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1. Introduction 1.1. Overview. In the seminal paper [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF], M. Struwe obtained a very useful global compactness result for Palais-Smale sequences of the energy functional

I(u) = 1 2 ˆΩ |∇u| 2 dx + λ 2 ˆΩ |u| 2 dx - N -2 2 N ˆΩ |u| 2 N N -2 dx, u ∈ D 1,2 0 (Ω)
where Ω ⊂ R N is a smooth open and bounded set, N ≥ 3, λ ∈ R, and the space D 1,2 0 (Ω) is defined by

D 1,2 0 (Ω) = u ∈ L 2 N N -2 (R N ) : ˆRN |∇u| 2 dx < +∞, u = 0 in R N \ Ω .
The functional above is naturally associated with the semi-linear elliptic problem with critical nonlinearity

(1.1)

-∆u + λ u = |u| 4 N -2 u in Ω, u = 0 on ∂Ω,
in the sense that critical points of I are weak solutions of (1.1). Due to the presence of the term with critical growth in its definition, the functional I does not satisfy the Palais-Smale condition.

In other words, sequences {u n } n∈N ⊂ D 1,2 0 (Ω) of "almost" critical points of I with bounded energy are not necessarily precompact in D 1,2 0 (Ω). Struwe's result gives a precise description of what happens when compactness fails at an energy level c. Roughly speaking, in this case there exists a (possibly trivial) solution v 0 to (1.1) and k profiles v k solving solving the purely critical problem on the whole space (1.2)

-∆u = |u| 4 N -2 u, in R N .
such that the sequence {u n } n∈N can be "almost" written as a superposition of v 0 , . . . , v k . More precisely, there exist {z i n } n∈N ⊂ R N and {λ i n } n∈N ⊂ R + converging to 0 as n → ∞, with

u n v 0 + k i=1 (λ i n ) 2-N 2 v i • -z i n λ i n , in D 1,2 0 (R N ),
and

(1.3) c = I(v 0 ) + I ∞ (v 1 ) + • • • + I ∞ (v k ),
where I ∞ is the energy functional associated with equation (1.2), i.e.

I ∞ (u) = 1 2 ˆRN |∇u| 2 dx - N -2 2 N ˆRN |u| 2 N N -2 dx.
This kind of result is very useful to study the existence of ground states for nonlinear Schrödinger equations, Yamabe-type equations or various classes of minimization problems. Since then, several extensions of Struwe's result appeared in the literature for semi-linear elliptic problems. We refer the reader to [12, Lemma 5] for the case of the bilaplacian operator ∆ 2 with both Navier or Dirichlet boundary conditions and to [18, Theorem 1.1] for nonlocal problems involving the fractional Laplacian (-∆) s for s ∈ (0, 1). However, the linearity of the operator does not seem essential in the derivation of this type of results. In fact in [16, Theorem 1.2] (see also [START_REF] Alves | Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian[END_REF][START_REF] Yan | A global compactness result for quasilinear elliptic equations with critical Sobolev exponents[END_REF]) a similar result was obtained for signed Palais-Smale sequences of the functional associated with the problem

-∆ p u + a |u| p-2 u = µ |u| p * -2 u in Ω u = 0 on ∂Ω,
where a ∈ L N/p (Ω), µ > 0, ∆ p is the p-Laplacian operator and p * = N p/(N -p).

Applications of these results are provided to constrained minimization problems, to Brézis-Nirenberg type problems (see [16]) and to Bahri-Coron type problems (see [15]), namely the existence of positive solutions to the purely critical problem

-∆ p u = µ |u| p * -2 u,
in Ω, when the domain Ω has a nontrivial topology. For the aforementioned results in the semi-linear case p = 2, we also refer to the monograph [START_REF] Willem | Minimax theorems[END_REF].

1.2. Main results. Let 1 < p < ∞ and s ∈ (0, 1). The aim of this paper is to obtain a global compactness result for Palais-Smale sequences of the C 1 nonlocal energy functional I : D s,p 0 (Ω) → R defined by Likewise, if H is the whole R N or is a half-space in R N , the critical points u of the functional I ∞ : D s,p 0 (H) → R defined by (NA) Nonexistence Assumption. If H is a half-space, then (1.7) has the trivial solution only.

Our main result is the following Theorem 1.1. We assume hypothesis (NA). Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let Ω ⊂ R N be an open bounded set with smooth boundary. Let {u n } n∈N ⊂ D s,p 0 (Ω) be a Palais-Smale sequence at level c for the functional I defined in (1.4).

Then there exist:

• a (possibly trivial) solution v 0 ∈ D s,p 0 (Ω) of (-∆) s p u + a |u| p-2 u = µ |u| p * s -2 u, in Ω;

• a number k ∈ N and v 1 , v 2 • • • , v k ∈ D s,p 0 (R N ) \ {0} solutions of (-∆) s p u = µ |u| p * s -2 u, in R N ;
• a sequence of positive real numbers {λ i n } n∈N ⊂ R + with λ i n → 0 and a sequence of points

{z i n } n∈N ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ λ i n }, for i = 1, . . . , k; such that, up to a subsequence, (1.8) lim n→∞ u n -v 0 - k i=1 (λ i n ) sp-N p v i • -z i n λ i n D s,p (R N ) = 0, (1.9) lim n→∞ [u n ] p D s,p (R N ) = k i=0 [v i ] p D s,p (R N ) ,
(1.10)

I(v 0 ) + k i=1 I ∞ (v i ) = c.
By recalling that for every u ∈ D Next we formulate the global compactness result for radially symmetric functions in a ball B ⊂ R N . Due to the geometric restrictions, the final outcome is more precise and free of Assumption (NA).

Theorem 1.3 (Radial case). Let N ≥ 2, 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let B ⊂ R N be a ball centered at the origin and assume that a ∈ L N/sp rad (B). Let {u n } n∈N ⊂ D s,p 0,rad (B) be a Palais-Smale sequence for I at level c. Then there exist:

• a (possibly trivial) solution v 0 ∈ D s,p 0,rad (B) of

(-∆) s p u + a |u| p-2 u = µ |u| p * s -2 u, in B, • a number k ∈ N and v 1 , v 2 • • • , v k ∈ D s,p 0,rad (R N ) \ {0} solutions of (-∆) s p u = µ |u| p * s -2 u, in R N ,
• a sequence {λ i n } n∈N ⊂ R + with λ i n → 0, for i = 1, . . . , k; such that, up to a subsequence, we have

(1.11) lim n→∞ u n -v 0 - k i=1 (λ i n ) s p-N p v i • λ i n D s,p (R N ) = 0,
and conclusions (1.9) and (1.10).

Remark 1.4 (Radial case for N = 1). The previous results guarantees that, under the standing assumptions, a radial Palais-Smale sequence can concentrate only at the origin. This is due to the fact that functions in D s,p 0,rad verify some extra compactness properties on annular regions A R 0 ,R 1 = {x : R 0 < |x| < R 1 }, which go up to the exponent p * s (and even beyond). More precisely, we have compactness of the embeddings

D s,p 0,rad (B) → L q (A R 0 ,R 1 ), p * s ≤ q < p # s ,
where p # s is the critical Sobolev exponent in dimension N = 1. As for N = 1 we have p * s = p # s , compactness ceases to be true for s p < N = 1 (see Proposition 4.1 and Remark 4.2). In the one-dimensional case, in Theorem 1.3 one would need (NA) as above.

We point out that, contrary to [16,[START_REF] Willem | Minimax theorems[END_REF], on the weight function a we merely assume it to be in L N/sp (Ω), avoiding an additional coercivity assumption (see [24, condition (B), p.125]) which was used in [16,[START_REF] Willem | Minimax theorems[END_REF] to get the boundedness of the Palais-Smale sequence {u n } n∈N .

The proof by Struwe in [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] is essentially based upon iterated rescaling arguments, jointly with an extension procedure to show the non-triviality of the weak limits. The latter seems hard to adapt to the nonlocal cases, namely when s > 0 is not integer. Thus we prove Theorem 1.1 by basically following the scheme of Clapp's paper [7]. A delicate point will be proving that the weak limits appearing in the construction are non-trivial. As a main ingredient, we use a Caccioppoli inequality for solutions of (-∆) s p u = f (see Proposition 2.9 below). Remark 1.5 (The case p = 2). In the Hilbertian setting, namely for p = 2 and 0 < s < N/2, Theorem 1.1 has been recently proved in [18] by appealing to the so-called profile decomposition of Gerard, see [13]. The latter is a general result describing the compactness defects of general bounded sequences in D s,2 0 (R N ), which are not necessarily Palais-Smale sequences of some energy functional. See also [START_REF] Palatucci | Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces[END_REF]Theorem 1.4], where some improved fractional Sobolev embeddings are obtained. We point out that for p = 2 such an approach does not seem feasible. Indeed, the paper [14] suggests that the decomposition (1.8) should not be expected for a generic bounded sequence in D s,p 0 (R N ) (see [14, page 387]). We also observe that some form of the global compactness result of [18] was also derived in [START_REF] Secchi | Coron problem for fractional equations[END_REF] in the study of Coron-type results in the fractional case.

Remark 1.6. We also consider a version of the above theorem stated for Palais-Smale sequences with sign, namely Palais-Smale sequences {u n } n∈N with the additional property that the negative parts {(u n ) -} n∈N converges to zero in L p * s . This is particularly interesting if c is a minimax type level (i.e. with mountain pass, saddle point or linking geometry). Indeed, in this case it is often possible to obtain a Palais-Smale sequence with sign at level c via deformation arguments of Critical Point Theory, see [START_REF] Willem | Minimax theorems[END_REF]Theorem 2.8].

1.3. Notations. For 1 < p < ∞ we consider the monotone function J p : R N → R N defined by

J p (ξ) := |ξ| p-2 ξ, ξ ∈ R N .
We recall that this satisfies (1.12)

|J p (ξ) -J p (η)| ≤    |ξ -η| p-1 , if 1 < p ≤ 2, C p (|ξ| + |η|) p-2 |ξ -η|, if p > 2.
We denote by B r (x 0 ) the N -dimensional open ball of radius r, centered at a point x 0 ∈ R N . The symbol • L p (Ω) stands for the standard norm for the L p (Ω) space. For a measurable function u : R N → R, we let

[u] D s,p (R N ) := ˆR2N |u(x) -u(y)| p |x -y| N +sp dxdy 1/p
be its Gagliardo seminorm. For s p < N , we consider the space Lemma 2.1. Let 1 < q < ∞ and let {f n } n∈N ⊂ L q (R k ) be a bounded sequence, such that f n → f almost everywhere. Then

D s,p 0 (R N ) := u ∈ L p * s (R N ) : [u] D s,p (R N ) < ∞ , where p * s = N p N -s p , endowed with norm [ • ] D s,p (R N ) . If Ω ⊂ R N is an open set, not necessarily bounded, we consider D s,p 0 (Ω) := u ∈ D s,p 0 (R N ) : u = 0 in R N \ Ω , If Ω is bounded, then the imbedding D s,p 0 (Ω) → L r (Ω) is
lim n→∞ f n q L q (R k ) -f n -f q L q (R k ) = f q L q (R k ) . Furthermore, (2.1) lim n→∞ ˆRk J q (f n ) -J q (f n -f ) -J q (f ) q dx = 0.
The previous result implies the following splitting properties.

Lemma 2.2. Let {u n } n∈N ⊂ D s,p 0 (R N ) be such that u n u in D s,p 0 (R N ) and u n → u almost everywhere, as n → ∞. Then:

(i 1 ) [u n ] p D s,p (R N ) -[u n -u] p D s,p (R N ) = [u] p D s,p (R N ) + o n (1); (i 2 ) J p * s (u n ) -J p * s (u n -u) → J p * s (u), in L (p * s ) (R N ); (i 3 ) it holds J p (u n (x) -u n (y)) |x -y| N +sp p - J p (u n (x) -u(x)) -(u n (y) -u(y)) |x -y| N +sp p → J p (u(x) -u(y)) |x -y| N +sp p in L p (R 2N ).
Proof. Statement (i 1 ) follows by Lemma 2.1 by choosing

f n = u n (x) -u n (y) |x -y| N +s p p , f = u(x) -u(y) |x -y| N +s p p , q = p, k = 2 N.
With the same choices, we can also obtain (i 3 ) from (2.1). Statement (i 2 ) directly follows from (2.1) with the choices

f n = u n , f = u, q = p * s , k = N,
once we recalled that a weakly convergent sequence in D s,p 0 (R N ) weakly converges in L p * s (R N ) as well, thanks to Sobolev inequality. This concludes the proof.

Let I and I ∞ be the functionals defined by (1.4) and (1.6). We recall that I ∈ C 1 (D s,p 0 (Ω)), I ∞ ∈ C 1 (D s,p 0 (H)) and

I (u), ϕ = ˆR2N J p (u(x) -u(y)) (ϕ(x) -ϕ(y)) |x -y| N +s p dx dy + ˆΩ a |u| p-2 u ϕ dx -µ ˆΩ |u| p * s -2 u ϕ dx, ∀ϕ ∈ D s,p 0 (Ω), I ∞ (u), ϕ = ˆR2N J p (u(x) -u(y)) (ϕ(x) -ϕ(y)) |x -y| N +s p dx dy -µ ˆRN |u| p * s -2 u ϕ dx, ∀ϕ ∈ D s,p 0 (H).
In the following, we repeatedly use the inclusion D s,p 0 (Ω) → D s,p 0 (R N ). Lemma 2.3. Let a ∈ L N/sp (Ω), assume that {u n } n∈N is bounded in L p * s (Ω) and that u n → u almost everywhere in Ω. Then

lim n→∞ a J p (u n ) -J p (u) L (p * s ) (Ω) = 0. Proof. Let us set ψ := |a| (p * s ) ∈ L σ (Ω), with σ = N p -N + s p s p 2 > 1,
and 1) (Ω) and converges to 0 almost everywhere in Ω, thanks to the assumptions on {u n } n∈N . Thus we obtain lim n→∞ ˆΩ a J p (u n ) -J p (u)

φ n := |J p (u n ) -J p (u)| (p * s ) ⊂ L σ σ-1 (Ω). It is not difficult to see that {φ n } n∈N is bounded in L σ/(σ-
(p * s ) dx = lim n→∞ ˆΩ ψ φ n dx,
and the last limit is zero. Indeed, by Young inequality and Fatou Lemma for every 0 < τ 1,

1 σ τ σ-1 ˆΩ ψ σ dx ≤ lim inf n→∞ ˆΩ 1 σ τ σ-1 ψ σ + σ -1 σ τ φ σ σ-1 n -ψ φ n dx ≤ 1 σ τ σ-1 ˆΩ ψ σ dx + σ -1 σ τ sup n∈N ˆΩ φ σ σ-1 n dx -lim sup n→∞ ˆΩ ψ φ n dx. This proves 0 ≤ lim sup n→∞ ˆΩ ψ φ n dx ≤ σ -1 σ τ sup n∈N ˆΩ φ σ σ-1 n dx ,
and by the arbitrariness of τ > 0, we get the conclusion.

Next we produce a Palais-Smale sequence for I ∞ from a Palais-Smale sequence for I. Then, passing if necessary to a subsequence, {v n } n∈N := {u n -u} n∈N ⊂ D s,p 0 (Ω) is a Palais-Smale sequence for the functional I ∞ at the level c -I(u). Moreover, we have

(2.3) [v n ] p D s,p (R N ) = [u n ] p D s,p (R N ) -[u] p D s,p (R N ) + o n (1).
Proof. We first observe that (2.2) readily gives that By (i 1 ) of Lemma 2.2 we also get

I (u) = 0, i.e. u
[u n ] p D s,p (R N ) -[v n ] p D s,p (R N ) = [u] p D s,p (R N ) + o n (1)
, which is (2.3). By using the three previous displays and Lemma 2.1 for L p * s (Ω), we have

I ∞ (v n ) = I(v n ) + o n (1) = I(u n ) -I(u) + o n (1) = c -I(u) + o n (1).
Finally, by virtue Lemma 2.3 applied to the sequence u n -u, we have

lim n→∞ a J p (u n -u) L (p * s ) (Ω) = 0,
and thus

I ∞ (v n ) = I (v n ) + ôn (1),
where ôn (1) denotes a sequence going to zero in D -s,p (Ω). By using assertions (i 2 ), (i 3 ) and Lemma 2.3 we further get

I ∞ (v n ) = I (v n ) + ôn (1) = I (u n ) -I (u) + ôn (1) = ôn (1),
and ôn (1) still denotes a sequence going to zero in D -s,p (Ω). This concludes the proof.

Scaling invariance and related facts.

The following result follows from a direct computation, we leave the verification to the reader.

Lemma 2.5 (Scaling invariance). For z ∈ Ω and λ > 0, we set

Ω z,λ := Ω -z λ .
Then, the following facts hold:

• if u ∈ D s,p 0 (Ω) and we set v z,λ (x) := λ N -s p p u(λ x + z) ∈ D s,p 0 (Ω z,λ ), then [v z,λ ] D s,p (R N ) = [u] D s,p (R N ) and v z,λ L p * s (R N ) = u L p * s (R N ) ; • if we set w(x) := λ s p-N p w x -z λ , ϕ z,λ (x) := λ N -s p p ϕ(λ x + z), for w, ϕ ∈ D s,p 0 (R N ), then I ∞ ( w), ϕ = I ∞ (w), ϕ z,λ and sup ϕ∈D s,p 0 (Ω) I ∞ ( w), ϕ [ϕ] D s,p (R N ) = sup ϕ∈D s,p 0 (Ω z,λ ) I ∞ (w), ϕ [ϕ] D s,p (R N )
.

Next, we transform a Palais-Smale sequence for I ∞ into a new one via rescaling and localization.

Lemma 2.6 (Scalings, case I). Let {z n } n∈N ⊂ Ω and {λ n } n∈N ⊂ R + be such that

lim n→∞ z n = z 0 and lim n→∞ λ n = 0.
Assume that {u n } n∈N ⊂ D s,p 0 (Ω) is a Palais-Smale sequence for I ∞ at level c and that the rescaled sequence

v n (x) := λ N -s p p n u n (λ n x + z n ) ∈ D s,p 0 (Ω n ),
where

Ω n := Ω -z n λ n , is such that v n v in D s,p 0 (R N ), v n → v a.e. in R N . If (2.4) lim n→∞ n λ n = +∞, where n := 1 2 dist(z n , ∂Ω), then v is a critical point of I ∞ on D s,p 0 (R N ), i.e. I ∞ (v), ϕ = 0, for every ϕ ∈ D s,p 0 (R N ). Moreover, if ζ ∈ C ∞ 0 (B 2 (0)) is a standard cut-off such that ζ ≡ 1 on B 1 (0), the sequence w n (z) := u n (z) -λ s p-N p n v z -z n λ n ζ z -z n n ∈ D s,p 0 (Ω), is a Palais-Smale sequence for I ∞ at level c -I ∞ (v) and such that (2.5) [u n ] p D s,p (R N ) -[w n ] p D s,p (R N ) = [v] p D s,p (R N ) + o n (1).
Proof. Let us assume (2.4), under this assumption the sets Ω n converges to R N . Thus, for every ϕ ∈ C ∞ 0 (R N ) with compact support, we can assume that Ω n contain the support of ϕ for n sufficiently large. From Lemma 2.5 and the hypothesis on {u n } n∈N , it readily follows

0 = lim n→∞ I ∞ (u n ), λ s p-N p n ϕ • -z n λ n = lim n→∞ I ∞ (v n ), ϕ = I ∞ (v), ϕ .
By arbitrariness of ϕ ∈ C ∞ 0 (R N ), we get the desired conclusion. Before going on, we observe that since v is a critical point of I ∞ , from Lemma B.1 we get

(2.6) v ∈ L q (R N ), for every p * s p < q ≤ p * s .
For the second part of the statement, we first observe that w n ∈ D s,p 0 (Ω) thanks to Lemma A.1. Thanks to (2.6) we can apply Lemma A.2: by using this and (i 1 ) of Lemma 2.2, we have

[v n ] p D s,p (R N ) -[v n -v ζ(λ n / n •)] p D s,p (R N ) = [v n ] p D s,p (R N ) -[v n -v] p D s,p (R N ) + o n (1) = [v] p D s,p (R N ) + o n (1), (2.7)
thanks to the fact that λ n / n converges to 0, by assumption. From the scaling properties of Lemma 2.5, this yields

[u n ] p D s,p (R N ) -[w n ] p D s,p (R N ) = [v] p D s,p (R N ) + o n (1), as n → ∞,
which proves (2.5). Similarly to (2.7), we also have

(2.8) v n p * s L p * s (R N ) -v n -v ζ(λ n / n •) p * s L p * s (R N ) = v p * s L p * s (R N ) + o n (1)
By scaling, (2.7) and (2.8) we get

I ∞ (w n ) = 1 p [v n -v ζ(λ n / n •)] p D s,p (R N ) - µ p * s ˆRN |v n -v ζ(λ n / n •)| p * s dx = 1 p [v n ] D s,p (R N ) - 1 p [v] p D s,p (R N ) - µ p * s ˆRN |v n | p * s dx - µ p * s ˆRN |v| p * s dx + o n (1) = I ∞ (v n ) -I ∞ (v) + o n (1) = I ∞ (u n ) -I ∞ (v) + o n (1) = c -I ∞ (v) + o n (1). It is only left to show that {w n } n∈N is a Palais-Smale sequence. For any ϕ ∈ D s,p 0 (Ω) with [ϕ] D s,p (R N ) = 1, we set ϕ n (x) = λ N -s p p n ϕ(λ n x + z n ) ∈ D s,p 0 (Ω n ). Clearly we still have [ϕ n ] D s,p (R N ) = 1. We first observe that (2.9) I ∞ (v n -v ζ(λ n / n •)), ϕ n = I ∞ (v n -v), ϕ n + o n (1),
where o n (1) is independent of ϕ. Indeed, by using the compact notations

Z n (x, y) = v n (x) -v(x) ζ(λ n / n x) -v n (y) -v(y) ζ(λ n / n y) ,
and

V n (x, y) = v n (x) -v(x) -v n (y) -v(y) ,
we have

I ∞ (v n -v ζ(λ n / n •)) -I ∞ (v n -v), ϕ n ≤ ˆR2N J p (Z n (x, y)) -J p (V n (x, y)) ϕ n (x) -ϕ n (y) |x -y| N +s p dx dy + µ ˆRN J p * s (v n -v ζ(λ n / n •)) -J p * s (v n -v) ϕ dx .
We focus on the nonlocal term, the other being easier. By Hölder inequality this is estimated by

ˆR2N |J p (Z n (x, y)) -J p (V n (x, y))| p |x -y| N +s p dx dy 1 p .
Let us suppose for simplicity that1 p > 2. Then we use (1.12) and Hölder inequality with exponents p p and p p -p ,

so to get ˆR2N |J p (Z n (x, y)) -J p (V n (x, y))| p |x -y| N +s p dx dy ≤ C p ˆR2N (|Z n (x, y)| + |V n (x, y)|) p (p-2) |Z n (x, y) -V n (x, y)| p |x -y| N +s p dx dy ≤ C p ˆR2N (|Z n (x, y)| + |V n (x, y)|) p |x -y| N +s p dx dy p-p p ˆR2N |Z n (x, y) -V n (x, y)| p |x -y| N +s p dx dy p p
.

By recalling the definitions of Z n and V n , we get that the first term is uniformly bounded, while the second one coincides with

[v ζ(λ n / n •) -v] p D s,p (R N )
, which converges to 0 thanks to Lemma A.2. This proves (2.9) and by using it in conjunction with Lemma 2.2, we get

I ∞ (w n ), ϕ = I ∞ (v n -v ζ(λ n / n •)), ϕ n = I ∞ (v n -v), ϕ n + o n (1) = I ∞ (v n ), ϕ n -I ∞ (v), ϕ n + o n (1), = I ∞ (u n ), ϕ -I ∞ (v), ϕ n + o n (1),
where o n (1) is independent of ϕ. We now use that {u n } n∈N is a Palais-Smale sequence and that I ∞ (v), ϕ n = 0 by the first part of the proof. This allows us to conclude. Lemma 2.7 (Scalings, case II). Under the assumptions of Lemma 2.6, if

(2.10) lim inf n→∞ 1 λ n dist(z n , ∂Ω) < ∞. then z 0 ∈ ∂Ω, v ∈ D s,p 0 (H) and v is a critical point of I ∞ on D s,p 0 (H), i.e. I ∞ (v), ϕ = 0,
for every ϕ ∈ D s,p 0 (H), where H is a half-space.

Proof. Under the assumption (2.10), the proof is the same as in the first part of Lemma 2.6, we only have to observe that in this case the sets Ω n converge to a half-space H.

Next we prove that nonsingular scalings of weakly vanishing sequences are weakly vanishing.

Lemma 2.8. Assume that u n 0 in D s,p 0 (R N ), λ n → λ 0 > 0, {z n } n∈N ⊂ R N such that z n → z 0 . We set v n (x) := λ N -sp p n u n (λ n x + z n ). Then v n 0 in D s,p 0 (R N ).
Proof. Take any continuous functional F ∈ D -s,p (R N ). Then, there exists a function ϕ ∈ L p (R 2N ) with

F, u = ˆR2N ϕ(x, y) (u(x) -u(y)) |x -y| N +s p p dx dy, for all u ∈ D s,p 0 (R N ).
We have, by a change of variables,

F, v n = λ N -s p p n ˆR2N ϕ(x, y)(u n (λ n x + z n ) -u n (λ n y + z n )) |x -y| N +s p p dx dy = λ -2N p n ˆR2N ϕ x -z n λ n , y -z n λ n (u n (x) -u n (y)) |x -y| N +sp p dx dy := ω n .
On the other hand, introducing the functions of Ψ n , Ψ ∈ L p (R 2N ) by setting

Ψ n (x, y) := ϕ x -z n λ n , y -z n λ n , Ψ(x, y) := ϕ x -z 0 λ 0 , y -z 0 λ 0 ,
we have

ω n = λ -2N p n ˆR2N Ψ(x, y)(u n (x) -u n (y)) |x -y| N +s p p dxdy + λ -2N p n ˆR2N (Ψ n (x, y) -Ψ(x, y))(u n (x) -u n (y)) |x -y| N +s p p dxdy = λ -2N p n ˆR2N (Ψ n (x, y) -Ψ(x, y))(u n (x) -u n (y)) |x -y| N +s p p dxdy + o n (1), in view of u n 0 in D s,p 0 (R N ) and Ψ ∈ L p (R 2N ). Then ω n = o n (1) follows by sup n∈N u n (x) -u n (y) |x -y| N +sp p L p (R 2N ) < ∞,
and Ψ n → Ψ strongly in L p (R 2N ) as n → ∞, since λ n → λ 0 > 0 and z n → z 0 .

2.3.

Estimates for solutions. Next we prove a Caccioppoli inequality, which will turn out to be the main technical tool in order to handle Step 3 in the proof of Theorem 1.1.

Proposition 2.9 (Caccioppoli inequality). Let F ∈ D -s,p (Ω) and let u ∈ D s,p 0 (Ω) with

ˆR2 N J p (u(x) -u(y)) (ϕ(x) -ϕ(y)) |x -y| N +s p dx dy = F, ϕ , for any ϕ ∈ D s,p 0 (Ω).
Then for every open set Ω such that Ω ∩ Ω = ∅ and every positive ψ ∈ C ∞ 0 (Ω ) we have

ˆΩ ×Ω u(x) ψ(x) -u(y) ψ(y) p |x -y| N +s p dx dy ≤ C ˆΩ ×Ω |ψ(x) -ψ(y)| p |x -y| N +s p |u(x)| p + |u(y)| p dx dy + C sup y∈spt(ψ) ˆRN \Ω |u(x)| p-1 |x -y| N +s p dx ˆΩ |u| ψ p dx + C F, u ψ p ,
for some constant C > 0 depending on p only.

Proof. The proof is the same as that of Caccioppoli inequality [5, Proposition 3.5]. The only differences are that here F is not necessarily (represented by) a function and that the test function ψ can cross the boundary ∂Ω. We insert the test function 2 ϕ = ψ p u, where ψ ∈ C ∞ 0 (Ω) is as in the statement. Then we get

ˆR2N J p (u(x) -u(y)) |x -y| N +s p (u(x) ψ(x) p -u(y) ψ(y) p ) dx dy = F, u ψ p . (2.11)
We now split the double integral in three parts:

I 1 = ˆΩ ×Ω J p (u(x) -u(y))
|x -y| N +s p (u(x) ψ(x) p -u(y) ψ(y) p ) dx dy,

I 2 = ˆΩ ×(R N \Ω ) J p (u(x) -u(y))
|x -y| N +s p u(x) ψ(x) p dx dy, and

I 3 = - ˆΩ ×(R N \Ω ) J p (u(x) -u(y))
|x -y| N +s p u(y) ψ(y) p dx dy The first integral I 1 can be estimated exactly as in [5, Proposition 3.5], with the choices

v = u, g(t) = t = G(t),
there. This gives

c ˆΩ ×Ω u(x) ψ(x) -u(y) ψ(y) p |x -y| N +s p dx dy ≤ I 1 + C ˆΩ ×Ω |ψ(x) -ψ(y)| p |x -y| N +s p |u(x)| p + |u(y)| p dx dy.
(2.12)

For the estimate of I 2 we proceed similarly to [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF], by observing that the positivity assumption on u can be dropped. Namely, we simply observe that by monotonicity of τ → J p (τ ), for x ∈ Ω we have J p (u(x) -u(y)) ≥ J p (-u(y)), if u(x) ≥ 0 or J p (u(x) -u(y)) ≤ J p (-u(y)), if u(x) < 0. Thus in both cases we get

J p (u(x) -u(y)) u(x) ≥ J p (-u(y)) u(x).
Then we obtain

I 2 ≥ - ˆΩ ×(R N \Ω ) |u(y)| p-2 u(y) |x -y| N +s p u(x) ψ(x) p dx dy ≥ - sup x∈spt(ψ) ˆRN \Ω |u(y)| p-1 |x -y| N +s p dy ˆΩ |u(x)| ψ(x) p dx.
(2.13)

The third integral can be estimated in a similar fashion. By inserting the above estimates in (2.11), we get the conclusion.

Let us set S p,s := inf

u∈D s,p 0 (R N ) [u] p D s,p (R N ) : u L p * s (R N ) = 1 ,
which is nothing but the sharp constant in the Sobolev inequality for D s,p 0 (R N ), namely (2.14)

S p,s u p L p * s (R N ) ≤ [u] p D s,p (R N ) , for all u ∈ D s,p 0 (R N ).
2 Observe that this is a legitimate test function, since ψ p u ∈ D s,p 0 (R N ) by Lemma A.1 and ψ p u ≡ 0 outside Ω.

It is useful to remark that if u ∈ D s,p 0 (E) weakly solves

(2.15) (-∆) s p u = µ |u| p * s -2 u in E u = 0 in R N \ E,
in some open set E ⊂ R N (E = R N is allowed) and for some µ > 0, then we get

[u] p D s,p (R N ) = µ u p * L p * s (E)
. Combining this with (2.14) yields the following universal lower bounds for the norms of the nontrivial solutions of problem (2.15), that is

(2.16) u p * L p * s (E) ≥ S p,s µ N s p and [u] p D s,p (R N ) ≥ µ S p,s µ N s p
.

This in turn entails the following universal estimate for the energy of solutions

1 p [u] p D s,p (R N ) - µ p * s ˆE |u| p * s dx ≥ µ s N S p,s µ N s p .
This lower bound can be improved, if we consider sign-changing solutions. This is the content of the next useul result.

Lemma 2.10 (Energy doubling). Assume that u ∈ D s,p 0 (E) is a sign-changing weak solution to (2.15) where µ > 0 and E is a (possibly unbounded) domain in R N . Then (2.17)

u p * s L p * s (E) ≥ 2 S p,s µ N sp , [u] p D s,p (R N ) ≥ 2 µ S p,s µ N sp , I ∞ (u) ≥ 2 µ s N S p,s µ N sp .
Proof. For p = 2, see [20, Lemma 2.5]. In the general case, the heuristic idea is to exploit the fact that u ± := max{±u, 0} ∈ D s,p 0 (E) \ {0} are both positive subsolutions of (2.15). Thus the above universal estimates hold for both of them separately. More precisely, it is readily seen that for a.e. (x, y) ∈ R 2N the following inequalities hold

J p (u(x) -u(y))(u + (x) -u + (y)) ≥ |u + (x) -u + (y)| p , J p (u(x) -u(y))(u -(y) -u -(x)) ≥ |u -(x) -u -(y)| p .
Then, testing equation (2.15) by u + (respectively -u -) yields

[u + ] p D s,p (R N ) ≤ ˆR2N J p (u(x) -u(y)) (u + (x) -u + (y)) |x -y| N +sp dxdy = µ ˆE (u + ) p * s dx, [u -] p D s,p (R N ) ≤ ˆR2N J p (u(x) -u(y)) (u -(y) -u -(x)) |x -y| N +sp dxdy = µ ˆE (u -) p * s dx.
As before, we can combine these equalities with S p,s u ±

p L p * s (E) ≤ [u ± ] p D s,p (R N ) to get u ± p * s L p * s (E) ≥ S p,s µ N/sp
.

By summing up these two inequalities, we get the first estimate in (2.17). The second one is then obtained by observing that from the equation we have

[u] p D s,p (R N ) = µ u p * s L p * s (E) .
Finally, for the third estimate in (2.17) we observe that from the previous identity

I ∞ (u) = 1 p [u] p D s,p (R N ) - µ p * s u p * s L p * s (E) = µ 1 p - 1 p * s u p * s L p * s (E) ≥ 2 µ s N S p,s µ N/sp
, which completes the proof.

3. Proof of Theorem 1.1

We divide the proof into five steps.

Step 1. We first observe that the Palais-Smale sequence {u n } n∈N is bounded in D s,p 0 (Ω). In fact, by hypothesis we have

(3.1) I(u n ) = 1 p [u n ] p D s,p (R N ) + 1 p ˆΩ a |u n | p dx - µ p * s ˆΩ |u n | p * s dx = c + o n (1),
and

[u n ] p D s,p (R N ) + ˆΩ a |u n | p dx -µ ˆΩ |u n | p * s dx = I (u n ), u n = o n (1) [u n ] D s,p (R N ) ,
as n → ∞, which yields

(3.2) µ 1 p - 1 p * s ˆΩ |u n | p * s dx = I(u n ) - 1 p I (u n ), u n ≤ c + 1 + o n (1) [u n ] D s,p (R N ) .
In turn, by Hölder inequality and (3.2), with simple manipulations it follows

(3.3) ˆΩ a |u n | p dx ≤ a L N/sp (Ω) ˆΩ |u n | p * s dx p p * s ≤ C + o n (1) [u n ] D s,p (R N ) ,
where C > 0 depends on N, s, p, µ, c and the norm of a, but not on n. Whence, from (3.1), (3.2) and (3.3), we infer, as n → ∞

[u n ] p D s,p (R N ) ≤ C + o n (1)[u n ] D s,p (R N )
, which shows the boundedness in D s,p 0 (Ω). Hence, passing if necessary to a subsequence, we have u n v 0 in D s,p 0 (Ω) and u n → v 0 almost everywhere in Ω. By Lemma 2.4, it follows that

I (v 0 ) = 0 and u 1 n := u n -v 0 ∈ D s,p 0 (Ω) is a Palais-Smale sequence for I ∞ at level c -I(v 0 ), and [u 1 n ] p D s,p (R N ) = [u n ] p D s,p (R N ) -[v 0 ] p D s,p (R N ) + o n (1), as n → ∞.
Step

2. If u 1 n → 0 in L p * s (R N ) up to a subsequence, since I ∞ (u 1 n ) → 0 in D -s,p (Ω) we have [u 1 n ] p D s,p (R N ) -µ ˆRN |u 1 n | p * s dx = I ∞ (u 1 n ), u 1 n = o n (1) [u 1 n ] D s,p (R N ) .
Since this sequence is bounded in D s,p 0 (Ω), this yields that [u 1 n ] D s,p (R N ) → 0 as n goes to ∞, thus completing the proof. Let us now suppose that {u 1 n } n∈N does not converge to 0 in L p * s (R N ). Then, up to a subsequence, we have

inf n∈N ˆRN |u 1 n | p * s dx := δ 0 > 0.
We now take 0 < δ < δ 0 , to be specified later on, and introduce the Levy concentration function

Q n (r) := sup ξ∈R N ˆBr(ξ) |u 1 n | p * s dx, r ≥ 0, n ∈ N.
For all n ∈ N, the function r → Q n (r) is continuous on R + (see Lemma 3.1 below). This and the fact that

Q n (0) = 0 and Q n (∞) > δ imply the existence of {λ 1 n } n∈N ⊂ R + such that Q n (λ 1 n ) = sup ξ∈R N ˆBλ 1 n (ξ) |u 1 n | p * s dx = δ.
Moreover, since |u n | p * s vanishes outside Ω, still by Lemma 3.1 we know that

δ = Q n (λ 1 n ) = ˆBλ 1 n (z 1 n ) |u 1 n | p * s dx, for some z 1 n ∈ {x ∈ R N : dist(x, Ω) ≤ λ 1 n }.
Before proceeding further, we record the following observation: since if λ 1 n ≥ diam(Ω), then

Q n (λ 1 n ) = sup ξ∈R N ˆBλ 1 n (ξ) |u 1 n | p * s dx = ˆΩ |u 1 n | p * s dx > δ = Q n (λ 1 n ),
we obtain that the sequence {λ 1 n } n∈N is bounded. This in turn implies that {z 1 n } n∈N is bounded as well, by construction. We consider now the sequence v 1 n : Ω n → R defined by

v 1 n (x) := (λ 1 n ) N -s p p u 1 n (λ 1 n x + z 1 n ), Ω n := 1 λ 1 n (Ω -z 1 n )
In light of Lemma 2.5 the sequence {v 1 n } n∈N is bounded in D s,p 0 (R N ) (because so is {u 1 n } n∈N ) and thus we can assume that

v 1 n v 1 in D s,p 0 (R N ), v 1 n → v 1 in L σ loc (R N ) for every σ ∈ [1, p * s ), and v 1 n → v 1
, a.e. on R N , up to a subsequence. Observe also that

(3.4) δ = ˆBλ 1 n (z 1 n ) |u 1 n | p * s dx = ˆB1 (0) |v 1 n | p * s dx = sup z∈R N ˆB1 (z) |v 1 n | p * s dx,
and this in turn implies that

(3.5) |B λ 1 n (z 1 n ) ∩ Ω| > 0.
Step 3. The argument that we exploit in this step is substantially different from the argument originally devised by Struwe in [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF], requiring a delicate extension procedure on the sequence of approximate solutions. We rather follow a related argument contained in [7].

We claim that the limit v 1 found at the previous Step 2 is v 1 = 0. Suppose by contradiction that v 1 = 0 almost everywhere. Then, we would have that

v 1 n → 0 in L σ loc (R N ), for every σ ∈ [1, p * s ). Let h ∈ C ∞ 0 (R N )
be positive and such that (3.6) supp(h) ⊂ B 1 (z) ⊂ B 3/2 (0), for an arbitrary z ∈ B 1/2 (0).

We now recall that for functions in D s,p 0 (B 3/2 (0)) the following Sobolev inequality holds (see [5, Proposition 2.3] with the choices r = 3/2 and R = 2 there)

(3.7) ˆB3/2 (0) |u| p * s dx p p * s ≤ T [u] p D s,p (B 2 (0)) ,
for a constant T = T (N, s, p) > 0. By the Hölder inequality and (3.7), since

h v 1 n ∈ D s,p 0 (B 3/2 (0)), it follows that ˆRN h p |v 1 n | p * s dx ≤ ˆB1 (z) |v 1 n | p * s dx s p N ˆB3/2 (0) h |v 1 n | p * s dx p p * s ≤ T ˆB1 (z) |v 1 n | p * s dx s p N h v 1 n p D s,p (B 2 (0)) , (3.8) 
for some positive constant T depending only on N, s, p. We now observe that by the very definition of

I ∞ ˆR2 N J p (v 1 n (x) -v 1 n (y))(ϕ(x) -ϕ(y)) |x -y| N +s p dx dy = µ ˆRN |v 1 n | p * s -2 v 1 n ϕ dx + I ∞ (v 1 n ), ϕ , for any ϕ ∈ D s,p 0 (Ω n ).
Then, by applying Proposition 2.9 for every n ∈ N with the choices

Ω := Ω n , Ω := B 2 (0), u := v 1 n , ψ := h, F := µ |v 1 n | p * s -2 v 1 n + I ∞ (v 1 n ), we get ˆB2 (0)×B 2 (0) v 1 n (x) h(x) -v 1 n (y) h(y) p |x -y| N +s p dx dy ≤ C ˆB2 (0)×B 2 (0) |h(x) -h(y)| p |x -y| N +s p |v 1 n (x)| p + |v 1 n (y)| p dx dy + C sup y∈B 3/2 (0) ˆRN \B 2 (0) |v 1 n (x)| p-1 |x -y| N +s p dx ˆB3/2 (0) |v 1 n | h p dx + C ˆB3/2 (0) h p |v 1 n | p * s dx + C I ∞ (v 1 n ), v 1 n h p .
(3.9)

Observe that thanks to (3.4), we know that B 2 (0) ∩ Ω n in a non-empty open set. We proceed to estimate the terms on the right-hand side of (3.9). For the first term on the right-hand side, we have

ˆB2 (0)×B 2 (0) |h(x) -h(y)| p |x -y| N +s p |v 1 n (x)| p + |v 1 n (y)| p dx dy ≤ ∇h p L ∞ ˆB2 (0) ˆB2 (0) dy |x -y| N +s p-p |v 1 n (x)| p dx + ∇h p L ∞ ˆB2 (0) ˆB2 (0) dx |x -y| N +s p-p |v 1 n (y)| p dy = o n (1),
thanks to the local strong L p convergence to 0 of {v 1 n } n∈N . For the second term on the right-hand side of (3.9), we observe that for the same reason we have

ˆB3/2 (0) |v 1 n | h p dx = o n (1),
while by Hölder inequality, for every y ∈ B 3/2 (0) we get

ˆRN \B 2 (0) |v 1 n (x)| p-1 |x -y| N +s p dx ≤ ˆRN |v 1 n | p * s dx p-1 p * s × ˆRN \B 2 (0) |x -y| -(N +s p) p * s p * s -p+1 dx p * s -p+1 p * s ,
which is uniformly bounded. For the third term, by using inequality (3.8), and recalling (3.4) and (3.6), we have

ˆB3/2 (0) h p |v 1 n | p * s dx ≤ T ˆB1 (z) |v 1 n | p * s dx s p N h v 1 n p D s,p (B 2 (0)) ≤ T δ s p N h v 1 n p D s,p (B 2 (0))
For the last term, since I ∞ (u 1 n ) → 0, we learn from (a 2 ) of Lemma 2.5 that sup ϕ∈D s,p 0 (Ωn)

I ∞ (v 1 n ), ϕ [ϕ] D s,p (R N ) = o n (1), thus in particular | I ∞ (v 1 n ), h p v 1 n | = o n (1), since the sequence {h p v 1 n } n∈N is bounded in D s,p 0 (Ω n ) in view of Lemma A.1 (recall that {v 1 n } n∈N is bounded in D s,p 0 (Ω n ))
. By introducing the previous estimates in (3.9), we thus get

h v 1 n p D s,p (B 2 (0)) ≤ C T δ s p N h v 1 n p D s,p (B 2 (0)) + o n (1)
, where we recall that C is the constant appearing in the Caccioppoli inequality of Proposition 2.9 and this depends on p only. By choosing

3 δ = min 1 2 C T , δ 0 2 N s p
, from the previous inequalities we obtain

[h v 1 n ] D s,p (B(0,2)) = o n (1), as n → ∞.
By using again the Sobolev inequality (3.7), this in turn implies

ˆB3/2 (0) h |v 1 n | p * s dx = o n (1)
.

By arbitrariness of h ∈ C ∞ 0 (B 1 (z)), we obtain that {v 1 n } n∈N converges to zero in L p * s loc (B 1 (z)). Finally, taking into account the condition (3.6) and the arbitrariness of z ∈ B 1/2 (0), we obtain that {v 1 n } n∈N converges to zero in L p * s (B 1 (0)), which contradicts (3.4). Hence, v 1 = 0.

Step 4. We have already seen in Step 2 that the sequences {z 1 n } n∈N and {λ 1 n } n∈N are bounded, thus we may assume that z n , ∂Ω) = 0 and z 1 0 ∈ Ω. We now distinguish two cases:

1 n → z 1 0 ∈ R N and λ 1 n → λ 1 0 ≥ 0. If λ 1 0 > 0 then
either lim n→∞ 1 λ 1 n dist(z 1 n , ∂Ω) = ∞ or lim inf n→∞ 1 λ 1 n dist(z 1 n , ∂Ω) < ∞.
3 Observe in particular that δ depends on N, s, p, µ and δ0 only. Also observe that we can always suppose δ0 < 1.

In the first case, by Lemma 2.6 we have I ∞ (v 1 ) = 0 so that

(-∆) s p v 1 = µ |v 1 | p * s -2 v 1 , in R N .
Moreover, by recalling (3.5), we obtain that

z 1 n ∈ {x ∈ Ω : dist(x, ∂Ω) ≥ λ 1
n }, for n sufficiently large. In the second case, by Lemma 2.7 we would have v 1 ∈ D s,p 0 (H) for a suitable half-space H and

(-∆) s p v 1 = µ |v 1 | p * s -2 v 1 , in H, v 1 = 0, in R N \ H.
On account of Assumption (NA), this case is ruled out. We set 1 n = dist(z 1 n , ∂Ω)/2 and take ζ ∈ C ∞ 0 (B 2 (0)) a standard cut-off function, such that ζ ≡ 1 on B 1 (0). We consider the sequence

u 2 n (z) := u 1 n (z) -(λ 1 n ) s p-N p v 1 z -z 1 n λ 1 n ζ z -z 1 n 1 n ∈ D s,p 0 (Ω),
by construction we have that λ 1 n / 1 n converges to 0, as n goes to ∞. Thus Lemma 2.6 assures that {u 2 n } n∈N is a Palais-Smale sequence for I ∞ at the energy level c -

I(v 0 ) -I ∞ (v 1 ) such that [u 2 n ] p D s,p (R N ) = [u n ] p D s,p (R N ) -[v 0 ] p D s,p (R N ) -[v 1 ] p D s,p (R N ) + o n (1).
Step 5. We can iterate the previous construction to cook-up a sequence {v k } k∈N of critical points of I ∞ and, for every

k ∈ N, sequences {z k n } n∈N , {λ k n } n∈N , { k n } n∈N and {u k n } n∈N ⊂ D s,p 0 (Ω) with u k n (z) := u 1 n (z) - k-1 i=1 (λ i n ) s p-N p v i z -z i n λ i n ζ z -z i n i n
, where ζ is the same cut-off function as above. By construction, we have that {u k n } n∈N is a Palais-Smale sequence for I ∞ at the energy level

c -I(v 0 ) - k-1 i=1 I ∞ (v i ),
and, furthermore,

[u k n ] p D s,p (R N ) = [u n ] p D s,p (R N ) - k-1 i=0 [v i ] p D s,p (R N ) + o n (1). Observe that each v 1 , . . . , v k-1 is a critical point of I ∞ , thus from (2.16) we get [u k n ] p D s,p (R N ) ≤ [u n ] p D s,p (R N ) -[v 0 ] p D s,p (R N ) -(k -1) µ S p,s µ N s p + o n (1),
which implies that this iterative construction must stop at some k 0 ∈ N. As at the beginning of

Step 2, this means that [u k 0 n ] D s,p (R N ) → 0 as n goes to ∞. This in turn yields (1.8), (1.9) and (1.10), as desired.

In

Step 2 above we used the following result, which is well-known. We record its proof for the sake of completeness.

Lemma 3.1. Let f ∈ L 1 (R N ), then its Levy concentration function Q f (r) := sup ξ∈R N ˆBr(ξ) |f | dx, r ≥ 0,
is a continuous function. If f ≡ 0 outside a bounded set K with smooth boundary, then for every r ≥ 0 the supremum in the definition of Q f (r) is actually a maximum. More precisely, we have

Q f (r) := max ξ∈Kr ˆBr(ξ) |f | dx, with K r = {x ∈ R N : dist(x, K) ≤ r}.
Proof. The function Q f is monotone non decreasing. Observe that for every ξ ∈ R N , the function

r → ˆBr(ξ) |f | dx
is continuous, then Q f is lower semicontinuous as a supremum of continuous functions. Let us suppose that there exists r 0 > 0 such that

+ := lim r→r + 0 Q f (r) = lim r→r - 0 Q f (r) =: -.
By monotonicity and lower semicontinuity of Q f , this means that

+ > -= Q f (r 0 ). Let us set ε = + -Q f (r 0 )
, then for every r > r 0 we have

Q f (r) -Q f (r 0 ) ≥ ε. By definition of Q f , we can then choose ξ 0 = ξ 0 (ε, r) ∈ R N such that ε 2 ≤ ˆBr(ξ0) |f | dx - ˆBr 0 (ξ 0 ) |f | dx = ˆBr(ξ0)\Br 0 (ξ 0 ) |f | dx.
Since the measure of the annulus B r (ξ 0 ) \ B r 0 (ξ 0 ) converges to 0 as r r 0 , this gives the desired contradiction. Let us now assume that f = 0 almost everywhere in R N \ K. For every r > 0 the function

ξ → ˆBr(ξ) |f | dx,
is continuous and it vanishes if B r (ξ) ⊂ R N \ K. This happens if dist(ξ, K) > r and we conclude the proof.

Remark 3.2. We observe that if the level c satisfies

(3.10) c < 2 s N µ S p,s µ N/sp
. then k in Theorem 1.1 is either 0 (compactness holds) or k = 1 (compactness fails). In the second case, the unique function v 1 must have constant sign and be different from 0 almost everywhere. Indeed, let us assume (3.10) and observe that I(v 0 ) ≥ 0, since v 0 is a critical point of I. If we suppose that v 1 is sign-changing, from Lemma 2.10 and the decomposition (1.10) we would get

c = I(v 0 ) + I ∞ (v 1 ) ≥ 2 µ s N S p,s µ N/sp
, thus contradicting (3.10). This implies that v 1 has constant sign and we can conclude that v 1 = 0 almost everywhere, thanks to Proposition B.3.

We say that {u n } n∈N ⊂ D s,p 0 (Ω) is a Palais-Smale sequence with sign for I at level c if it is a Palais-Smale sequence and lim

n→∞ (u n ) -L p * s (Ω) = 0.
With minor modifications in the proof of Theorem 1.1, we can get the following variant for Palais-Smale sequences with sign. We leave the details to the reader.

Theorem 3.3. We assume hypothesis (NA). Let 1 < p < ∞ and s ∈ (0, 1) be such that N > s p. Let Ω ⊂ R N be an open bounded set with smooth boundary. Let {u n } n∈N ⊂ D s,p 0 (Ω) be a Palais-Smale sequence with sign for the functional I defined in (1.4) at level c.

Then there exist:

• a (possibly trivial) non-negative solution v 0 ∈ D s,p 0 (Ω) of (-∆) s p u + a |u| p-2 u = µ u p * s -1 , in Ω, • a number k ∈ N and v 1 , v 2 • • • , v k ∈ D s,p (R N ) \ {0} positive solutions of (-∆) s p u = µ u p * s -1 , in R N .
• a sequence of positive real numbers {λ i n } n∈N ⊂ R + with λ i n → 0 and a sequence of points

{z i n } n∈N ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ λ i n }, for i = 1, . . . , k;
such that, up to a subsequence, conclusions (

The positivity of the limiting profiles v 1 , . . . , v k in the result above can be obtained by appealing again to the minimum principle of Proposition B.3.

Radial case

4.1. Improved embeddings for radial functions. In the proof of Theorem 1.3, we need the following embedding result for the space D s,p 0,rad (B). In what follows, by K E we mean that K is an open bounded set with compact closure contained in E. Proposition 4.1 (Compact embeddings). Let 1 < p < ∞ and s ∈ (0, 1), we set

p # s = p 1 -s p , if s p < 1, +∞, if s p ≥ 1.
Then we have the compact embedding

D s,p 0,rad (B R ) → L q (K),
for every 1 ≤ q < p # s and every K R N \ {0}.

Proof. Let us start with the case s p > 1. We remark that we already know that the embedding D s,p 0 (B R ) → L p loc (R N ) is compact (for example, see [3, Theorem 2.7]). A simple interpolation argument permits to infer the desired conclusion. Indeed, let us take q > p, a set K R N \ {0}, for every u ∈ D s,p 0,rad (B R ) by using Lemma 4.3 and (4.1) we obtain

ˆK |u| q dx = ˆK |x| N -s p p |u| q-p |u| p |x| -N -s p p (q-p) dx ≤ C K [u] q-p D s,p (B R ) ˆK |u| p dx.
Thanks to this we can get the desired conclusion.

As far as the case sp ≤ 1 is concerned, we still use that D s,p 0 (B R ) compactly embeds into L p (B R ) and then the assertion follows by Lemma 4.3 jointly with a standard interpolation argument in Lebesgue spaces.

Remark 4.2 (The exponent p # s ). We observe that p # s coincides with the one-dimensional Sobolev exponent. In the case s p < 1 it is not possible to go beyond this exponent in Proposition 4.1. Indeed, for s p < 1 it is not difficult to construct a bounded sequence {u n } n∈N ⊂ D s,p 0,rad (B 1 (0)) such that for a suitable compact set

K ⊂ R N \ {0} we have lim n→∞ u n L q (K) = ∞, for p # s < q ≤ ∞.
Let us consider the spherical shells

A n = {x ∈ R N : 1 -r n < |x| < 1}, with r n = n -p 1-s p .
If we denote by 1 E the characteristic function of a set E, we observe that the functions u n = n 1 An belong to D s,p 0,rad (B 1 (0)). Indeed, if P (E) denotes the perimeter of a smooth set

E ⊂ R N , we have [u n ] p D s,p (R N ) = n p [1 An ] D s p,1 (R N ) ≤ C n p |A n | 1-s p P (A n ) s p
, where the last inequality is [START_REF] Brasco | The fractional Cheeger problem[END_REF]Corollary 4.4]. It is not difficult to see that

|A n | 1-s p P (A n ) s p r (1-s p) n = n -p , which implies that [u n ] p D s,p (B 1 (0)) ≤ [u n ] p D s,p (R N ) ≤ C.
On the other hand, for q > p/(1 -s p) we have

u n q L q (R N ) = n q |A n | n q r n = n q-p 1-s p , which diverges.
We also point out that the very same example shows that in the limit case q = p # s the embedding is continuous, but not compact.

The previous result was based on the following Radial Lemma for fractional Sobolev spaces. We give the proof for the reader's convenience. For more general results valid in Besov and Triebel spaces, we refer the reader to [START_REF] Sickel | On the interplay of regularity and decay in case of radial functions I. Inhomogeneous spaces[END_REF] and [22,Chapter 6].

Lemma 4.3 (A nonlocal Radial Lemma

). Let 1 < p < ∞ and s ∈ (0, 1). Let B R be the ball centered at the origin with radius R > 0. Then we have the continuous embeddings:

• if s p > 1 D s,p 0,rad (B R ) → L ∞ loc R N \ {0}; |x| N -s p p ; • if s p < 1 D s,p 0,rad (B R ) → L p 1-s p loc (R N \ {0}); • if s p = 1 D s,p 0,rad (B R ) → L t loc (R N \ {0}), for every 1 ≤ t < ∞.
Proof. We divide the proof in three cases.

Case s p > 1. Let 0 < < R, since u is a radial function we get ˆ∂B |u| p dH N -1 = N ω N N -1 |u(x)| p , for |x| = .
We observe that the integral is well-defined, since u has a trace in L p (∂B ) thanks to the hypothesis s p > 1. We can now use the trace inequality for D s,p (B ) (see [23, Section 3.3.3]), so to obtain

|u(x)| p = 1-N N ω N ˆ∂B |u| p dH N -1 ≤ C 1-N N ω N s p-1 [u] p D s,p (B ) + 1 s p u p L p (B ) ,
for some C = C(N, p, s) > 0. In order to get the desired estimate, it is now sufficient to use Poincaré inequality (which again needs s p > 1)

1 s p u p L p (B ) ≤ 1 s p u p L p (B R ) ≤ C R s p [u] p D s,p (B R ) , 0 < < R.
This gives

(4.1) |u(x)| ≤ C |x| -N -s p p R |x| s [u] D s,p (B R ) , 0 < |x| < 0,
for some C = C(N, s, p) > 0. Observe that inequality (4.1) holds for |x| ≥ R as well, since u ≡ 0 on R N \ B R . We now take K R N \ {0}. Then, there exists 0 < R 0 < R 1 such that

K ⊂ B R 1 (0) \ B R 0 (0).
From (4.1) we directly get

|x| N -s p p u L ∞ (K) ≤ C R 0 R 1 s [u] D s,p (R N ) ,
which proves the desired embedding.

Case s p < 1. Let u ∈ D s,p 0,rad (R N ). We first show that for every 0 < R 0 < R 1 we have (with a slight abuse of notation)

(4.2) [u] p D s,p (R N ) ≥ C ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p d dr,
for some C = C(N, s, p, R 0 , R 1 ) > 0. Indeed, by arguing as in [2, Lemma B.2], we have

[u] p D s,p (R N ) = C ˆ∞ 0 ˆ∞ 0 |u(r) -u( )| p N -1 r N -1 Φ( , r) d dr, where Φ( , r) := ˆ1 -1 (1 -t 2 ) N -3 2 ( 2 -2 t r + r 2 ) N +s p 2 dt ≥ ˆ1 1/2 (1 -t 2 ) N -3 2 ( -r) 2 + 2 r (1 -t) N +s p 2 dt = 1 | -r| N +s p ˆ1 1/2 (1 -t 2 ) N -3 2 1 + 2 r ( -r) 2 (1 -t) N +s p 2 dt.
For = r, we make the change of variables 2 r ( -r) 2 (1 -t) = τ.

Then, the previous expression becomes

1 | -r| 1+s p 1 (2 r) N -1 2 ˆ r ( -r) 2 0 2 - ( -r) 2 2 r τ N -3 2 τ N -3 2 (1 + τ ) N +s p 2 dτ.
For every 0 < R 0 < R 1 we thus obtain

[u] p D s,p (R N ) ≥ C ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p N -1 r N -1 Φ( , r) d dr ≥ C ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p     ( r) N -1 2 ˆ r ( -r) 2 0 2 - ( -r) 2 2 r τ N -3 2 τ N -3 2 (1 + τ ) N +s p 2 dτ     d dr. (4.3) 
In order to estimate the last integral, we observe that for R 0 ≤ ≤ R 1 and R 0 ≤ r ≤ R 1 we have

(4.4) | -r| ≤ R 1 -R 0 and r ( -r) 2 ≥ r (R 1 -R 0 ) 2 ≥ R 0 R 1 -R 0 2 =: α.
Thus, we proceed as follows (we assume for simplicity N ≥ 3) ( r)

N -1 2 ˆ r ( -r) 2 0 2 - ( -r) 2 2 r τ N -3 2 τ N -3 2 (1 + τ ) N +s p 2 dτ ≥ R N -1 0 ˆα α 2 τ N -3 2 (1 + τ ) N +s p 2 dτ ≥ R N -1 0 α 2 N -3 2 ˆα α 2 dτ (1 + τ ) N +s p 2 = C R 0 ,R 1 .
By spending this information into (4.3), we obtain (4.2). Observe that on the right-hand side of (4.2) we have the one-dimensional Gagliardo seminorm of the function u on the interval [R 0 , R 1 ]. By using Sobolev embedding in dimension 1, we know that (4.5)

ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p d dr + ˆR1 R 0 |u| p d ≥ 1 S ˆR1 R 0 |u| p 1-s p d 1-s p ,
for some S = S(s, p, R 0 , R 1 ) > 0.

We now prove the claimed embedding. As above we take K R N \ {0}. Then, there exists 0

< R 0 < R 1 such that K ⊂ B R 1 (0) \ B R 0 (0).
For u ∈ D s,p 0,rad (R N ) we have

[u] p D s,p (R N ) ≥ S p,s ˆRN |u| p * s dx p p * s ≥ S p,s |B R 1 (0)| -s p ˆBR 1 (0)\B R 0 (0) |u| p dx, thus we get [u] p D s,p (R N ) ≥ C [u] p D s,p (R N ) + C ˆBR 1 (0)\B R 0 (0) |u| p dx,
for some C = C(N, s, p, R 1 ) > 0. We now use polar coordinates, take advantage of the fact that R 0 > 0 and use formula (4.2). Therefore, we have (the constant C may vary from line to line)

[u] p D s,p (R N ) ≥ C [u] p D s,p (R N ) + C ˆBR 1 (0)\B R 0 (0) |u| p dx ≥ C ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p d dr + C ˆR1 R 0 |u| p N -1 d ≥ C ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p d dr + C R 0 N -1 ˆR1 R 0 |u| p d ≥ C ˆR1 R 0 |u| p 1-s p d 1-s p .
In the last line we used (4.5). Finally, by using that R 1 < +∞, we get

[u] p D s,p (R N ) ≥ C ˆR1 R 0 |u| p 1-s p d 1-s p ≥ C R (N -1)(1-s p) 1 ˆR1 R 0 |u| p 1-s p N -1 d 1-s p ≥ C ˆK |u| p 1-s p dx 1-s p ,
for some C = C(N, s, p, R 0 , R 1 ) > 0. This concludes the proof in the case s p < 1.

Case s p = 1. This is the same proof as before, we only need to observe that in this case, in place of (4.5), we have for every 1 ≤ t < ∞ (4.6)

ˆR1 R 0 ˆR1 R 0 |u(r) -u( )| p | -r| 1+s p d dr + ˆR1 R 0 |u| p d ≥ 1 T ˆR1 R 0 |u| t d p t
, for some T = T (s, t, p, R 0 , R 1 ) > 0. Then we can proceed as above, we leave the details to the reader.

4.2. Proof of Theorem 1.3. The proof is the same as that of Theorem 1.1, we only need to modify Step 4 and Step 5 as follows. With the previous notations, as in the proof of Theorem 1.1 we already know that λ 1 n → 0 as n goes to ∞. We now show that this implies that (4.7)

z 1 0 = lim n→∞ z 1 n = 0.
Indeed, if this was not the case, up to a subsequence, one would have |z 1 n | ≥ τ 0 eventually for some τ 0 > 0. Taking into account Proposition 4.1, observing that p * s < p # s for N ≥ 2 and recalling that u 1 n converges to 0 almost everywhere, we have u 1 n → 0 in L p * s (K) for every K R N \ {0}. Then, for 0 < τ < τ 0 , we conclude Then, in order to prove (1.11), we need to remove the translations by z i n from (1.8). This is done by appealing to (4.7) and continuity of L p norms with respect to translations. Indeed, by triangle inequality we have

δ = ˆBλ 1 n (z 1 n ) |u 1 n | p * s dx = ˆBλ 1 n (z 1 n )∩Bτ (0) |u 1 n | p * s dx + o n (1) = o n (1), since, eventually B λ 1 n (z 1 n ) ∩ B τ (0) = ∅,
u n -v 0 - k i=1 (λ i n ) sp-N p v i • λ i n D s,p (R N ) ≤ u n -v 0 - k i=1 (λ i n ) sp-N p v i • -z i n λ i n D s,p (R N ) + k i=1 (λ i n ) sp-N p v i • -z i n λ i n -v i • λ i n D s,p (R N )
.

By observing that the both norms converge to 0, we get the conclusion.

Appendix A. A truncation Lemma

The following result is proved in [9, Lemma 5.3] under the stronger assumption u ∈ D s,p (R N ) ∩ L p (R N ). We need to remove the last integrability assumption.

Lemma A.1. Let ψ be a Lipschitz function with compact support and u ∈ D s,p 0 (R N ). Then ψ u ∈ D s,p 0 (R N ) and we have the estimate

[ψ u] p D s,p (R N ) ≤ C 1 ψ p L ∞ (R N ) [u] p D s,p (R N ) + C 2 ∇ψ p L ∞ (R N ) u p L p * s (R N ) , for some C 1 = C 1 (N, s, p) > 0 and C 2 = C 2 (N, s, p, K) > 0, where K := supp(ψ). Proof. We notice that [ψ u] p D s,p (R N ) ≤ 2 p-1 ψ p L ∞ (R N ) [u] p D s,p (R N ) + 2 p-1 ˆR2N |u(x)| p |ψ(x) -ψ(y)| p |x -y| N +s p dx dy.
With a simple change of variables, the last integral can be written as

ˆRN |u(x)| p ˆRN |ψ(x) -ψ(x + h)| p |h| N +s p dh dx.
By using Hölder inequality with exponents p * s /p and N/sp, Fubini Theorem and triangle inequality, the previous integral can be estimated by

ˆR2N |u(x)| p |ψ(x) -ψ(x + h)| p |h| N +s p dx dh = ˆRN ˆ{|h|≤1} |u(x)| p |ψ(x) -ψ(x + h)| p |h| N +s p dx dh + ˆRN ˆ{|h|>1} |u(x)| p |ψ(x) -ψ(x + h)| p |h| N +s p dx dh ≤ ˆRN |u| p * s ds p p * s ×   ˆRN ˆ{|h|≤1} |ψ(x) -ψ(x + h)| p |h| N +s p dh N s p dx   s p N + 2 p-1 ˆRN ˆ{|h|>1} |u(x)| p |ψ(x)| p |h| N +s p dh dx + 2 p-1 ˆRN ˆ{|h|>1} |u(x)| p |ψ(x + h)| p |h| N +s p dx dh.
For the first integral containing ψ, we observe that the function

x → ˆ{|h|≤1} |ψ(x) -ψ(x + h)| p |h| N +s p dh, is compactly supportedand bounded, indeed ˆ{|h|≤1} |ψ(x) -ψ(x + h)| p |h| N +s p dh ≤ ∇ψ L ∞ ˆ{|h|≤1} |h| p (1-s)-N dh = C ∇ψ L ∞ .
For the second integral containing ψ, by using that h → |h| N +s p is integrable at infinity, we simply have

ˆRN ˆ{|h|>1} |u(x)| p |ψ(x)| p |h| N +s p dh dx ≤ C ψ L ∞ ˆK |u| p dx ≤ C |K| s p N u p L p * s (R N ) .
For the last integral, we just observe that for every |h| > 1, the function ψ(• + h) is compactly supported. We thus have

ˆRN ˆ{|h|>1} |u(x)| p |ψ(x + h)| p |h| N +s p dx dh = ˆ{|h|>1} ˆK-h |u(x)| p |ψ(x + h)| p |h| N +s p dx dh ≤ ψ p L ∞ ˆ{|h|>1} ˆK-h |u| p dx dh |h| N +s p ≤ C ψ p L ∞ |K| s p N u p L p * s (R N ) .
By collecting all the estimates, we conclude the proof.

The following result has been curcially exploited in the proof of Theorem 1.1, in order to localize the rescaled sequences.

Lemma A.2 (Truncation Lemma). Let ζ ∈ C ∞ 0 (B 2 (0)) be a positive function such that ζ ≡ 1 on B 1 (0). Then (A.1) lim n→∞ [v ζ(µ n •) -v] D s,p (R N ) = 0, for any v ∈ D s,p 0 (R N ) ∩ L q (R N ) with q < p * s and {µ n } n∈N ⊂ R + such that µ n → 0.
Proof. We rewrite the term in (A.1) as

[v ψ n ] D s,p (R N ) , where ψ n (x) := ζ(µ n x) -1. We have v ψ n ∈ D s,p 0 (R N ) thanks to Lemma A.1 and |v(x) ψ n (x) -v(y) ψ n (y)| p |x -y| N +s p ≤ 2 p-1 |ψ n (x)| p |v(x) -v(y)| p |x -y| N +s p + 2 p-1 |ψ n (x) -ψ n (y)| p |v(y)| p |x -y| N +s p .
Then, since ψ n L ∞ ≤ 1 and v ∈ D s,p 0 (R N ), the Dominated Convergence Theorem yields

lim n→∞ ˆR2N |ψ n (x)| p |v(x) -v(y)| p |x -y| N +s p dx dy = 0.
For the second term, we observe that First integral. This is the most delicate one, here the assumption v ∈ L q (R N ) with q < p * s will play a major rôle. We have 

ψ n (x) -ψ n (y) = ζ(µ n x) -ζ(µ n y), introduce I R N (y) = ˆRN |ζ(µ n x) -ζ(µ n y)| p |x -y| N
I 1 = ˆB1/µn ˆB2/
x) -1| p |x -y| N +s p dx ≤ µ p n ∇ζ p L ∞ ˆB2/µn \B 1/µn 1 |x -y| N +s p-p dx ≤ µ p n ∇ζ p L ∞ ˆB3/µn (y) 1 |x -y| N +s p-p dx = C µ s p n ∇ζ p L ∞ .
The other term is simpler, indeed by observing that |x -y| ≥ |x|/2 for y ∈ B 1/µn and x ∈ R N \ B 2/µn , we have

ˆRN \B 2/µn 1 |x -y| N +s p dx ≤ C ˆRN \B 2/µn 1 |x| N +s p dx = C µ s p n .
Thus we can infer

I 1 ≤ C µ s p n ˆB1/µn |v| p dy ≤ C µ s p-N + N q p n ˆB1/µn |v| q p q
, which converges to 0, since

s p -N + N q p > 0 ⇐⇒ q < p * s .
Second integral. This is equivalent to for every ϕ ∈ D s,p 0 (E) positive. 4 We can now closely follow the proof of [4, Proposition 3.5] for |V |. For 0 < α < 1 and ε > 0, we introduce the Lipschitz increasing function

I 2 = ˆB2/µn \B
ψ ε (t) = ˆt 0 (ε + τ ) α-1 p + α -1 p τ (ε + τ ) α-1-p p p d τ, t ≥ 0.
We observe that

(B.4) 0 ≤ ψ ε (t) ≤ ˆt 0 (ε + t) α-1 dτ = 1 α [(ε + t) α -ε α ] ≤ t α α ,
where in the second inequality we used that 0 < α < 1. We insert in (B. Then one needs to introduce Ψ ε (t) := ˆt 0 ψ ε (τ )

1 p dτ = t (ε + t) α-1 p ,
and pick a level K 0 > 0, whose precise choice will be made in a while. Observe that thanks to Chebyshev inequality, the set {|V | > K 0 } has finite measure, thus for 0 < α < , 4 This can be easily seen as in [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF].

The level K 0 = K 0 (α, V ) > 0 is now chosen so that for every 0 < α < 1. By taking the limit as ε goes to 0, we get the desired integrability (B.2).

ˆ{|V
Next we state a variant of an estimate proved by Di Castro, Kuusi and Palatucci in [START_REF] Castro | Local behavior of fractional p-minimizers[END_REF].

Lemma B.2 (Logarithmic estimate). Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let Ω ⊂ R N be an open bounded set, a ∈ L N/sp (Ω) and let u ∈ D s,p 0 (Ω) \ {0} be such that (-∆) s p u + a u p-1 ≥ µ |u| q-2 u, in Ω, u = 0, in R N \ Ω, for some µ ∈ R and p ≤ q ≤ p * s . That is, for every ϕ ∈ D s,p 0 (Ω) with ϕ ≥ 0, we have ˆR2N J p (u(x) -u(y)) (ϕ(x) -ϕ(y)) |x -y| N +s p dx dy + ˆΩ a u p-1 ϕ dx ≥ µ ˆΩ |u| q-2 u ϕ dx.

Let us suppose that u ≥ 0 in B 2 r (x 0 ) Ω. Then for every 0 < δ < 1 there holds ˆBr 

  ) -u(y)| p |x -y| N +s p dx dy + 1 p ˆRN a |u| p dx -µ p * s ˆRN |u| p * s dx, where a ∈ L N/sp (Ω) and µ > 0 (see Section 1.3 below for the relevant definitions). We recall that {u n } n∈N ⊂ D s,p 0 (Ω) is said to be a Palais-Smale sequence for I at level c if lim n→∞I(u n ) = c, lim n→∞ I (u n ) = 0 in D -s,p (Ω),where D -s,p (Ω) denotes the topological dual space of D s,p 0 (Ω). Critical points of (1.4) now solves (in weak sense)(1.5) (-∆) s p u + a |u| p-2 u = µ |u| p * s -2 u in Ω, u = 0 in R N \ Ω,where (-∆) s p is the fractional p-Laplacian operator, formally defined by(-∆) s p u(x) := 2 lim ε 0 ˆRN \Bε(x) |u(x) -u(y)| p-2 (u(x) -u(y)) |x -y| N +s p dy, x ∈ R N . A function u ∈ D s,p 0 (Ω) is a weak solution of (1.5) if ˆR2N |u(x) -u(y)| p-2 (u(x) -u(y)) (v(x) -v(y)) |x -y| N +s p dx dy + ˆRN a |u| p-2 u v dx = µˆRN |u| p * s -2 u v dx, ∀v ∈ D s,p 0 (Ω).

(1. 6 )

 6 I ∞ (u) := 1 p ˆR2N |u(x) -u(y)| p |x -y| N +s p dx dys p u = µ |u| p * s -2 u in H, u = 0 in R N \ H.

Lemma 2. 4 .

 4 Let {u n } n∈N ⊂ D s,p 0 (Ω) be a Palais-Smale sequence for I at the level c. Assume that (2.2) u n u in D s,p 0 (Ω) and u n → u a. e. in Ω.

as a consequence of the fact that u 1 n

 1 0 in D s,p 0 (Ω), we have v 1 n 0 in D s,p 0 (R N ) by Lemma 2.8 and this is impossible by the previous Step 3. Thus λ 1 n → 0 and by construction this implies lim n→∞ dist(z 1

,

  and the latter converges to 0, since v ∈ L p * s (R N ).Third integral. We proceed similarly as before for the integral in x, we have for every|y| ≥ 4/µ n ˆB2/µn |ζ(µ n x)| p |x -y| N +s p dx ≤ C µ -N n ζ p L ∞ |y| -N -s p ≤ C ζ p L ∞ |y| -s p ,while for 2/µ n ≤ |y| ≤ 4/µ n we can use the Lipschitz character of ζ and getˆB2/µn |ζ(µ n x)| p |x -y| N +s p dx ≤ µ p n ∇ζ p L ∞ ˆB2/µn 1 |x -y| N +s p-p dx ≤ µ p n ∇ζ p L ∞ ˆB6/µn (y) 1 |x -y| N +s p-p dx \B 2/µn |v| p dy + C ζ p L ∞ ˆRN \B 4/µn |v| p |y| s p dy.The first term tends to 0 as before. The second one vanishes since |v| p |y| -s p is integrable, thanks to Hardy inequality for D s,p (R N ) (see [11, Theorem 1.1]).Appendix B. Some regularity estimatesWe collect in this Appendix some basic regularity results for nonlocal equations needed in the paper.Proposition B.1. Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let E ⊂ R N be an open set with |E| = +∞ and let V ∈ D s,p 0 (E) be a weak solution of(B.1) (-∆) s p V = µ |V | p * s -2 V, in E, V = 0 in R N \ E. We first observe that |V | ∈ D s,p 0 (E)is a positive subsolution of (B.1), in the sense that (B.3) ˆR2N J p (|V (x)| -|V (y)|) (ϕ(x) -ϕ(y)) |x -y| N +s p dx dy ≤ µ ˆRN |V | p * s -1 ϕ dx,

3 )

 3 the test function ϕ = ψ ε (|V |) ∈ D s,p 0 (E). This gives ˆR2N J p (|V (x)| -|V (y)|) ψ ε (|V (x)|) -ψ ε (|V (y)| |x -y| N +s p dx dy ≤ µ ˆRN |V | p * s -1 ψ ε (|V |) dx.

  (x0)×Br(x0) log δ + u(x) δ + u(y) p 1 |x -y| N +s p dx dy≤ C r N -s p δ 1-p r s p ˆRN \B 2 r (x 0 ) u -(y) p-1 |y -x 0 | N +sp dy + a + L N/sp (B 3 2 r (x 0 )) + max{-µ, 0} r N 1-q p * s u q-p L p * s (B 3 2 r (x 0 )) + 1 , (B.5)where u -= max{-u, 0} and C = C(N, p, s) > 0 is a constant.Proof. The proof is exactly the same of that of the Logarithmic Lemma for supersolutions in the case a ≡ 0, see[START_REF] Castro | Local behavior of fractional p-minimizers[END_REF] Lemma 1.3]. We take a test functionφ ∈ C ∞ 0 (B 3/2 r (x 0 )) such that 0 ≤ φ ≤ 1, φ ≡ 1 on B r (x 0 ), |∇φ| ≤ C r .Then we insert the test function ϕ = φ p (δ + u) 1-p in the equation. By using that ˆΩ a u p-1 φ p (δ + u) p-1 dx ≤ ˆB 3 2 r (x 0 ) a + dx ≤ C r N -s p

  Remark 1.2 (About the Nonexistence Assumption). The nonexistence of solutions to problem (1.7) for half-spaces is already changelling in the local case, for p = 2. Indeed, without sign hypothesis on the solution, this is still open for the p-Laplacian. The situation is made unclear due to absence of a suitable Pohožaev type identity for p = 2, as well as of a unique continuation result up to the boundary. On the contrary, if we assume solutions to have constant sign, in

	lim s 1 (1 -s)	ˆR2N	1,p 0 (R N ) we have |u(x) -u(y)| p |x -y| N +s p dx dy = C	ˆRN	|∇u| p dx,
	for a constant C = C(N, p) > 0, original Struwe's result formally corresponds to p = 2 and s = 1
	in Theorem 1.1.				

the local case then this has been proved in [16, Theorem 1.1]. For 0 < s < 1 and p = 2, the non-existence of signed continuous solutions was obtained in [10, Corollary 1.6].

  is a critical point of I. By definition and hypothesis (2.2), we have that {|v n | p } n∈N is bounded in L p * s /p (Ω) and v n → 0 a.e. on Ω. Thus it follows that |v n | p converges weakly in L p *

s /p (Ω) to 0. Since a ∈ L (p * s /p) (Ω), we can infer lim n→∞ ˆΩ a |v n | p dx = 0. A similar argument, shows that ˆΩ a |u n | p dx = ˆΩ a |u| p dx + o n (1).

  thanks to the convergence of λ 1 n to 0. The property (4.7) in turn implies that in Step 4 we are in the case covered by Lemma 2.6, i.e. lim

n→∞ 1 λ 1 n dist(z 1 n , ∂B) = ∞,

thus we do not need Assumption (NA) this time.

  I R N dy + ˆB2/µn \B 1/µn |v| p I R N dy + ˆRN \B 2/µn |v| p I R N dy p |ζ(µ n x)| p |x -y| N +s p dy dx = I 1 + I 2 + I 3 .

	and decompose	
	ˆRN	ˆB1/µn
	|v| p I R N dy = |v| p = ˆB1/µn ˆRN \B 1/µn + |v(y)| p I R N (y) dy |v(y)| p |ζ(µ n x) -1| p |x -y| N +s p dy dx ˆB2/µn \B 1/µn + ˆRN \B 2/µn ˆB2/µn |v(y)|
		+s p	dx,

  µn \B 1/µn |v(y)| p |ζ(µ n x) -1| p |x -y| N +s p dy dx+ ˆB1/µn ˆRN \B 2/µn |v(y)| p 1 |x -y| N +s p dy dx.

	We observe that for y ∈ B 1/µn
	ˆB2/µn \B 1/µn	|ζ(µ n

  1/µn ˆB2/µn |v(y)| p |ζ(µ n x) -ζ(µ n y)| p |x -y| N +s p dy dx + ˆB2/µn \B 1/µn ˆRN \B 2/µn |v(y)| p |ζ(µ n y)| p |x -y| N +s p dy dx = I 2,1 + I 2,2 . For the first term, we observe that for y ∈ B 2/µn \ B 1/µn ˆB2/µn |ζ(µ n x) -ζ(µ n y)| p |x -y| N +s p dx ≤ µ p n ∇ζ p For the other term, we observe that for y ∈ B 2/µn \ B 1/µn ˆRN \B 2/µn |ζ(µ n y)| p |x -y| N +s p dx ≤ µ p n ∇ζ p

				L ∞ n ∇ζ p ≤ µ p L ∞	ˆB2/µn ˆB4/µn (y) |x -y| N +s p-p dx 1 1 |x -y| N +s p-p dx
				≤ C µ s p n	∇ζ L ∞ .
		L ∞ ˆ∞ 4/µn ˆB4/µn \B 2/µn N -1 ( -|y|) N +s p d |x -y| N +s p-p dx 1 ∇ζ p L ∞ + C ζ p ≤ C µ s p n L ∞ + C ζ p L ∞ N -1 ˆ∞ 4/µn ( -2/µ n ) N +s p d
		≤ C µ s p n	∇ζ p L ∞ + ζ p L ∞ .
	In conclusion, we obtain				
	I 2 ≤ C µ s p n	ˆB2/µn \B 1/µn	|v| p dy ≤ C µ s p n µ -s p n	ˆB2/µn \B 1/µn	s dy |v| p *	p p * s

  1 we have ˆ{|V |>K 0 } |V | p * s +α-1 dx < +∞.

	By using (B.4) and proceeding exactly as in [4], we get
	S p,s	ˆRN	Ψ ε (|V |) p * s dx	p p * s	≤	µ α ˆ{|V |>K 0 }	|V | p * s +α-1 dx
					+	µ α ˆ{|V |≤K 0 }	|V | p * s dx	p * s -p p * s	ˆRN	Ψ ε (|V |) p * s dx	p p * s

  |≤K 0 } |V | p * s dx

								p * s -p p * s	≤	α 2 µ	S p,s ,
	which yields								
	ˆRN	|V | (|V | + ε)	α-1 p	p * s	dx	p p * s	≤	2 µ α S p,s ˆ{|V |>K 0 }	|V | p * s +α-1 dx,

For 1 < p ≤

the proof is even simpler, it is still sufficient to use (1.12).

For q = p, we simply haveˆΩ u q-1 φ p (δ + u) p-1 dx ≤ ˆB2 r (x 0 ) φ p dx ≤ c r N .

and 5 ˆΩ u q-1 φ p (δ + u) p-1 dx ≤ ˆB 3 2 r (x 0 ) u q-p φ p dx ≤ C r N -s p r

and proceeding exactly as in the proof of [START_REF] Castro | Local behavior of fractional p-minimizers[END_REF]Lemma 1.3] to estimate the nonlocal term, we end up with inequality (B.5).

Proposition B.3 (Minimum principle). Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N .

Let Ω ⊂ R N be an open bounded connected set, a ∈ L N/sp (Ω) and let u ∈ D s,p 0 (Ω) \ {0} be a non negative function such that

for some µ ∈ R and p ≤ q ≤ p * s . Then we have u > 0 almost everywhere in Ω. Proof. The proof is the same of that for the case a + ≡ 0 and µ ≥ 0, which is contained in [2, Theorem A.1]. It is sufficient to replace the logarithmic estimate there with the one of Lemma B.2 and use that u ∈ L p * s (Ω). We leave the details to the reader.