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Abstract

Challenging multiclass classification problems such as image annotation may involve a

large number of classes. In this context, confusion between classes may occur, and single

label classification may be misleading. We provide in the present paper a general device

that, given a classification procedure and an unlabeled dataset, outputs a set of class labels,

instead of a single one. Interestingly, this procedure does not require that the unlabeled

dataset explores the whole classes. Even more, the method is calibrated to control the ex-

pected size of the output set while minimizing the classification risk. We show the statistical

optimality of the procedure and establish rates of convergence under the Tsybakov margin

condition. It turns out that these rates are linear on the number of labels. We illustrate the

numerical performance of the procedure on simulated and on real data. In particular, we

show that with moderate expected size, w.r.t. the number of labels, the procedure provides

significant improvement of the classification risk.

Keywords : Multiclass classification, confidence sets, plug-in confidence sets,
cumulative distribution functions.

1 Introduction

Multiclass classification consists in assigning a single label Y ∈ {1, . . . , K} to a given input
example X ∈ X among a collection of labels. In particular, in the last decay, high-dimensional
statistics have witnessed the rise of problems where the number of classes is large, such as in face
recognition or locations tagging. While large number of classes provide precise characterization
of an instance, they also might induce high confusion between classes. That is to say, many
examples would belong to the margin between several classes. In this context, classification
procedures often have weak accuracy and then relevant classification may involve more than a
single label as output. However, we keep in mind that an informative output would rather contain
only a few labels. As an interesting application, we can consider image annotations problems
where the number of classes is large (e.g. 1000) and the goal is then to pick a small number (e.g.
10) of candidate labels. Given an instance X , a natural approach would be to consider the class
labels associated to the the top level conditional probabilities P(Y = ·|X = x). In the present
paper, we show that such strategy is suboptimal; we provide an alternative approach.

The scope of the present paper is then to build confidence sets for multiclass classification
problems for which we are able to control the expected size. A confidence set Γ is a function
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that maps X onto 2Y and the expected size of Γ is defined as E[|Γ(X)|], where | · | stands for the
cardinality. More precisely, for an example X , given an expected set size β and consistant estima-
tors of the conditional probabilities, the algorithm outputs a set Γ̂(X) such that E[|Γ̂(X)|] ≈ β.
Furthermore, the procedure aims at minimizing the classification error, that is:

P

(
Y /∈ Γ̂(X)

)
≈ min

Γ : E[|Γ(X)|]=β

P (Y /∈ Γ(X)) = R∗
β .

We exhibit an oracle confidence set, says Γ∗, which exactly achieves under mild assumption the
risk R∗

β for a fixed β. The definition of the oracle confidence set Γ∗ relies on the cumulative
distribution functions of the conditional probabilities. Therefore, our procedure is based on
the plug-in rule. We prove that our algorithm performs asymptotically as well as the oracle
procedure. Moreover, we derive rates of convergence under the Tsybakov noise assumption on
the data generating distribution. In particular, we show that this rate is linear on K, the number
of classes. Up to our knowledge, the above described method as well as its statistical study have
not been studied before in the multiclass setting. According to numerical considerations, our
procedure is implementable in a semi-supervised way [Vap98]: labeled data are only used for the
estimation of the conditional probabilities. This step is performed with any machine learning
algorithm such as deep learning or random forest procedures. In addition, we do not need that
the unlabelled examples explore the whole classes.

Related works: The closest learning task to the present work is classification with reject option
which is a particular setting in binary classification. Several papers fall within the scope of this
area [Cho70, HW06, WY11, Lei14, DH15] and differ from each other by the goal they consider.
Our procedure is inspired by the paper [DH15] that also considers a semi-supervised approach to
build confidence sets invoking cumulative distribution functions of the conditional probabilities.
However, most of the aspects developed in [DH15] are not directly adaptable to the multiclass
case. In particular, we develop here new probabilistic results on sums of cumulative distribution
functions of random variables, that are of own interest.

Assigning a set of labels instead of a single one for an input example is not new [VGS05,
WLW04, dCDB09, LRW13, CCB16]. One of the most popular methods is based on Conformal
Prediction approach [VGS99, Vov02, VGS05]. In the multiclass classification framework, the goal
of this algorithm is to build the smallest set of labels such that its classification error is below a
pre-specified level. Since our procedure aims at minimizing the classification error while keeping
under control the size of the set, Conformal Prediction can be seen as a dual of our method. We
refer to the very interesting statistical study of Conformal Predictors in the binary case in the
paper [Lei14].

Notation: First, we state general notation. Let Y = {1, . . . , K}, with K ≥ 2 being an integer.
Let (X, Y ) be the generic data-structure taking its values in X ×Y with distribution P. The goal
in classification is to predict the label Y given an observation of X . This is performed based on
a classifier (or classification rule) s which is a function mapping X onto Y. Let S be the set of
all classifiers. The misclassification risk R associated with s ∈ S is defined as

R(s) = P(s(X) 6= Y ).

Moreover, the minimizer of R over S is the Bayes classifier, denoted by s∗, and is characterized
by

s∗(·) = argmax
k∈Y

pk(·),

where pk(x) = P(Y = k|X = x) for x ∈ X and k ∈ Y.
Let us now consider more specific notation related to the multiclass confidence set setting. Let
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a confidence set be any measurable function that maps X onto 2Y . Let Γ be a confidence set.
This confidence set is characterized by two attributes. The first one is the risk associated to the
confidence set

R (Γ) = P (Y /∈ Γ(X)) , (1)

and is related to its accuracy. The second attribute is linked to the information given by the
confidence set. It is defined as

I(Γ) = E (|Γ(X)|) , (2)

where | · | stands for the cardinality. Moreover, for some β ∈ [1, K], we say that, for two
confidence sets Γ and Γ′ such that I (Γ) = I (Γ′) = β, the confidence set Γ is “better” than Γ′ if
R (Γ) ≤ R (Γ′).

Organization of the paper: The rest of the paper is organized as follows. Next section is devoted
to the definition and the main properties of the oracle confidence set for multiclass classification.
The plug-in counterpart of this oracle, as well as its asymptotic behavior are provided in Section 3.
Rates of convergence are also stated in that section. We present a numerical study of our
methods on simulated and real data in Section 4. We finally draw some conclusions and present
perspectives of our work in Section 5. Proofs of our results are postponed to the Appendix.

2 Confidence set for multiclass classification

In the present section, we define a class of confidence sets adapted to multiclass classification
referred as Oracle β-sets. For some β ∈ (0, K), these sets are shown to be optimal according to
the risk (1) with an information (2) equal to β. Moreover, basic but fondamental properties of
Oracle β-sets can be found in Proposition 1, while Proposition 3 provides another interpretation
of these sets.

2.1 Notation and definition

First of all, we introduce in this section a class of confidence sets that specifies oracle confidence
sets. Let β ∈ (0, K) be a desired information level. The so-called Oracle β-sets are optimal
according to the risk (1) among all the confidence sets Γ such that I(Γ) = β. Throughout the
paper we make the following assumption

(A1) For all k ∈ {1, . . . , K}, the cumulative distribution function Fpk
of pk(X) is continuous.

The definition of the Oracle β-set relies on the continuous decreasing function G defined for
any t ∈ [0, 1] by

G(t) =

K∑

k=1

F̄pk
(t),

where for any k ∈ {1, . . . , K}, we denote by F̄pk
the tail distribution function of pk(X), that is,

F̄pk
= 1 − Fpk

with Fpk
being the cumulative distribution function (c.d.f.) of pk(X). We define

the generalized inverse G−1 of G (see [vdV98]):

G−1(β) = inf{t ∈ [0, 1] : G(t) ≤ β}, ∀β ∈ (0, K).

The functions G and G−1 are central in the construction of the Oracle β-sets. We then provide
some of their useful properties in the following proposition.
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Proposition 1. The following properties on G hold

i) For every t ∈ (0, 1) and β ∈ (0, K), G−1(β) ≤ t ⇔ β ≥ G(t).

ii) For every β ∈ (0, K), G(G−1(β)) = β.

iii) Let ε be a random variable, independent of X, distributed from a uniform distribution on
{1, . . . , K} and let U be distributed from a uniform distribution on [0, K].
Define

Z =
K∑

k=1

pk(X)1{ε=k}.

If the function G is continuous, then G(Z)
L
= U and G−1(U)

L
= Z.

Now, we are able to define the Oracle β-set:

Definition 1. Let β ∈ (0, K), the Oracle β-set is given by

Γ∗
β(X) = {k ∈ {1, . . . , K} : G(pk(X)) ≤ β}

=
{

k ∈ {1, . . . , K} : pk(X) ≥ G−1(β)
}

.

This definition of the Oracle β-set is intuitive and closely related to the binary classification
with reject option setting [Cho70, HW06, DH15]: the label k is assigned to the Oracle β-set if
the probability pk(X) is large enough. It is worth noting that the function G plays the same role
as the c.d.f. of the score function in [DH15]. As provided in Proposition 1, their introduction
allows to control exactly the information (2). Indeed, it follows from the definition of the Oracle
β-set that for each β ∈ (0, K)

|Γ∗
β(X)| =

K∑

k=1

1{pk(X)≥G−1(β)},

and then I(Γ∗
β) = G(G−1(β)). Therefore, Proposition 1 ensures that

I(Γ∗
β) = β.

This last display points out that the Oracle β-sets are indeed β-level according to the information
parameter. In the next section, we focus on the study of the risk of these oracle confidence sets.

Remark 1. Naturally, the definition of Oracle β-sets can be extended to any β ∈ [0, K]. How-
ever, the limit cases β = 0 and β = K are of limited interest and are completely trivial. We then
exclude these two limit cases from the present study.

2.2 Properties of the oracle confidence sets

Let us first state the optimality of the Oracle β-set:

Proposition 2. Let Assumption (A1) be satisfied. For any β ∈ (0, K), we have both:

1. The Oracle β-set Γ∗
β satisfies the following property:

R
(
Γ∗

β

)
= inf

Γ
R (Γ) ,

where the infimum is taken over all β-level confidence sets.
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2. For any β-level confidence set Γ, the following holds

0 ≤ R (Γ) − R
(
Γ∗

β

)
= E




∑

k∈(Γ∗
β

(X) ∆ Γ(X))

∣∣pk(X) − G−1(β)
∣∣

 , (3)

where the symbol ∆ stands for the symmetric difference of two sets, that is, for two subsets
A and B of {1, . . . , K}, we write A ∆ B = (A \ B) ∪ (B \ A).

Several remarks can be made from Proposition 2. First, for β ∈ (0, K), the Oracle β confi-
dence set is optimal, according to its risk, over the class of β-sets. Moreover, the excess risk of
any β-set relies on the behavior of the score functions pk around the threshold G−1(β). Finally,
we can note that if K = 2 and β = 1 which implies G−1(β) = 1/2, Equation (3) reduced to the
misclassification excess risk in binary classification.

Remark 2. An important motivation behind the introduction of confidence sets and in particular
of Oracle β-set is that they might outperform the Bayes rule which can be seen as the Oracle
β-set associated to β = 1. This gap in performance is even larger when the number of classes K
is large and there is a big confusion between classes. Such improvement will be illustrated in the
numerical study.

Next, we provide another characterization of the Oracle β-set.

Proposition 3. For t ∈ [0, 1], and Γ a confidence set, we define

Lt(Γ) = P (Y /∈ Γ(X)) + tI(Γ).

For β ∈ [0, K], the following equality holds:

LG−1(β)(Γ
∗
β) = min

Γ
LG−1(β)(Γ).

The proof of this proposition relies on the same arguments as in Proposition 2. It is then
omitted. Proposition 3 states that the Oracle β-set is defined as the minimizer, over all confidence
sets Γ, of the risk function Lt when the tuning parameter t is set equal to G−1(β). Note moreover
that the risk function Lt is a trade-off, controlled by the parameter t, of the risk of a confidence
set on the one hand, and of the information provided by this confidence set on the other hand.
Hence, the risk function Lt can be viewed as a generalization to the multiclass case of the risk
function provided in [Cho70, HW06] for binary classification with reject option setting. The above
characterization of the Oracle β-set will be of particular interest when dealing with empirical risk
minimization which will be the scope future works. In the present present, we consider instead
a plug-in approach which is detailed in the next section.

3 Plug-in β-sets

This section is devoted to the study of the empirical counterpart of the Oracle β-set defined by
plug-in rule. The construction of these confidence sets, referred as Plug-in β-sets, is given in Sec-
tion 3.1. Several theoretical properties, such as asymptotic consistency and rates of convergence
are set in Section 3.2.
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3.1 Data driven procedure

In this section we provide a simple data driven procedure which mimics the Oracle β set. This
procedure is a generalization of the plug-in method in [DH15] provided for the binary case.
Our procedure relies on preliminary estimators of the functions pk, k = 1, . . . , K. To set these
estimators, we introduce a first data set Dn, which consists of independent copies of (X, Y ).
Thereafter, for each k ∈ {1, . . . , K}, we denote p̂k the estimator of pk computed based on Dn.
Moreover, conditional on Dn, we introduce the c.d.f. of p̂k(X)

Fp̂k
(t) = PX (p̂k(X) ≤ t|Dn) ,

for t ∈ [0, 1]. As for the c.d.f. of pk, we make the following assumption:

(A2) The cumulative distribution functions Fp̂k
with k = 1, . . . , K are continuous.

Remark 3. As will be seen in the numerical study, even in cases where Assumption (A2) does not
hold, one can provide a regularized version of the procedure that implies that the above assumption
always hold.

At this point, we are able to define a plug-in approximation of the Oracle β-set for β ∈ (0, K):

Γ̃β(X) =
{

k ∈ {1, . . . , K} : G̃(p̂k(X)) ≤ β
}

, (4)

where for t ∈ [0, 1]

G̃(t) =

K∑

k=1

F̄p̂k
(t),

with F̄p̂k
= 1 − Fp̂k

. Since the function G̃ depends only on the unknown distribution of X , it is
enough to consider a second unlabeled dataset DN = {Xi, i = 1, . . . , N}, independent of Dn in
order to compute the empirical versions of the F̄p̂k

’s. Finally, we consider the plug-in β-sets

Definition 2. Let β ∈ (0, K) and p̂k be any estimators of pk, k = 1, . . . , K. The plug-in β-set
is defined as follows:

Γ̂β(X) =
{

k ∈ {1, . . . , K} : Ĝ(p̂k(X)) ≤ β
}

,

where

Ĝ(.) =
1

N

N∑

i=1

K∑

k=1

1{p̂k(Xi)≥.}.

The most important remark about the construction of this data driven procedure is that it
is made in a semi-supervised way. Indeed, the estimation of the tail distribution functions of
p̂k requires only a set of unlabeled observations. This is particularly attractive in applications
where the number of label observations is small (because labelling examples is time consuming
or may be costly) and where one has in hand several unlabeled features that can be used to
make prediction more accurate. As an important consequence is that the estimation of the tail
distribution functions of p̂k does not depend on the number of observations in each class label.
That is to say, this unlabeled dataset can be unbalanced with respect to the classes, that can
often occur in multiclass classification settings where the number of classes K is quite large.
Next section deals with the theoretical performance of the plug-in β-set.
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3.2 Theoretical performance

This section is devoted to the study of asymptotic properties of the plug-in β-sets. First, we state
some additional notation. The symbols P and E stand for generic probability and expectation,

respectively. Moreover, given a plug-in β-set Γ̂β , we consider its risk R
(

Γ̂β

)
= P

(
Y /∈ Γ̂β(X)

)

and its information I
(

Γ̂β

)
= E

[
|Γ̂β(X)|

]
. We also write an = O(bn) for two non-negative

sequences (an) and (bn) if there exists some non-negative constant c > 0 such that: an ≤ c bn

for n sufficiently large. Let us now state our main results.

Proposition 4. For each β ∈ (0, K), the following equalities hold

1. E
[
|Γ̃β(X)|

]
= β,

2. I
(

Γ̂β

)
= β + O

(
K√
N

)
and

3. E
[
|Γ̂β(X) ∆ Γ̃β(X)|

]
= O

(
K√
N

)
.

The above result illustrates the behavior of the plug-in β-set with respect to the semi-oracle
approximation Γ̃β defined by (4). Proposition 4 says that Γ̃β reaches the exact level of information

β, while the plug-in β-set Γ̂β is of level β up to a term of order K/
√

N . Last point of the

proposition even says that Γ̂β and Γ̃β are asymptotically the same sets.
Next, exploiting the result in the above proposition, theorem makes the comparison between

the plug-in β-set and the Oracle β-set given in Definition 1.

Theorem 1. 1. If p̂k(X) → pk(X) in probability when n → +∞ for every k ∈ {1, . . . , K},
then for any β ∈ (0, K),

R
(

Γ̂β

)
→ R

(
Γ∗

β

)
,

E
[
|Γ̂β(X) ∆ Γ∗

β(X)|
]

→ 0

when both n and N go to infinity.

2. For any β ∈ (0, K), assume that there exist C1 < ∞ and γβ > 0 such that
for every k

P
(∣∣pk(X) − G−1(β)

∣∣ ≤ t
)

≤ C1tγβ , ∀t > 0. (5)

Assume also that there exist a sequence of positive numbers an → +∞ and some positive
constants C2, C3 such that for every k

P (|p̂k(x) − pk(x)| ≥ t) ≤ C2 exp
(
−C3ant2

)
, ∀t > 0, ∀x ∈ X . (6)

Then we have

R
(

Γ̂β

)
− R

(
Γ∗

β

)
= K

(
O
(

a
−γβ/2
n

)
+ O

(
N−1/2

))
(7)

E
[
|Γ̂β(X) ∆ Γ∗

β(X)|
]

= K
(

O
(

a
−γβ/2
n

)
+ O

(
N−1/2

))
. (8)
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Recall that throughout the paper, Assumptions (A1) and (A2) are supposed to be satisfied.
Under these two mild assumptions, the above result states that the Oracle β-sets mimics asymp-
totically the Oracle β-set in terms of its risk and its information. The second part of this theorem
deals with rates of convergence. These rates are linear in K, the number of classes that seems to
be the characteristic of multiclass classification as compared to binary classification. As a conse-
quence, the bounds we get generalize the bounds for confidence sets in the binary classification
setting obtained in [DH15]. In particular, (7) and (8) requires classical assumptions in classifi-
cation as the Tsybakov margin condition (5) with a slight adaptation to the multiclass setting
[Tsy04, AT07, DH15, HW06]. This assumption, together with the condition (6) are needed only
to state the first part of the rate related to the estimation of the conditional probabilities pk. We
refer the reader to the paper [DH15] where a longer discussion on these conditions is provided.
Also, both of these conditions are not used to provide the second part of the rates which is of
order K/

√
N and relies on the estimation of the function G. Hence, this part of the estimation

is established under the mild Assumptions (A1) and (A2).

4 Numerical results

In this section, we evaluate the plug-in β-set numerically. First, in Section 4.1, a simulation
study is led to support our theory. Plug-in β-set are then applied in Section 4.2 to real dataset.

4.1 Simulation study

We perform a simulation study in order to evaluate the performance of our plug-in procedure. We
compare our method with the strategy which is based on the β top levels conditional probabilities.
In the sequel this method is referred as max procedure. We also investigate the influence of
the parameter K. Hence, we consider two simulation schemes relying on the parameter K ∈
{10, 100}. For each K, we generate (X, Y ) according to a mixture model. More precisely,

i) the label Y is distributed from a uniform distribution on {1, . . . , K};

ii) conditional on Y = k, the feature X is generated according to a multivariate gaussian
distribution with mean parameter µk ∈ R

10 and identity covariance matrix.

For each k = 1, . . . , K, the vectors µk are i.i.d realizations of uniform distribution on [0, 4]. Note
that for this distribution, we have

pk(X) =
fk(X)

∑K
j=1 fj(X)

,

where for k = 1, . . . , K, fk(X) is the density function of a multivariate gaussian distribution
with mean parameter µk and identity covariance matrix. For each K, the misclassification risk
of Bayes rule is evaluated based on sufficiently large dataset. It is valued at 0.22 and at 0.60 for
K = 10 and for K = 100 respectively. Hence, we can observe the confusion induced by the large
number classes. In the sequel, we aim at providing the estimation of the risk of the Oracle β-set.
To do so, for β ∈ {2, 5, 10, 20} and each K, we repeat B times the following steps.

i) simulate two datasets DN and DM with N = 10000 and M = 1000;

ii) based on DN , we compute the empirical counterpart of G and provide an approximation of
the Oracle β-set Γ∗

β given in Definition 1 (we recall that this step requires a dataset which
contains only unlabeled features);
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K = 10
β Oracle β-set max

2 0.05 (0.01) 0.09 (0.01)
5 0.00 (0.00) 0.01 (0.00)

K = 100
β Oracle β-set max

2 0.39 (0.01) 0.42 (0.01)
5 0.20 (0.01) 0.22 (0.01)
10 0.09 (0.01) 0.11 (0.01)
20 0.03 (0.01) 0.04 (0.01)

Table 1: For each of the B = 100 repetitions and each model, we derive the estimated risks RM

of the Oracle β-set and of the max procedure w.r.t. β. We compute the means and standard
deviations (between parentheses) over the B = 100 repetitions. Top: the data are generated
according to K = 10 – Bottom: the data are generated according to K = 100.

β K = 10 K = 100

2 2.00 (0.03) 2.00 (0.03)
5 5.00 (0.08) 5.00 (0.06)
10 · 10.00 (0.13)
20 · 20.02 (0.31)

Table 2: For each of the B = 100 repetitions and each model, we derive the estimated informa-
tions IM of the Oracle β-set w.r.t. β. We compute the means and standard deviations (between
parentheses) over the B = 100 repetitions. Left: the data are generated according to K = 10 –
Right: the data are generated according to K = 100.

iii) finally, over DM , we compute the empirical counterparts RM (of R(Γ∗
β)) and IM (of I(Γ∗

β)).

From this estimates, we compute mean and standard deviation of RM and IM . The results
are provided in Tables 1 and 2. Now for each K and each β, we evaluate the performances of
three plug-in β sets. The estimation of the pk’s is based on random forests, sofmax regression and
deep learning procedures. We notify that for random forests and sofmax regression algorithms,
the random variables p̂k(X) appears to be not continuous. Hence Assumption (A2) is not always
satisfied. Therefore, we add to p̂k(X) an independent small perturbation |N (0, 1e−10)|. The
evaluation of these plug-in β sets rely on the following steps

i) simulate three datasets Dn, DN and DM ;

ii) based on Dn, we compute the estimators p̂k of pk according to the considered procedure;

iii) based on DN and p̂k we compute the function Ĝ and the plug-in β-set Γ̂β as in Definition 2
(we recall that this step requires a dataset which contains only unlabeled features);

iv) finally, we compute over DM the empirical counterpart of R and of I of the considered
plug-in β-set.

From these experiments, we compute means and standard deviations. For K = 10, we fix
n = 1000 and N ∈ {100, 10000}; for K = 100 we fix n = 10000 and N ∈ {100, 10000}. Finally,
we fix M = 1000. The results are provided in Table 3 and 4. As a reference point for the sequel
of our experiments, the misclassification risks of the random forests, softmax regression and deep
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K = 10
β-set max

β rforest softmax reg deep learn rforest softmax reg deep learn

2 0.09 (0.01) 0.06 (0.01) 0.09 (0.01) 0.13 (0.01) 0.10 (0.01) 0.13 (0.02)
5 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00)

K = 100
β-set max

β rforest softmax reg deep learn rforest softmax reg deep learn

2 0.48 (0.02) 0.93 (0.01) 0.46 (0.02) 0.51 (0.01) 0.96 (0.01) 0.48 (0.02)
5 0.30 (0.02) 0.85 (0.02) 0.25 (0.02) 0.31 (0.01) 0.90 (0.01) 0.27 (0.01)
10 0.17 (0.01) 0.75 (0.02) 0.12 (0.01) 0.18 (0.01) 0.80 (0.01) 0.14 (0.01)
20 0.07 (0.01) 0.59 (0.02) 0.04 (0.01) 0.09 (0.01) 0.61 (0.02) 0.06 (0.01)

Table 3: For each of the B = 100 repetitions and for each model, we derive the estimated risks R
of three different plug-in β-sets w.r.t. β. We compute the means and standard deviations
(between parentheses) over the B = 100 repetitions. For each β and for each N , the plug-in
β-sets, as well as the max procedures are based on, from left to right, rforest, softmax reg

and deep learn, which are respectively the random forest, the softmax regression and the deep
learning methods. Top: the data are generated according to K = 10 – Bottom: the data are
generated according to K = 100.

K = 10
N = 100 N = 10000

β rforest softmax reg deep learn rforest softmax reg deep learn

2 2.01 (0.09) 2.01 (0.10) 2.02 (0.11) 2.00 (0.02) 2.00 (0.03) 2.00 (0.03)
5 5.02 (0.18) 4.99 (0.20) 5.00 (0.21) 5.00 (0.06) 5.00 (0.08) 5.00 (0.07)

K = 100
N = 100 N = 10000

β rforest softmax reg deep learn rforest softmax reg deep learn

2 2.02 (0.10) 2.09 (0.43) 2.01 (0.09) 2.00 (0.03) 2.02 (0.15) 2.00 (0.02)
5 4.97 (0.15) 5.27 (0.70) 5.01 (0.24) 5.00 (0.04) 5.01 (0.27) 5.00 (0.07)
10 9.98 (0.24) 10.02 (1.00) 10.02 (0.42) 10.01 (0.09) 10.05 (0.32) 10.00 (0.16)
20 20.08 (0.48) 19.74 (0.98) 20.11 (0.85) 20.00 (0.16) 20.01 (0.36) 20.01 (0.28)

Table 4: For each of the B = 100 repetitions and for each model, we derive the estimated
informations I of three different plug-in β-sets w.r.t. β and the sample size N . We compute the
means and standard deviations (between parentheses) over the B = 100 repetitions. For each β
and each N , the plug-in β-sets are based on, from left to right, rforest, softmax reg and deep

learn, which are respectively the random forest, the softmax regression and the deep learning
procedures. Top: the data are generated according to K = 10 – Bottom: the data are generated
according to K = 100.
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learning methods are valued respectively at 0.28, 0.24, 0.29 for K = 10, and at 0.65, 0.98 0.63
for K = 100.

First, from Tables 2 and 4, we observe that the approximation of the information is good. The
approximation accuracy increases with N the number of non-labeled data. Let us now consider
the experiment results related to the classification error. Table 1 teaches us that the performances
of the Oracle β-set get better with the value of the parameter β. Although, for moderate β as
compared to K we obtain satisfactory improvement. For instance when K = 10 and β = 2 the
classification error rate decreases from 0.22 to 0.05; likewise, when K = 100 and β = 5 the the
classification error rate decreases from 0.60 to 0.20. Second, Table 3 provide same conclusions
regarding the plug-in rules. However, we note that for K = 100 the convergence of the plug-
in rules is a bit slower except for softmax regression procedure which has poor performances.
Finally, Tables 1 and 3 show that the max procedure is slightly outperformed by our method.
This was expected, but the max procedure does not require the unlabeled dataset.

4.2 Application on real dataset

In this section, we provide an application of the plug-in β-set on two real datasets: the Forest
type mapping dataset and the one-hundred plant species leaves dataset coming from the UCI
database. In the sequel we refer to these two datasets as Forest and Plant respectively. The
Forest dataset consists of K = 4 classes and 523 labeled observations (we gather the train an
test sets) with 27 features. Here the classes are unbalanced. In the Plant dataset, there are 100
classes and 1600 labeled observations. This dataset is balanced so that each class consists of 16
observations. The original dataset contains 3 covariates (each covariate consists of 64 features).
In order to make the problem more challenging, we drop 2 covariates.

For these two datasets, we evaluate risks (and informations) of the plug-in β-set based on
the same estimation procedures (i.e., the random forest, the softmax regression and the deep
learning procedures). To do so, we use the cross validation principle. In particular, we run
B = 100 times the procedure where we split the data each time in three: a sample of size n for
the estimation of the conditional distributions pk’s; a sample of size N to estimate the function G;
and a sample of size M to evaluate the risk and the information. For both datasets, we make sure
that in the sample of size n, there is the same number of observations in each class. Moreover,
let notify that the misclassification risks of the random forest, the softmax regression and the
deep learning procedures in the Forest dataset are respectively 0.14, 0.20 and 0.26, whereas
int the Plant dataset, they are evaluated to 0.38, 0.92 and 0.82 respectively. As planned, the
performance of the classical methods are quite bad in this last dataset. In particular, both
softmax regression and deep learning procedures perform poorly.

As in the simulation section, we compare the plug-in β-set to the max procedure. The size of
the samples are set to be equal to n = 200, N = 100 and M = 223 for the Forest dataset, and
n = 1000, N = 200 and M = 400 for the Plant one. The results, reported in Table 5, confirm the
observations made in Section 4.1. In particular, we see that the classification risk gets drastically
better with moderate β. For instance, for the Plant, and with β = 10 the classification error
rate of the plug-in β-set based on deep learning procedure decreases from 0.82 to 0.27.

5 Conclusion

In multiclass classification setting, the present paper propose a new procedure that assigns a set
of labels instead of a single label to each instance. This set has a controlled expected size (or
information) and its construction relies on cumulative distribution functions. In this sense the
proposed methods is a generalization of the works in [DH15] in the binary classification with reject

11



Forest (K = 4)
β-set max

β rforest softmax reg deep learn rforest softmax reg deep learn

2 R 0.02 (0.01) 0.06 (0.03) 0.06 (0.03) 0.03 (0.01) 0.06 (0.02) 0.07 (0.03)
I 2.01 (0.09) 2.02 (0.08) 2.01 (0.09) · · ·

Plant (K = 100)
β-set max

β rforest softmax reg deep learn rforest softmax reg deep learn

2 R 0.21 (0.02) 0.77 (0.01) 0.71 (0.02) 0.24 (0.01) 0.84 (0.02) 0.72 (0.02)
I 2.00 (0.08) 2.03 (0.13) 2.00 (0.07) · · ·

10 R 0.03 (0.01) 0.43 (0.02) 0.27 (0.03) 0.05 (0.01) 0.44 (0.02) 0.25 (0.02)
I 9.95 (0.24) 9.97 (0.29) 10.02 (0.32) · · ·

Table 5: For each of the B = 100 repetitions and for each dataset, we derive the estimated
risks R and information I of three different plug-in β-sets w.r.t. β. We compute the means and
standard deviations (between parentheses) over the B = 100 repetitions. For each β, the plug-in
β-sets, as well as the max procedures are based on, from left to right, rforest, softmax reg

and deep learn, which are respectively the random forest, the softmax regression and the deep
learning methods. Top: the dataset is the Forest – the dataset is the Plant.

option. Theoretical guarantees, especially rates of convergence are also provided and involve the
continuity of these cumulative distribution functions. These bounds differ from those established
in the binary case by a factor K, which is the number of classes (see [DH15] for the comparison).
However, techniques of proof relies on different arguments and new probabilistic results (see
Lemma 1 below). The plug-in β-set procedure described in Section 3 is defined as a two steps
algorithm whose second step consists in the estimation of the function G (which is a sum of tail
distribution functions). Interestingly, this step does not require a set of labeled data and neither
to explore the whole classes, that is suitable for semi-supervised learning. Future works will
focus on optimality in the minimax sense. In particular, we will investigate whether the rates of
convergence are optimal in terms of their dependence on K. Based on the characterization of the
Oracle β-sets provided in Proposition 3, we also intent to study procedures based on empirical
risk minimization [YW10].

6 Appendix

This section gathers the proofs of our results.

6.1 Technical Lemmas

We first lay out key lemmata, which are crucial to establish the main theory. Note that Lemma 2
is inspired by Lemma 3.1 in [AT07]. We consider K ≥ 2 be an integer, and Z1, . . . , ZK , K random
variables. Moreover we define function H by:

H(t) =
1

K

K∑

k=1

Fk(t), ∀t ∈ [0, 1],

12



where for all k = 1, . . . , K, Fk is the cumulative distribution function of Zk. Finally, let us define
the generalized inverse H−1 of H :

H−1(p) = inf{t : H(t) ≥ p}, ∀p ∈ (0, 1).

Lemma 1. Let ε distributed from a uniform distribution on {1, . . . , K} and independent of Zk,
k = 1, . . . , K. Let U distributed from a uniform distribution on [0, 1]. We consider

Z =

K∑

k=1

Zk1{ε=k}.

If H is continuous then

H(Z)
L
= U and H−1(U)

L
= Z

Proof. First we note that for every t ∈ [0, 1], P (H(Z) ≤ t) = P
(
Z ≤ H−1(t)

)
. Moreover, we

have

P (Z ≤ t) =

K∑

k=1

P(Z ≤ H−1(t), ε = k)

=
1

K

K∑

k=1

P(Zk ≥ H−1(t)) with ε independent of X

= H(H−1(t))

= t with H continuous.

To conclude the proof, we observe that

P
(
H−1(U) ≤ t

)
= P (U ≥ H(t))

=
1

K

K∑

k=1

Fk(t)

=

K∑

k=1

P (Zk ≤ t, ε = k)

= P(Z ≤ t).

Lemma 2. Let X be a real random variable, (Xn)n≥1 a be sequence of real random variables
and t0 ∈ R. Assume that there exist C1 < ∞ and γ0 > 0 such that

PX (|X − t0| ≤ δ) ≤ C1δγ0 , ∀δ > 0,

and a sequence of positive numbers an → +∞, C2, C3 some positive constants such that

PXn
(|Xn − X | ≥ δ|X) ≤ C2 exp

(
−C3anδ2

)
, ∀δ > 0, ∀n ∈ N.

Then, there exists C > 0 depending only on C1, C2 and C3, such that
∣∣E
[
1{Xn≥t0} − 1{X≥t0}

]∣∣ ≤ E
[∣∣1{Xn≥t0} − 1{X≥t0}

∣∣]

≤ P (|Xn − X | ≥ |X − t0|)
≤ Ca−γ0/2

n .
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Lemma 3 (Hoeffding Inequality). Let b > 0 be a real number, and N be a positive integer. Let
X1, . . . , XN be N random variables strictly bounded by the intervals [0, b], then

P

(∣∣∣∣∣
1

N

N∑

i=1

(Xi − E [Xi])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2Nt2

b2

)
, ∀t > 0.

6.2 Proof of Proposition 2

Let β > 0 and Γ a confidence set such that I(Γ) = β. First, we note that the following
decomposition holds

R(Γ) − R(Γ∗
β) =

K∑

j=1

K∑

k=1

E

[
K∑

l=1

(1{Y /∈Γ(X)} − 1{Y /∈Γ∗
β

(X)})1{Y =l}1{|Γ(X)|=k}1{|Γ∗
β

(X)|=j}

]

=

K∑

j=1

K∑

k=1

E

[
K∑

l=1

(1{l/∈Γ(X)} − 1{l/∈Γ∗
β

(X)})pl(X)1{|Γ(X)|=k}1{|Γ∗
β

(X)|=j}

]

=

K∑

j=1

K∑

k=1

E

[
K∑

l=1

(1{l∈Γ∗
β

(X)\Γ(X)} − 1{l∈Γ(X)\Γ∗
β

(X)})pl(X)1{|Γ(X)|=k,|Γ∗
β

(X)|=j}

]
.

From the last decomposition, with

E [|Γ(X)|] = E
[
|Γ∗

β(X)|
]

= E




K∑

j=1

K∑

k=1

k1{|Γ(X)|=k}1{|Γ∗
β

(X)|=j}





= E




K∑

j=1

K∑

k=1

j1{|Γ(X)|=k}1{|Γ∗
β

(X)|=j}



 ,

we can express the excess risk as the sum of two terms:

R(Γ) − R(Γ∗
β) =

K∑

j=1

K∑

k=1

E

[(
K∑

l=1

1{l∈Γ∗
β

(X)\Γ(X)}pl(X) − jG−1(β)

)
1{|Γ(X)|=k}1{|Γ∗

β
(X)|=j}

]

+

K∑

j=1

K∑

k=1

E

[(
kG−1(β) −

K∑

l=1

1{l∈Γ(X)\Γ∗
β

(X)}pl(X)

)
1{|Γ(X)|=k}1{|Γ∗

β
(X)|=j}

]
. (9)

Now, for j, k ∈ {1, . . . , K} on the event {|Γ(X)| = k, |Γ∗
β(X)| = j}, we have

k =

K∑

l=1

1{l∈Γ(X)\Γ∗
β

(X)} +

K∑

l=1

1{l∈Γ(X)∩Γ∗
β

(X)},

and

j =

K∑

l=1

1{l∈Γ∗
β

(X)\Γ(X)} +

K∑

l=1

1{l∈Γ(X)∩Γ∗
β

(X)}.

Therefore, since
l ∈ Γ∗

β ⇔ pl(X) ≥ G−1(β),

Equality (9) yields the result.
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6.3 Proof of Asymptotic results

We first set a Lemma that will be used in the proof of our result. This lemma relies on some
arguments given in [AT07] and Lemma 1.

6.3.1 Tool lemma

Lemma 4. There exists an absolute constant C > 0 such that

K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|
)

≤ CK√
N

.

Proof. We define, for δ > 0 and k ∈ {1, . . . K}

Ak
0 =

{∣∣∣G̃(p̂k(X)) − β
∣∣∣ ≤ δ

}

Ak
j =

{
2j−1δ < |G̃(p̂k(X)) − β| ≤ 2jδ

}
, j ≥ 1.

Since, for every k, the events (Ak
j )j≥0 are mutually exclusive, we deduce

K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|
)

=

K∑

k=1

∑

j≥0

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|, Ak
j

)
. (10)

Now, we consider ε uniformly distributed on {1, . . . , K} independent of Dn and X . Conditional

on Dn and under Assumption (A2), we apply Lemma 1 with Zk = p̂k(X), Z =
∑K

k=1 Zk1{ε=k}

and then obtain that G̃(Z) is uniformly distributed on [0, K]. Therefore, for all j ≥ 0 and δ > 0,
we deduce

1

K

K∑

k=1

PX

(
|G̃(p̂k(X)) − β| ≤ 2jδ|Dn

)
= PX

(
|G̃(Z) − β| ≤ 2jδ|Dn

)

≤ 2j+1δ

K
.

Hence, for all j ≥ 0, we obtain
K∑

k=1

P(Ak
j ) ≤ 2j+1δ. (11)

Next, we observe that for all j ≥ 1

K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|, Ak
j

)
≤

K∑

k=1

E(Dn,X)

[
PDN

(
|Ĝ(p̂k(X)) − G̃(p̂k(X))| ≥ 2j−1δ|Dn, X

)
1Ak

j

]
. (12)
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Now, since conditional on (Dn, X), Ĝ(p̂k(X)) is an empirical mean of i.i.d random variables of

common mean G̃(p̂k(X)) ∈ [0, K], we deduce from Hoeffding’s inequality that

PDN

(
|Ĝ(p̂k(X)) − G̃(p̂k(X))| ≥ 2j−1δ|Dn, X

)
≤ 2 exp

(
−Nδ222j−1

K2

)
.

Therefore, from Inequalities (10), (11) and (12), we get

K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|
)

≤
K∑

k=1

P
(
Ak

0

)
+
∑

j≥1

2 exp

(
−Nδ222j−1

K2

)( K∑

k=1

P
(
Ak

j

)
)

≤ 2δ + δ
∑

j≥1

2j+2 exp

(
−Nδ222j−1

K2

)
.

Finally, choosing δ =
K√
N

in the above inequality, we finish the proof of the lemma.

6.3.2 Proof of Proposition 4

1. for every β ∈ (0, K), conditional on Dn we define

G̃−1(β) = inf{t ∈ [0, 1] : G̃(t) ≤ β}. (13)

We note that Asumption (A2) ensures that t 7→ G̃(t) is continuous and then

G̃(G̃−1(β)) = β.

Now, we have

|Γ̃β(X)| =

K∑

k=1

1
{G̃(p̂k(X))≤β}

=
K∑

k=1

1
{p̂k(X)≥G̃−1(β)}

.

Hence, the last equation implies that

EX

[
|Γ̃β(X)||Dn

]
=

K∑

k=1

PX

(
p̂k(X) ≥ G̃−1(β)|Dn

)
= G̃(G̃−1(β)) = β. (14)

Therefore, we obtain E
[
|Γ̃β(X)|

]
= β.

16



2. and 3. From 1), we can write
∣∣∣E
[∣∣∣Γ̂β(X)

∣∣∣
]

− β
∣∣∣ ≤

∣∣∣E
[
|Γ̂β(X)| − |Γ̃β(X)|

]∣∣∣

≤
∣∣∣∣∣E
[

K∑

k=1

(
1{Ĝ(p̂k(X))≤β} − 1

{G̃(p̂k(X))≤β}

)]∣∣∣∣∣

≤ E
[
|Γ̂β(X) ∆ Γ̃β(X)|

]

≤
K∑

k=1

E
[
|1{Ĝ(p̂k(X))≤β} − 1

{G̃(p̂k(X))≤β}
|
]

≤
K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|
)

.

Hence, applying Lemma 4 in the above inequality, we obtain the desired result.

6.3.3 Proof of Theorem 1

We first study the convergence of R(Γ̂β) − R(Γ∗
β). According to the excess risk, we first write

the decomposition

R(Γ̂β) − R(Γ∗
β) =

(
R(Γ̂β) − R(Γ̃β)

)
+
(

R(Γ̃β) − R(Γ∗
β)
)

, (15)

and deal with each term in the r.h.s. separately.
First, we note that

1{Y /∈Γ̂β(X)} − 1
{Y /∈Γ̃β (X)}

=

K∑

k=1

1{Y =k}1{k /∈Γ̂β(X)} −
K∑

k=1

1{Y =k}1{
k /∈Γ̃β(X)

}.

Therefore, we can write

E
[
1Y /∈Γ̂β(X)} − 1

{Y /∈Γ̃β(X)}

]
=

K∑

k=1

E
[
pk(X)

(
1{k /∈Γ̂β(X)} − 1

{k /∈Γ̃β(X)}

)]

=

K∑

k=1

E
[
pk(X)

(
1{Ĝ(p̂k(X))>β} − 1{G̃(p̂k(X))>β}

)]
.

Since 0 ≤ pk(X) ≤ 1 for all k ∈ {1, . . . , K}, the last equality implies

∣∣∣R
(

Γ̂β

)
− R

(
Γ̃β

)∣∣∣ =
∣∣∣E
[
1Y /∈Γ̂β(X)} − 1

{Y /∈Γ̃β(X)}

]∣∣∣

≤
K∑

k=1

E
[∣∣∣1{Ĝ(p̂k(X))>β} − 1{G̃(p̂k(X))>β}

∣∣∣
]

≤
K∑

k=1

P
(

|Ĝ(p̂k(X) − G̃(p̂k(X))| ≥ |G̃(p̂k(X)) − β|
)

.

Therefore, Lemma 4 implies ∣∣∣R
(

Γ̂β

)
− R

(
Γ̃β

)∣∣∣ ≤ CK√
N

. (16)
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Next, we study the second term in the r.h.s (15).

First, we have shown in the proof of Proposition 4 that EX

[
|Γ̃β(X)| |Dn

]
= β (see Equa-

tion (14)). Hence, Proposition 2 implies that

EX

[(
1{Y /∈Γ̃β(X)} − 1{Y /∈Γ∗

β
(X)}

)
|Dn

]
= EX




∑

k∈(Γ∗
β

(X)∆Γ̃β(X))

∣∣pk(X) − G−1(β)
∣∣ |Dn


 . (17)

For the sequel, we refer to Equation (13) for the definition of G̃−1(β). Now, we observe that if

k ∈ (Γ̃β(X) \ Γ∗
β(X)), then:

• on the event {G̃−1(β) > G−1(β)}, we have |p̂k(X) − pk(X)| ≥
∣∣pk(X) − G−1(β)

∣∣ ;

• on the event {G̃−1(β) ≤ G−1(β)} either p̂k(X) ∈
(
G̃−1(β), G−1(β)

)

or |p̂k(X) − pk(X)| ≥
∣∣pk(X) − G−1(β)

∣∣.

Similar reasoning holds if k ∈ (Γ∗
β(X) \ Γ̃β(X)). Therefore, Equation (17) yields

EX

[(
1{Y /∈Γ̃β(X)} − 1{Y /∈Γ∗

β
(X)}

)
|Dn

]

≤
K∑

k=1

EX

[∣∣pk(X) − G−1(β)
∣∣ 1{|p̂k(X)−pk(X)|≥|pk(X)−G−1(β)|} |Dn

]

+ 1{
G̃−1(β)≤G−1(β)

}
K∑

k=1

EX

[
1{

p̂k(X)∈
(

G̃−1(β),G−1(β)
)} |Dn

]

+ 1{
G−1(β)<G̃−1(β)

}
K∑

k=1

EX

[
1{

p̂k(X)∈
(

G−1(β),G̃−1(β)
)} |Dn

]
. (18)

Since G̃
(

G̃−1(β)
)

= G
(
(G−1(β)

)
, we have

1{
G̃−1(β)≤G−1(β)

}
K∑

k=1

EX

[
1{

p̂k(X)∈
(

G̃−1(β),G−1(β)
)} |Dn

]

+ 1{
G−1(β)≤G̃−1(β)

}
K∑

k=1

EX

[
1{

p̂k(X)∈
(

G−1(β),G̃−1(β)
)} |Dn

]
=
∣∣∣G̃
(

G̃−1(β)
)

− G̃(G−1(β))
∣∣∣

=
∣∣∣G(G−1(β)) − G̃(G−1(β))

∣∣∣ . (19)

Hence, from Equation (18) and (19), we deduce

R
(

Γ̃β

)
− R

(
Γ∗

β

)
≤

K∑

k=1

E
[∣∣pk(X) − G−1(β)

∣∣ 1{|p̂k(X)−pk(X)|≥|pk(X)−G−1(β)|}

]

+ E
[∣∣∣G(G−1(β)) − G̃(G−1(β))

∣∣∣
]

. (20)

18



Now, by definition of G̃, we have

E
[∣∣∣G(G−1(β)) − G̃(G−1(β))

∣∣∣
]

≤
K∑

k=1

E
[∣∣1{p̂k(X)>G−1β} − 1{pk(X)>G−1(β)}

∣∣]

≤
K∑

k=1

P
(
|p̂k(X) − pk(X)| ≥

∣∣pk(X) − G−1(β)
∣∣) .

Therefore, with the above Inequality and Equation (20) we have

0 ≤ R(Γ̃β) − R
(
Γ∗

β

)
≤ 2

K∑

k=1

P
(
|p̂k(X) − pk(X)| ≥

∣∣pk(X) − G−1(β)
∣∣) . (21)

Now, we study E(|Γ̂β(X) ∆ Γ∗
β(X)|). First, we note that

|Γ̂β(X) ∆ Γ∗
β(X)| ≤ |Γ̂β(X) ∆ Γ̃β(X)| + |Γ̃β(X) ∆ Γ∗

β(X)|. (22)

Proposition 4 ensures that

E
[
|Γ̂β(X) ∆ Γ̃β(X)|

]
= O

(
K√
N

)
. (23)

Moreover, we note that

|Γ̃β(X) ∆ Γ∗
β(X)| =

∑

k∈(Γ∗
β

∆Γ̃β)

1,

and therefore, as for Equation (17), we deduce that

E
[
|Γ̃β(X) ∆ Γ∗

β(X)|
]

≤ 2
K∑

k=1

P
(
|p̂k(X) − pk(X)| ≥

∣∣pk(X) − G−1(β)
∣∣) . (24)

Finally, for 0 < δn → 0, we have

2

K∑

k=1

P
(
|p̂k(X) − pk(X)| ≥

∣∣pk(X) − G−1(β)
∣∣)

≤ 2

K∑

k=1

P (|p̂k(X) − pk(X)| ≥ δn) + 2

K∑

k=1

P
(∣∣pk(X) − G−1(β)

∣∣ ≤ δn

)
. (25)

So, if p̂k(X) → pk(X) in probability, we have P (|p̂k(X) − pk(X)| ≥ δn) → 0 for each k. Morever,
Assumption (A1) ensures that P

(∣∣pk(X) − G−1(β)
∣∣ ≤ δn

)
→ 0 for each k. Therefore, from

Inequalities (21), (24) and (25) we obtain

R(Γ̂β) − R
(
Γ∗

β

)
→ 0 and E

[
|Γ̂β(X) ∆ Γ∗

β(X)|
]

→ 0.

For rates of convergence, we apply Lemma 2 in Inequalities (21) and (24).
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