Forecasting Dynamic Public Transport Origin-Destination Matrices with Long-Short Term Memory Recurrent Neural Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Forecasting Dynamic Public Transport Origin-Destination Matrices with Long-Short Term Memory Recurrent Neural Networks

Résumé

A considerable number of studies have been undertaken on using smart card data to analyse urban mobility. Most of these studies aim to identify recurrent passenger habits, reveal mobility patterns, reconstruct and predict passenger flows, etc. Forecasting mobility demand is a central problem for public transport authorities and operators alike. It is the first step to efficient allocation and optimisation of available resources. This paper explores an innovative approach to forecasting dynamic Origin-Destination (OD) matrices in a subway network using long Short-term Memory (LSTM) recurrent neural networks. A comparison with traditional approaches, such as calendar methodology or Vector Autoregression is conducted on a real smart card dataset issued from the public transport network of Rennes Metropole, France. The obtained results show that reliable short-term prediction (over a 15 minutes time horizon) of OD pairs can be achieved with the proposed approach. We also experiment with the effect of taking into account additional data about OD matrices of nearby transport systems (buses in this case) on the prediction accuracy.
Fichier non déposé

Dates et versions

hal-01357641 , version 1 (30-08-2016)

Identifiants

  • HAL Id : hal-01357641 , version 1

Citer

Florian Toque, Etienne Come, Mohamed Khalil El Mahrsi, Latifa Oukhellou. Forecasting Dynamic Public Transport Origin-Destination Matrices with Long-Short Term Memory Recurrent Neural Networks. IEEE 19th International Conference on Intelligent Transportation Systems, Nov 2016, Rio de Janeiro, France. 6p. ⟨hal-01357641⟩
398 Consultations
0 Téléchargements

Partager

More