for any q ∈ [1, 2) ∪ (2, q?], where

Ls := 1
κn,s

(Ks − Id) with κn,s :=
Γ
(
n
q?

)
Γ
(
n− n

q?

) =
Γ
(
n−s

2
)

Γ
(
n+s

2
) .

If q = q?, (5) and (7) are identical, the optimal constant in (7) is Cq?,s = κn,s
q?−2 ,

and we recall that (5) is equivalent to the fractional Sobolev inequality on the
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Euclidean space (see the proof of Theorem 6 in Section 3 for details). The usual
conformal fractional Laplacian is defined by

As := 1
κn,s

Ks = Ls + 1
κn,s

Id .

For brevity, we shall say that Ls is the fractional Laplacian of order s, or simply
the fractional Laplacian.

We observe that γ0(n/q) − 1 = 0 and γ1(n/q) − 1 = q − 2. A straightforward
computation gives ∫

Sn
F LsF dµ :=

∞∑
k=1

δk
(
n
q?

) ∫
Sn
|F(k)|2 dµ

where the spectrum of Ls is given by

δk(x) := Γ(n− x+ k)
Γ(x+ k) − Γ(n− x)

Γ(x) .

The case corresponding to s = 2 and n ≥ 3, where 1/κn,2 = 1
4 n (n− 2), L2 = −∆,

A2 = −∆ + 1
4 n (n− 2) and ∆ stands for the Laplace-Beltrami operator on Sn, has

been considered by W. Beckner: in [5, page 233, (35)] he observed that

δk
(
n
q

)
≤ δk

(
n
q?

)
= k (k + n− 1)

if q ∈ (2, q?(2)], where q? = q?(2) = 2n/(n−2) and (k (k+n−1))k∈N is the sequence
of the eigenvalues of −∆ according to, e.g., [7]. This establishes the interpolation
inequality

(8) ‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn) ≤

q − 2
n
‖∇F‖2

L2(Sn) ∀F ∈ H1(Sn)

where Cq,2 = 1/n is the optimal constant: see [5, (35), Theorem 4] for details.
An earlier proof of the inequality with optimal constant can be found in [8, Corol-
lary 6.2], with a proof based on rigidity results for elliptic partial differential equa-
tions. Our main result generalizes the interpolation inequalities (8) to the case of
the fractional operators Ls, and relies on W. Beckner’s approach. In particular, as
in [5], we characterize the optimal constant Cq,s in (7) using a spectral gap property.

After dividing both sides of (8) by (q − 2) we obtain an inequality which, for
s = 2, also makes sense for any q ∈ [1, 2). When q = 1, this is actually a variant of
the Poincaré inequality (or, to be precise, the Poincaré inequality written for |F |),
and the range q > 1 has been studied using the carré du champ method, also known
as the Γ2 calculus, by D. Bakry and M. Emery in [3]. Actually their method covers
the range corresponding to 1 ≤ q <∞ if n = 1 and 1 ≤ q ≤ 2# := (2n2+1)/(n−1)2

if n ≥ 2. In the special case q = 2, the l.h.s. has to be replaced by the entropy∫
Sn F

2 log
(
F 2/‖F‖2

L2(Sn)
)
dµ. Still under the condition that s = 2, the whole range

1 ≤ q < ∞ when n = 2, and 1 ≤ q ≤ 2n/(n − 2) if n ≥ 3 can be covered using
nonlinear flows as shown in [21, 24, 25].

All these considerations motivate our first result, which generalizes known results
for L2 = −∆ to the case of the fractional Laplacian Ls.
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Theorem 1. Let n ≥ 1, s ∈ (0, n], q ∈ [1, 2)∪ (2, q?], with q? given by (4), if s < n,
and q ∈ [1, 2) ∪ (2,∞) if s = n. Inequality (7) holds with sharp constant

Cq,s = n− s
2 s

Γ
(
n−s

2
)

Γ
(
n+s

2
) .

With our previous notations, this amounts to Cq,s = κn,s
q?−2 = n−s

2 s κn,s. Remark-
ably, Cq,s is independent of q. Equality in (7) is achieved by constant functions.
The issue of the optimality of Cq,s is henceforth somewhat subtle. If we define the
functional

(9) Q[F ] :=
(q − 2)

∫
Sn F LsF dµ

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

on the subset H s/2 of the functions in Hs/2(Sn) which are not almost everywhere
constant, then Cq,s can be characterized by

C−1
q,s = inf

F∈H s/2
Q[F ] .

This minimization problem will be discussed in Section 4.
Our key estimate is a simple convexity observation that is stated in Lemma 9.

The optimality in (7) is obtained by performing a linearization, which corresponds
to an asymptotic regime as we shall see in Section 2.1. Technically, this is the reason
why we are able to identify the optimal constant. The asymptotic regime can be
investigated using a flow. Indeed, a first consequence of Theorem 1 is that we may
apply entropy methods to the generalized fractional heat flow

(10) ∂u

∂t
− q∇ ·

(
u1− 1

q ∇(−∆)−1 Lsu
1
q

)
= 0 .

Notice that (10) is a 1-homogeneous equation, but that it is nonlinear when q 6= 1
and s 6= 2. Let us define a generalized entropy by

Eq[u] := 1
q − 2

[ (∫
Sn
u dµ

) 2
q

−
∫
Sn
u

2
q dµ

]
.

It is straightforward to check that for any positive solution to (10) which is smooth
enough and has sufficient decay properties as |x| → +∞, we have

d

dt
Eq[u(t, ·)] = − 2

∫
Sn
∇u

1
q · ∇(−∆)−1 Lsu

1
q dµ = − 2

∫
Sn
u

1
q Lsu

1
q dµ ,

so that by applying (7) to F = u1/q we obtain the exponential decay of Eq[u(t, ·)].

Corollary 2. Let n ≥ 1, s ∈ (0, n], q ∈ [1, 2)∪ (2, q?] if s < n, with q? given by (4),
and q ∈ [1, 2) ∪ (2,∞) if s = n. If u is a positive function in C1(R+; L∞(Sn)) such
that u1/q ∈ C1(R+; Hs/2(Sn)) and if u solves (10) on Sn with initial datum u0 > 0,
then

Eq[u(t, ·)] ≤ Eq[u0] e− 2 C−1
q,s t ∀ t ≥ 0 .
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The exponential rate is determined by the asymptotic regime as t → +∞. The
value of the optimal constant Cq,s is indeed determined by the spectral gap of the
linearized problem around non-zero constant functions. From the expression of (10),
which is not even a linear equation whenever s 6= 2, we observe that the interplay of
optimal fractional inequalities and fractional diffusion flows is not straightforward,
while for s = 2, the generalized entropy Eq enters in the framework of the so-called
ϕ-entropies and is well understood in terms of gradient flows: see for instance [2,
13, 28]. When s = 2, it is also known from [3] that heat flows can be used in
the framework of the carré du champ method to establish the inequalities at least
for exponents in the range q ≤ 2# if n ≥ 2, and that the whole subcritical range
of exponents can be covered using nonlinear diffusions as in [21, 24, 25] (and also
the critical exponent if n ≥ 3). Even better, rigidity results, that is, uniqueness of
positive solutions (which are therefore constant functions) follows by this technique.
So far there is no analogue in the case of fractional operators, except for one example
found in [12] when n = 1.

When s = 2, the carré du champ method provides us with an integral remainder
term and, as a consequence, with an improved version of (7). As we shall see, our
proof of Theorem 1 establishes another improved inequality, by construction: see
Corollary 10. This also suggests another direction, which is more connected with
the duality that relates (1) and (5). Let us describe the main idea. The operator
Ks is positive definite and we can henceforth consider K1/2

s and K−1
s . Moreover,

using (2) and (6), we know that∫∫
Sn×Sn

G(ζ) |ζ − η|−λG(η) dµ(ζ) dµ(η) =
Γ(n) Γ( s2 )

2λ Γ(n2 ) Γ(n+ s
2 )

∫
Sn
GK−1

s Gdµ .

By expanding the square
∫
Sn
∣∣K1/2

s F −K−1/2
s G

∣∣2 dµ with G = F q?−1 so that
F G = F q? = Gp where q? and p are Hölder conjugates, we get a comparison
of the difference of the two terms which show up in (1) and (5) and, as a result, an
improved fractional Sobolev inequality on Sn. The reader interested in the details
of the proof is invited to refer to [27] for a similar result.

Proposition 3. Let n ≥ 1, s ∈ (0, n), and consider q? given by (4), p = q′? = 2n
n+s

and λ = n− s. For any F ∈ Hs/2(Sn), if G = F q?−1, then

‖G‖2
Lp(Sn) − 2λ

Γ(n2 ) Γ(n+ s
2 )

Γ(n) Γ( s2 )

∫∫
Sn×Sn

G(ζ) |ζ − η|−λG(η) dµ(ζ) dµ(η)

≤ ‖F‖2(q?−2)
Lq? (Sn)

(∫
Sn
F KsF dµ− ‖F‖2

Lq? (Sn)

)
.

Still in the critical case q = q?, using the fractional Yamabe flow and taking
inspiration from [23, 27, 37, 36, 40], it is possible to give improvements of the above
inequality and in particular improve on the constant which relates the left and
the right sides of the inequality in Proposition 3. We will not go further in this
direction because of the delicate regularity properties of the fractional Yamabe flow
and because, so far the method does not allow to characterize the best constant in
the improvement. Let us mention that, in the critical case q = q?, further estimates
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of Bianchi-Egnell type have also been obtained in [15, 40] for fractional operators.
In this paper, we shall rather focus on the subcritical range. It is however clear that
there is still space for further improvements, or alternative proofs of (5) which rely
neither on rearrangements as in [38] nor on inversion symmetry as in [31, 32, 33], for
the simple reason that our method fails to provide us with a proof of the Bianchi-
Egnell estimates in the critical case.

For completeness let us quote a few other related results. Symmetrization tech-
niques and the method of competing symmetries are both very useful to identify
the optimal functions: the interested reader is invited to refer respectively to [39]
and [11], when s = 2. In this paper, we shall use notations inspired by [5], but
at this point it worth mentioning that in [5] the emphasis is put on logarithmic
Hardy-Littlewood-Sobolev inequalities and their dual counterparts, which are n-
dimensional versions of the Moser-Trudinger-Onofri inequalities. Some of these re-
sults were obtained simultaneously in [10] with some additional insight on optimal
functions gained from rearrangements and from the method of competing sym-
metries. Concerning observations on duality, we refer to the introduction of [10],
which clearly refers the earlier contributions of various authors in this area. For
more recent considerations on n-dimensional Moser-Trudinger-Onofri inequalities,
see, e.g., [19].

Section 2 is devoted to the proof of Theorem 1. As already said, we shall take
advantage of the subcritical range to obtain remainder terms and improved in-
equalities. Improvements in the subcritical range have been obtained in the case
of non-fractional interpolation inequalities in the context of fast diffusion equations
in [29, 30]. In this paper we shall simply take into account the terms which appear
by difference in the proof of Theorem 1: see Corollary 10 in Section 2.3. Although
this approach does not provide us with an alternative proof of the optimality of
the constant Cq,s in (7), variational methods will be applied in Section 4 in order
to explain a posteriori why the value of the optimal value of Cq,s is determined by
the spectral gap of a linearized problem. Some useful information on the spectrum
of Ls is detailed in Appendix A.

Our next result is devoted to the singular case of Inequality (7) corresponding
to the limit as q = 2: we establish a family of sharp fractional logarithmic Sobolev
inequalities, in the subcritical range.

Corollary 4. Let s ∈ (0, n]. Then we have the sharp logarithmic Sobolev inequality

(11)
∫
Sn
|F |2 log

(
|F |
‖F‖2

)
dµ ≤ C2,s

∫
Sn
F LsF dµ ∀F ∈ Hs/2(Sn) .

Equality is achieved only by constant functions and C2,s = n−s
2 s κn,s is optimal.

This result completes the picture of Theorem 1 and shows that, under appro-
priate precautions, the case q = 2 can be put in a common picture with the cases
corresponding to q 6= 2. By taking the limit as s → 0+, we recover Beckner’s frac-
tional logarithmic Sobolev inequality as stated in [4, 6]. In that case, q = 2 is
critical, from the point of view of the fractional operator. The proof of Corollary 4
and further considerations on the s = 0 limit will be given in Section 2.4.
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The definition (6) of Ks also applies to the range s ∈ (−n, 0) and the reader is
invited to check that

K−1
s = K−s ∀ s ∈ (0, n)

is defined by the sequence of eigenvalues γk(n/p) where p = 2n/(n+s) is the Hölder
conjugate of q?(s) given by (4). It is then straightforward to check that the sharp
Hardy-Littlewood-Sobolev inequality on Sn (3) can be written as

(12)
‖F‖2

Lp(Sn) − ‖F‖
2
L2(Sn)

p− 2 ≤ κn,−s
2− p

∫
Sn
F L−sF dµ ∀F ∈ L2(Sn)

where p = 2n
n+s ∈ (1, 2), L−s := 1

κn,−s
(Id−K−s) and κn,−s = Γ

(
n+s

2
)
/Γ
(
n−s

2
)
.

Notice that κn,−s = 1/κn,s. A first consequence is that we can rewrite the result of
Proposition 3 as

‖G‖2
Lp(Sn) −

∫
Sn
GK−sGdµ ≤ ‖F‖2(q?−2)

Lq? (Sn)

(∫
Sn
F KsF dµ− ‖F‖2

Lq? (Sn)

)
.

for any F ∈ Hs/2(Sn) and G = F q?−1, where n ≥ 1, s ∈ (0, n), q? is given by (4)
and p = q′?. A second consequence of the above observations is the extension of
Theorem 1 to the range (−n, 0).

Theorem 5. Let n ≥ 1, s ∈ (−n, 0), q ∈ [1, 2n/(n− s)). Inequality (7) holds with
Ls := κn,−s (Id−Ks) and sharp constant Cq,s = n−s

2 |s| Γ
(
n−s

2
)
/Γ
(
n+s

2
)
.

The results of Theorems 1 and 5 are summarized in Fig. 2.
To conclude with the outline of this paper, Section 3 is devoted to the stere-

ographic projection and consequences for functional inequalities on the Euclidean
space. By stereographic projection, (5) becomes

‖f‖2
Lq? (Rn) ≤ Sn,s ‖f‖2

Ḣs/2(Rn) ∀ f ∈ Ḣs/2(Rn) ,

where ‖f‖2
Ḣs/2(Rn) :=

∫
Rn f (−∆)s/2f dx and the optimal constant is such that

Sn,s = κn,s |Sn|
2
q?
−1 .

The fact that (5) is equivalent to the fractional Sobolev inequality on the Eu-
clidean space is specific to the critical exponent q = q?(s). In the subcritical range,
weights appear. However, using scaling properties, it is possible to get rid of these
weights except for some power law terms. Altogether, we obtain some fractional
Caffarelli-Kohn-Nirenberg inequalities, with an explicit estimate of the constant.
Let us introduce the two weighted norms

‖f‖qLq,β(Rn) :=
∫
Rn
|f |q |x|−β dx and ‖f‖qLq,β? (Rn) :=

∫
Rn
|f |q (1 + |x|2)−

β
2 dx .

The next result is inspired by a non-fractional computation done in [26] and relies
on the stereographic projection.

Theorem 6. Let n ≥ 1, s ∈ (0, n), q ∈ (2, q?) with q? given by (4), β = 2n (1− q
q?

).
Then we have the weighted inequality
(13) ‖f‖2

Lq,β? (Rn) ≤ a ‖f‖2
Ḣs/2(Rn) + b ‖f‖2

L2,2s
? (Rn) ∀ f ∈ C∞0 (Rn)
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where a = q−2
q?−2 κn,s 2n( 2

q?
− 2
q ) |Sn|

2
q−1 and b = q?−q

q?−2 2n(1− 2
q ) |Sn|

2
q−1. Moreover,

if q < q?, equality holds in (13) if and only if f is proportional to fs,?(x) :=
(1 + |x|2)−n−s2 .

This result is one of the few examples of optimal functional inequalities involving
fractional operators on Rn. It touches the area of fractional Hardy-Sobolev inequal-
ities and weighted fractional Sobolev inequalities, for which we respectively refer
to [34, 14] and [16], and references therein. The wider family of Caffarelli-Kohn-
Nirenberg type inequalities raises additional difficulties, for instance related with
symmetry and symmetry breaking issues, which are so far essentially untouched in
the framework of fractional operators, up to few exceptions like [14]. One has to
notice that the specific expression of the weight in ‖f‖Lq,β? (Rn) introduces a scale,
which can be removed using scalings, as shown by the last result of this paper.

Corollary 7. Under the assumptions of Theorem 6, if s < n/2, q ∈ (2, q?) and

ϑ = 1/2− 1/q
1/2− 1/q?

= n (q − 2)
s q

,

then for any f ∈ C∞0 (Rn) we have

(14) ‖f‖2
Lq,β(Rn) ≤ Ks,q ‖f‖2ϑ

Ḣs/2(Rn) ‖f‖
2 (1−ϑ)
L2,2s(Rn)

with Ks,q := ϑ−ϑ (1− ϑ)ϑ−1 |Sn|
2
q−1 κϑn,s

(
q−2
q?−2

)ϑ ( q?−q
q?−2

)1−ϑ.
In the limit case as q → 2, the above inequality has to be replaced by the fractional,

logarithmic Hardy inequality: for any f ∈ C∞0 (Rn) such that ‖f‖L2,2s(Rn) = 1,

(15)
∫
Rn

f2

|x|2s
log
(
|x|n−s f2) dx ≤ n

s
log
[
CFLH
s

∫
Rn
f (−∆)s/2f dx

]
with CFLH

s = n−s
n

(
e
|Sn|
)s/n Γ

(
n−s

2
)
/Γ
(
n+s

2
)
.

Inequalities (13) and (14)-(15) hold not only for the space C∞0 (Rn) of all smooth
functions with compact support but also for the much larger spaces of functions
obtained by completion of C∞0 (Rn) with respect to the norms defined respectively
by ‖f‖2 := ‖f‖2

Ḣs/2(Rn) + ‖f‖2
L2,2s
? (Rn) and ‖f‖2 := ‖f‖2

Ḣs/2(Rn) + ‖f‖2
L2,2s(Rn).

2. Subcritical interpolation inequalities

In this section, our purpose is to prove Theorem 1.

2.1. A Poincaré inequality. We start by recalling some basic facts:
(i) If q and q′ are Hölder conjugates, then n/q′ = n− x with x = n/q,
(i) γ0(x) = 1 for any x > 0,
(ii) γk(n/2) = 1 and δk(n/2) = 0 for any k ∈ N,

(iii) γ1(x) = (n − x)/x, γ1(n/q) = q − 1 and δ1(n/q?) = (q? − 2)/κn,s. As a
consequence, we know that the first positive eigenvalues of Ks and Ls are

λ1(Ks) = γ1
(
n
q?

)
= q? − 1 and λ1(Ls) = δ1

(
n
q?

)
= q? − 2

κn,s
= 2 s

(n− s)κn,s
.
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A straightforward consequence is the following sharp Poincaré inequality.

Lemma 8. For any F ∈ Hs/2(Sn), we have

‖F − F(0)‖2
L2(Sn) ≤ C1,s

∫
Sn
F LsF dµ where F(0) =

∫
Sn
F dµ ,

and C1,s = κn,s/(q? − 2) is the optimal constant. Any function F = F(0) + F(1),
with F(1) such that Ls F(1) = λ1(Ls)F(1), realizes the equality case.

Proof. The proof is elementary. With the usual notations, we may write∫
Sn
F LsF dµ =

∫
Sn

(F − F(0))Ls(F − F(0)) dµ =
∞∑
k=1

δk
(
n
q?

) ∫
Sn
|F(k)|2 dµ

≥ δ1
(
n
q?

)
‖F − F(0)‖2

L2(Sn) = λ1(Ls) ‖F − F(0)‖2
L2(Sn)

because δk(n/q?) is increasing with respect to k ∈ N. �

The sharp Poincaré constant C1,s is a lower bound for Cq,s, for any q ∈ (1, q?]
if s < n, or any q > 1 if s = n. Indeed, if q 6= 2, by testing Inequality (7) with
F = 1 + εG1, where G1 is an eigenfunction of Ls associated with the eigenvalue
λ1(Ls), it is easy to see that

ε2 ‖G1‖2
L2(Sn) ∼

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 ≤ Cq,s
∫
Sn
F LsF dµ

= Cq,s ε2
∫
Sn
G1 LsG1 dµ

as ε→ 0, which means that, at leading order in ε,

‖G1‖2
L2(Sn) = λ1(Ls) Cq,s ‖G1‖2

L2(Sn) .

Altogether, this proves that

(16) Cq,s ≥
1

λ1(Ls)
= κn,s
q? − 2 .

A similar computation, with (7) replaced by (11) and F = 1 + εG1, shows that∫
Sn
|F |2 log

(
|F |
‖F‖2

)
dµ ∼ C2,s ε

2
∫
Sn
G1 LsG1 dµ

as ε→ 0, so that (16) also holds if q = 2. Hence, under the Assumptions of Theo-
rem 1, (16) holds for any q ≥ 1. In order to establish Theorem 1 and Corollary 4,
we have now to prove that (16) is actually an equality.

2.2. Some spectral estimates. Let us start with some observations on the func-
tion γk in (6). By expanding its expression, we get that

γk(x) = (n+ k − 1− x) (n+ k − 2− x) . . . (n− x)
(k − 1 + x) (k − 2 + x) . . . x
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for any k ≥ 1. After taking the logarithmic derivative, we find that

(17) αk(x) := − γ′k(x)
γk(x) =

k−1∑
j=0

βj(x) with βj(x) := 1
n+ j − x

+ 1
j + x

and observe that αk is positive. As a consequence, γ′k < 0 on [0, n] and, from
the expression of γk, we read that γk(n) = 0. Since γk(n/2) = 1, we know that
γk(n/q) > 1 if and only if q > 2. Using the fact that

γ′′k (x)
γk(x) =

(
αk(x)

)2 − α′k(x) =
(
γ′k(x)
γk(x)

)2
+
k−1∑
j=0

(2 j + n) (n− 2x)
(n+ j − x)2 (j + x)2 ,

we have γ′′k (x) ≥ 0, which establishes the convexity of γk on [0, n/2]. Moreover, we
know that

γ′k
(
n
2
)

= −αk
(
n
2
)

= −
k−1∑
j=0

4
n+ 2 j .

See Fig. 1. Taking these observations into account, we can state the following result.

Lemma 9. Assume that n ≥ 1. With the above notations, the function

q 7→
γk
(
n
q

)
− 1

q − 2
is strictly monotone increasing on (1,∞) for any k ≥ 2.

Proof. Let us prove that q 7→ γk(n/q) is strictly convex w.r.t. q for any k ≥ 2.
Written in terms of x = n/q, it is sufficient to prove that

x γ′′k + 2 γ′k > 0 ∀x ∈ (0, n) ,
which can also be rewritten as

α2
k − α′k − 2

x αk > 0 .
Let us prove this inequality. Using the estimates

α2
k =

k−1∑
j=0

βj

2

≥ 2β0

k−1∑
j=1

βj +
k−1∑
j=0

β2
j ,

β2
0 − β′0 − 2

x β0 = 0 ,
and

2β0 βj + β2
j − β′j − 2

x βj = 2 (n+ j) (n+ 2 j)
(n− x) (n+ j − x) (j + x)2

for any j ≥ 1, we actually find that

α2
k − α′k − 2

x αk ≥
k−1∑
j=1

2 (n+ j) (n+ 2 j)
(n− x) (j + n− x) (j + x)2 ∀ k ≥ 2 ,

which concludes the proof. Note that as a byproduct, we also proved the strict
convexity of γk for the whole range x ∈ (0, n). �
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Proof of Theorem 1. We deduce from (5) that

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 ≤
∞∑
k=1

γk
(
n
q

)
− 1

q − 2

∫
Sn
|F(k)|2 dµ

because γ0(x) = 1. It follows from Lemma 9 that

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 ≤
∞∑
k=1

γk
(
n
q?

)
− 1

q? − 2

∫
Sn
|F(k)|2 dµ

= κn,s
q? − 2

∞∑
k=1

δk
(
n
q?

) ∫
Sn
|F(k)|2 dµ = κn,s

q? − 2

∫
Sn
F LsF dµ .

This proves that Cq,s ≤ κn,s
q?−2 . The reverse inequality has already been shown

in (16). �

Proof of Theorem 5. With s ∈ (−n, 0), it turns out that q? defined by (4) is in the
range (1, 2) and plays the role of p in (12). According to Lemma 9, the inequality
holds with the same constant for any q ∈ (1, q?), and this constant is optimal
because of (16). �

2.3. An improved inequality with a remainder term. What we have shown
in Section 2.2 is actually that the fractional Sobolev inequality (5) is equivalent to
the following improved subcritical inequality.

Corollary 10. Assume that n ≥ 1, q ∈ [1, 2) ∪ (2, q?) if s ∈ (0, n), and q ∈
[1, 2) ∪ (2,∞) if s = n. For any F ∈ Hs/2(Sn) we have

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 +
∫
Sn
F Rq,sF dµ ≤

κn,s
q? − 2

∫
Sn
F LsF dµ

where Rq,s is a positive semi-definite operator whose kernel is generated by the
sperical harmonics corresponding to k = 0 and k = 1.

Proof. We observe that∫
Sn
F Rq,sF dµ :=

∞∑
k=2

εk

∫
Sn
|F(k)|2 dµ

where

εk :=
γk
(
n
q?

)
− 1

q? − 2 −
γk
(
n
q

)
− 1

q − 2
is positive for any k ≥ 2 according to Lemma 9. �

Equality in (7) is realized only when F optimizes the critical fractional Sobolev
inequality and, if q < q?, when F(k) = 0 for any k ≥ 2, which is impossible unless
F is an optimal function for the Poincaré inequality of Lemma 8. This observation
will be further exploited in Section 4.
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2.4. Fractional logarithmic Sobolev inequalities.

Proof of Corollary 4. According to Theorem 1, we know by (7) that
‖F‖2

Lq(Sn) − ‖F‖
2
L2(Sn)

q − 2 ≤ n− s
2 s κn,s

∫
Sn
F LsF dµ

for any function F ∈ Hs/2(Sn) and any q ∈ [1, 2) ∪ (2, q?) with q? = q?(s) given
by (4) (and the convention that q? = ∞ if s = n). By taking the limit as q → 2
for a given s ∈ (0, n), we obtain that (11) holds with C2,s ≤ n−s

2 s κn,s. The reverse
inequality has already been shown in (16) written with q = 2. �

Let us comment on the results of Corollary 4, in preparation for Section 4. Instead
of fixing s and letting q → 2 as in the proof of Corollary 4, we can consider the case
q = q?(s) and let s→ 0, or equivalently rewrite (5) as

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 ≤
∞∑
k=0

γk
(
n
q

)
− 1

q − 2

∫
Sn
|F(k)|2 dµ ,

and take the limit as q → 2. By an endpoint differentiation argument, we recover
the conformally invariant fractional logarithmic Sobolev inequality

(18)
∫
Sn
F 2 log

(
|F |

‖F‖L2(Sn)

)
dµ ≤ n

2

∫
Sn
F K′0F dµ

as in [4, 6], where the differential operator K′0 is the endpoint derivative of Ks at
s = 0. The equality K′0 = L′0 holds because κn,0 = 1 and K0 = Id. More specifically
the right side of (18) can be written using the identities∫

Sn
F K′0F dµ =

∫
Sn
F L′0F dµ = 1

2

∞∑
k=0

αk
(
n
2
) ∫

Sn
|F(k)|2 dµ

with αk
(
n
2
)

= − γ′k
(
n
2
)

=
∑k−1
j=0

4
n+2 j .

Inequality (18) is sharp, and equality holds if and only if F is obtained after
applying any conformal transformation on Sn to constant functions. Finally, let us
notice that (18) can be recovered as an endpoint of (11) by letting s → 0. The
critical case is then achieved as a limit of the subcritical inequalities (11): the
optimal constant can be identified, but the set of optimal functions in the limit is
larger than in the subcritical regime, because of the conformal invariance.

Even more interesting is the fact that the fractional logarithmic Sobolev inequality
is critical for s = 0 and q = 2 but subcritical inequalities corresponding to q ∈ [1, 2)
still make sense.

Corollary 11. Assume that n ≥ 1 and q ∈ [1, 2). For any F ∈ L2(Sn) such that∫
Sn F K

′
0F dµ is finite, we have

‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

q − 2 ≤ n

2

∫
Sn
F K′0F dµ .

As for Corollary 4, the proof relies on Lemma 9. Details are left to the reader.
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3. Stereographic projection and weighted fractional interpolation
inequalities on the Euclidean space

This section is devoted to the proofs of Theorem 6 and Corollary 7. Various
results concerning the extension of the Caffarelli-Kohn-Nirenberg inequalities intro-
duced in [9] (also see [20, Theorem 1] in our context) are scattered in the literature,
and one can refer for instance to [18, Theorem 1.8] for a quite general result in
this direction. However, very little is known so far on optimal constants or even
estimates of such constants, except for some limit cases like fractional Sobolev or
fractional Hardy-Sobolev inequalities (see, e.g., [45]). What we prove here is that
the interpolation inequalities on the sphere provide inequalities on the Euclidean
space with weights based on (1 + |x|2), with optimal constants and, using a scaling,
Caffarelli-Kohn-Nirenberg inequalities with more standard power law weights.

Proof of Theorem 6. Let us consider the stereographic projection S, whose inverse
is defined by

S−1 : Rn → Sn , x 7−→ ζ =
(

2x
1 + |x|2 ,

1− |x|2

1 + |x|2

)
.

with Jacobian determinant |J | = 2n (1 + |x|2)−n. Given s ∈ (0, n) and q ∈ (2, q?),
Inequality (7) can be written using the conformal Laplacian as

‖F‖2
Lq(Sn) −

q? − q
q? − 2 ‖F‖

2
L2(Sn) ≤

q − 2
q? − 2 κn,s

∫
Sn
F AsF dµ

where As and the fractional Laplacian on Rn are related by

|J |1−
1
q? (AsF ) ◦ S−1 = (−∆)s/2

(
|J |

1
q? F ◦ S−1

)
.

Then the interpolation inequality (7) on the sphere is equivalent to the following
fractional interpolation inequality on the Euclidean space

|Sn|1−
2
q

(∫
Rn
|f |q |J |1−

q
q? dx

) 2
q

− q? − q
q? − 2

∫
Rn
f2 |J |1−

2
q? dx

≤ q − 2
q? − 2 κn,s

∫
Rn
f (−∆)s/2f dx

after using the change of variables F 7−→ f = |J |1/q? F ◦ S−1. The equality case is
now achieved only by f = |J |1/q? for any q ∈ (2, q?), up to a multiplication by a
constant, and the inequality is equivalent to (13). �

Proof of Corollary 7. Since ‖g‖2
L2,2s
? (Rn) ≤ ‖g‖

2
L2,2s(Rn), we deduce from (13) that

‖g‖2
Lq,β? (Rn) ≤ a ‖g‖2

Ḣs/2(Rn) + b ‖g‖2
L2,2s(Rn) .

By applying this inequality to g = gλ with gλ(x) := λ(n−β)/q g1(λx), we observe
that the r.h.s. can be written as

a ‖gλ‖2
Ḣs/2(Rn) + b ‖gλ‖2

L2,2s(Rn) = Aλ−a + Bλb
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where A = a ‖g1‖2
Ḣs/2(Rn), B = b ‖g1‖2

L2,2s(Rn), b = n (1− 2/q) and a = s− b. If we
optimize the r.h.s. with respect to λ > 0, we obtain for λ = λ∗ that it is given by
λs∗ = aA

bB and equal to Aλ−a∗ + Bλb∗ = s
a

(
a
b A
)ϑ B1−ϑ with ϑ = b/(a+ b). Hence we

have shown that(∫
Rn

|g1|q

(λ2
∗ + |x|2)n (1− q

q?
) dx

) 2
q

≤ Ks,q ‖g1‖2ϑ
Ḣs/2(Rn) ‖g1‖2 (1−ϑ)

L2,2s(Rn)

with Ks,q := s
a

(
a
b a
)ϑ b1−ϑ. The r.h.s. is now invariant under the scaling corre-

sponding to a second scaling given by g1(x) := µ(n−β)/q f(µx), and the inequality
amounts, in terms of f , to(∫

Rn

|f |q

(µ2 λ2
∗ + |x|2)n (1− q

q?
) dx

) 2
q

≤ Ks,q ‖f‖2ϑ
Ḣs/2(Rn) ‖f‖

2 (1−ϑ)
L2,2s(Rn)

for an arbitrary µ > 0. We conclude by taking the limit as µ→ 0+.
In the limit case as q → 2, the inequality becomes an equality, so that we can

differentiate with respect to q and get a logarithmic Hardy inequality as in the s = 2
case: see [20] for more details in a similar problem. �

4. Concluding remarks

A striking feature of Inequality (7) is that the optimal constant Cq,s is determined
by a linear eigenvalue problem, although the problem is definitely nonlinear. This
deserves some comments. Let q ∈ [1, 2) ∪ (2, q?) if s < n and q ∈ [1, 2) ∪ (2,∞) if
s = n. With Q defined by (9) on H s/2, the subset of the functions in Hs/2(Sn)
which are not almost everywhere constant, we investigate the relation

Cq,s inf
F∈H s/2

Q[F ] = 1 .

Notice that both numerator and denominator of Q[F ] converge to 0 if F approaches
a constant, so that Q becomes undetermined in the limit. As we shall see next, this
happens for a minimizing sequence and explains why a linearized problem appears
in the limit.

By compactness of the Sobolev embedding Hs/2(Sn) ↪→ Lq(Sn) (see [43, 1, 18] for
fundamental properties of fractional Sobolev spaces, [22, sections 6 and 7] and [41]
for application to variational problems), any minimizing sequence (Fn)n∈N for Q is
relatively compact if we assume that ‖Fn‖Lq(Sn) = 1 for any n ∈ N. This normal-
ization can be imposed without loss of generality because of the homogeneity of Q.
Hence (Fn)n∈N converges to a limit F ∈ Hs/2(Sn). Assume that F is not a constant.
Then the denominator in Q[F ] is positive and by semicontinuity we know that∫

Sn
F LsF dµ ≤ lim

n→+∞

∫
Sn
Fn LsFn dµ .

On the other hand, by compactness, up to the extraction of a subsequence, we have
that

‖F‖2
L2(Sn) = lim

n→+∞
‖Fn‖2

L2(Sn) and ‖F‖2
Lq(Sn) = lim

n→+∞
‖Fn‖2

Lq(Sn) = 1 .
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Hence F is optimal and solves the Euler-Lagrange equations
(q − 2) Cq,s LsF + F = F q−1 .

Using Corollary 10, we also get that F lies in the kernel of Rq,s, that is, the space
generated by the spherical harmonics corresponding to k = 0 and k = 1. From the
Euler-Lagrange equations, we read that F has to be a constant. Because of the
normalization ‖F‖Lq(Sn) = 1, we obtain that F = 1 a.e., a contradiction.

Hence (Fn)n∈N converges to 1 in Hs/2(Sn). With εn = ‖1 − Fn‖Hs/2(Sn) and
vn := (Fn − 1)/εn, we can write that

Fn = 1 + εn vn with ‖vn‖Hs/2(Sn) = 1 ∀n ∈ N
and

lim
n→+∞

εn = 0 .

On the other hand, it turns out that (Fn)n∈N being a minimizing sequence,

C−1
q,s = lim

n→+∞
Q[Fn] = lim

n→+∞

ε2
n (q − 2)

∫
Sn vn Lsvn dµ

‖1 + εn vn‖2
Lq(Sn) − ‖1 + εn vn‖2

L2(Sn)
.

If q > 2, an elementary computation shows that
(19) ‖1 + εn vn‖2

Lq(Sn) − ‖1 + εn vn‖2
L2(Sn) = (q − 2) ε2

n ‖vn − v̄n‖2
L2(Sn)(1 + o(1))

as n→ +∞, where v̄n :=
∫
Sn vn dµ, so that

C−1
q,s = lim

n→+∞
Q[Fn] = lim

n→+∞

∫
Sn vn Lsvn dµ
‖vn − v̄n‖2

L2(Sn)
.

Details on the Taylor expansion used in (19) can be found in Appendix B. When
q ∈ [1, 2), we can estimate the denominator by restricting the integrals to {x ∈ Sn :
εn |vn| < 1/2} and Taylor expand t 7→ (1 + t)q on (1/2, 3/2).

Notice that Fn being a function in H s/2, we know that ‖vn − v̄n‖L2(Sn) > 0 for
any n ∈ N, so that the above limit makes sense. With the notations of Section (2.1),
we know that

C−1
q,s ≥ inf

v∈H s/2

∫
Sn vLsv dµ
‖v − v̄‖2

L2(Sn)
≥ λ1(Ls) = 2 s κn,s

n− s

according to the Poincaré inequality of Lemma 8, which proves that we actually
have equality in (16) and determines Cq,s.

Additionally, we may notice that (vn)n∈N has to be a minimizing sequence for
the Poincaré inequality, which means that up to a normalization and after the
extraction of a subsequence, vn − v̄n converges to a spherical harmonic function
associated with the component corresponding to k = 1. This explains why we
obtain that Cq,s λ1(Ls) = 1.

The above considerations have been limited to the subcritical range q < q? if
s < n and q < +∞ if s = n. However, the critical case of the Sobolev inequality can
be obtained by passing to the limit as q → q? (and even the Onofri type inequalities
when s = n) so that the optimal constants are also given by an eigenvalue in the
critical case. However, due to the conformal invariance, the constant function F ≡ 1
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is not the only optimal function. At this point it should be noted that the above
considerations heavily rely on Corollary 10 and, as a consequence, cannot be used
to give a variational proof of Theorem 1.

Although the subcritical interpolation inequalities of this paper appear weaker
than inequalities corresponding to a critical exponent, we are able to identify the
equality cases and the optimal constants. We are also able to keep track of a
remainder term which characterizes the functions realizing the optimality of the
constant or, to be precise, the limit of any minimizing sequence and its first order
correction. This first order correction, or equivalently the asymptotic value of the
quotient Q, determines the optimal constant and explains the role played by the
eigenvalues in a problem which is definitely nonlinear.

Appendix A. The spectrum of the fractional Laplacian

The standard approach for computing γk in (6) relies on the Funk-Hecke formula
as it is detailed in [33, Section 4]. In this appendix, for completeness, we provide
a simple, direct proof of the expression of γk. For this purpose, we compute the
eigenvalues λk = λk

(
(−∆)s/2) of the fractional Laplacian on Rn, that is,

(−∆)s/2fk = λk
(1 + |x|2)s fk in Rn ,

for any k ∈ N. We shall then deduce the eigenvalues of Ls. This determines the
optimal constant in (5) and (7) without using Lieb’s duality and without relying on
the symmetry of the optimal case in (1) as in [38].
Proposition 12. Given s ∈ (0, n), the spectrum of the fractional Laplacian is

λk
(
(−∆)s/2) = 2s

Γ(k + n
q′ )

Γ(k + n
q ) = 2s λk(As) = 2s

Γ( nq′ )
Γ(nq ) λk(Ks) .

Proof. Using the stereographic projection and a decomposition in spherical har-
monics, we can reduce the problem of computing the spectrum to the computation
of the spectrum associated with the eigenfunctions

fµk (x) = C
(α)
k (z) (1 + |x|2)−µ with z = 1−|x|2

1+|x|2 ,

where µ = λ/2 = (n − s)/2, α = (n − 1)/2 and C
(α)
k denotes the Gegenbauer

polynomials. Let f̂(ξ) = (Ff)(ξ) :=
∫
Rn f(x) e− 2π i ξ·x dx be the Fourier transform

of a function f . The functions being radial, by the Hankel transform Hn
2−1 we get

that
f̂µk (ξ) = 2π

|ξ|n2−1

∫ ∞
0

fµk (r) Jn
2−1

(
2π r |ξ|

)
r
n
2 dr

(cf. [35, Appendix B.5, p. 578]) where Jν is the Bessel function of the first kind.
The Fourier transform of fµ0 = (1 + |x|2)−µ has been calculated, e.g., by E. Lieb

in [38, p. 360, Eqs. (3.9)-(3.14)] in terms of the modified Bessel functions of the
second kind Kν as

f̂µ0 (ξ) = π
n
2 21+ 2

n−µ

Γ(µ)
(
2π |ξ|

)µ−n2 Kµ−n2

(
2π |ξ|

)
.
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This is a special case of the modified Weber-Schafheitlin integral formula in [44,
Chapter XIII, 13.45]. Using the expansion of Gegenbauer polynomials, we get

f̂µk (ξ) = 2π
Γ(n−1

2 ) |ξ|n2−1

[ k2 ]∑
j=0

k−2 j∑
l=0

[
(−1)j+k−l 2k+l−2 j Γ(n−1

2 + k − j)
j! k! (k − 2 j − l)!

×
∫ ∞

0
(1 + r2)−(µ+l) Jn

2−1
(
2π r |ξ|

)
r
n
2 dr

]

= 1
Γ(n−1

2 )

[ k2 ]∑
j=0

k−2 j∑
l=0

(−1)j+k−l 2k+l−2 j Γ(n−1
2 + k − j)

j! l! (k − 2 j − l)! f̂µ+l
0 (ξ)

=
21+ 2

n−µ π
n
2
(
2π |ξ|

)µ−n2
Γ(n−1

2 ) Γ(µ+ k)
Iµn,k(|ξ|) ,

where

Iµn,k(|ξ|) :=
k∑
l=0

cn,k,l
Γ(µ+ k)
Γ(µ+ l)

(
2π |ξ|

)l
Kµ−n2 +l

(
2π |ξ|

)
,

and cn,k,l := 1
l!

[ k−l2 ]∑
j=0

(−1)j+k−l 2k−2 j Γ(n−1
2 + k − j)

j! (k − 2 j − l)! .

From the recurrence relation

x (Kν−1 −Kν+1) = − 2 ν Kν ,

we deduce the identity
k∑
l=0

cn,k,l x
l

(Γ(ν + n
2 + k)

Γ(ν + n
2 + l) Kν+l(x)−

Γ(−ν + n
2 + k)

Γ(−ν + n
2 + l) Kν−l(x)

)
= 0 ∀ k ≥ 0

and observe that
Iµ1
n,k = Iµ2

n,k ∀ k ∈ N

if µ1 = λ/2 and µ2 = λ/2 + s, so that µ1 + µ2 = n and µ1 − µ2 = − s. It remains
to observe that

(2π |ξ|)s f̂λ/2
k = λk F

(
f
λ/2
k (1 + |x|2)−s

)
with λk = 2s

Γ(k + n
q′ )

Γ(k + n
q ) .

�

Appendix B. A Taylor formula with integral remainder term

Let us define the function r : R→ R such that

|1 + t|q = 1 + q t+ 1
2 q (q − 1) t2 + r(t) ∀ t ∈ R .
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Lemma 13. Let q ∈ (2,∞). With the above notations, there exists a constant
C > 0 such that

|r(t)| ≤ C |t|3 if |t| ≤ 1 and |r(t)| ≤ C |t|q if |t| ≥ 1 .

This result is elementary but crucial for the expansion of ‖F‖2
Lq(Sn) − ‖F‖

2
L2(Sn)

around F = 1. This is why we give a proof with some details, although we claim
absolutely no originality for that. Similar computations have been repeatedly used
in a related context, e.g., in [15, 17, 40].

Proof. Using the Taylor formula with integral remainder term

f(t) = f(0) + f ′(0) t+ 1
2 f
′′(0) t2 + 1

2

∫ t

0
(t− s)2 f ′′′(s) ds

applied to f(t) = (1 + t)q with q > 2, we obtain that

|1 + t|q = 1 + q t+ 1
2 q (q − 1) t2 + r(t)

where the remainder term is given by

r(t) = 1
2 q (q − 1) (q − 2) tq

∫ 1

0
(1− σ)2

∣∣∣∣1t + σ

∣∣∣∣q−4(1
t

+ σ

)
dσ .

Hence the remainder term can be bounded as follows:
(i) if t ≥ 1, using σ < 1

t + σ < 1 + σ, we get that

0 < r(t) < cq t
q

with cq = 1
2 q (q − 1) (q − 2)

∫ 1
0 (1− σ)2 max{σq−3, (1 + σ)q−3} dσ,

(ii) if 0 < t < 1, we get that

0 < r(t) < 1
6 q (q − 1) (q − 2) max{1, 2q−3} t3

using 1
t <

1
t + σ < 2

t ,
(iii) if −1 < t < 0, we get that

−1
6 q (q − 1) (q − 2) |t|3 < r(t) < 0

using 1
t <

1
t + σ < 1

t + 1 < 0,
(iv) if t ≤ −1, we get that

−1
2 (q − 1) (q − 2) tq < r(t) < tq

using σ − 1 < 1
t + σ < σ.

This completes the proof. �
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Appendix C. Notations and ranges

For the convenience of the reader, this appendix collects various notations which
are used throughout this paper and summarizes the ranges covered by the param-
eters.

The identity

λ = 2n
p′

where 1
p

+ 1
p′

= 1

means that
p = 2n

2n− λ .

With
λ = n− s ,

we have
p = 2n

n+ s
and p′ = q? = 2n

n− s
.

The limiting values of the parameters are summarized in Table 1.

s 0 2 n
λ n n− 2 0
p 2 2n

n+2 1
p′ = q? 2 2n

n−2 +∞

Table 1. Correspondance of the limiting values of the parameters.

The coefficients γk and δk defined by

γk(x) = Γ(x) Γ(n− x+ k)
Γ(n− x) Γ(x+ k)

and δk(x) = 1
κn,s

(
γk(x)− 1

)
= Γ(n− x+ k)

Γ(x+ k) − Γ(n− x)
Γ(x)

are such that

δk
(
n
q?

)
= 1
κn,s

(
γk
(
n
q?

)
− 1
)

where κn,s =
Γ
(
n
q?

)
Γ
(
n− n

q?

) =
Γ
(
n−s

2
)

Γ
(
n+s

2
) .

We recall that γ0(n/q)− 1 = 0, γ1(n/q)− 1 = q − 2, δk
(
n
q?

)
= k (k + n− 1) and

1/κn,2 = 1
4 n (n− 2). According to (17), we have that

αk(x) = − γ′k(x)
γk(x) =

k−1∑
j=0

βj(x) with βj(x) = 1
n+ j − x

+ 1
j + x

for any k ≥ 1. With these notations, the eigenvalues of Ks, Ls and K′0 = L′0 are
respectively given by γk(n/q?(s)) = γk((n − s)/2), κ−1

n,s

(
γk((n − s)/2) − 1

)
and

1
2 αk(n/2) with αk(n/2) = − γ′k(n/2) = 4

∑k−1
j=0 (n+ 2 j)−1.
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x
n0 n

21 2

1 γ0

γk k ≥ 2γ1

γk( n
· )

γ1( n
· )

Figure 1. The functions x 7→ γk(x) and q 7→ γk(n/q) are both convex,
and such that γk(n/2) = 1.

Finally, we recall that Ks, the fractional Laplacian Ls and the conformal frac-
tional Laplacian As satisfy the relations

κn,sAs = Ks = κn,s Ls + Id .
The results of Theorems 1 and 5 are summarized in Fig. 2.

Figure 2. The optimal constant Cq,s in (7) is independent of q and
determined for any given s by the critical case q = q?(s): the Hardy-
Littlewood-Sobolev inequality (1) if s ∈ (−n, 0) and the Sobolev inequal-
ity (5) if s ∈ (0, n). The case s = 0 is covered by Corollary 11, while
q = 2 corresponds to the fractional logarithmic Sobolev inequality (18)
if s = 0 and the subcritical fractional logarithmic Sobolev inequality by
Corollary 4 if s ∈ (0, n].
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