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Abstract The final aim of this work is to build a tool dedicated to the calculation 

of the mechanical fields in pavements incorporating possible vertical cracks in 

some layers or partial debonding at the interface between layers. The development 

of this tool is based on a specific layer-wise modeling of the structure so-called 

M4-5n. In this model the stress fields are approached through polynomial approx-

imations in the vertical direction for each layer. Its construction is based on the 

Hellinger-Reissner (H-R) variational principle of continuum mechanics. One ad-

vantage of the M4-5n is to reduce by one the dimension of the problem. Moreover 

this model leads to finite values of the generalized interface stresses at the crack 

lips of the structures studied. This approach is thus particularly adapted to para-

metric studies and might be considered for analyzing crack growth in layered 

structures such as pavements. The contribution of the present paper to this model 

is focused on the computation of its numerical solution by means of the mixed Fi-

nite Element Method (FEM). The developed method is based on the maximum of 

the complementary energy theorem using Lagrangian multipliers to ensure the 

equilibrium equations. The resulting formulation is equivalent to the H-R varia-

tional principle applied to the generalized displacement and stress fields. This ap-

proach is applied to a beam structure composed of four elastic homogenous layers 

resting on Winkler’s springs. Vertical cracks across some layers are introduced. 

The results obtained are compared with those from an earlier approach using the 

Finite Difference Method (FDM). 

Keywords   M4-5n, Mixed FEM, Cracking, Debonding  

1 Introduction 

A pavement structure is a multilayer structure resting on a soil. It can be damaged 

due to many phenomena resulting in different types of degradation among which 

vertical cracking across layers or partial/total debonding at the interface between 

two layers. To study these mechanisms, the existing advanced models are general-
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ly based on 3D continuum mechanics using the fracture or the damage theories 

(Pommier et al. 2009). Recently Chabot et al. (2005) proposed to apply one of the 

Multi-Particle Models of Multilayer Materials (M4) to the pavement field. Among 

the different formulations proposed for this family of models, the M4-5n is espe-

cially adapted to the analysis of delamination in composite materials. It is particu-

larly adapted to parametric studies (Chabot et al. 2013). This specific formulation 

developed for linear elasticity considers five generalized displacement fields per 

layer (n: total number of layers). In particular the use of generalized stress fields 

with finite values avoids the problem of singularity near cracks. Hence this formu-

lation seems also appropriate for modeling cracking and debonding in pavements. 

The use of M4-5n makes it possible to reduce the problem by one dimension 

avoiding the explicit presence of the z-coordinate in the equations. This is an in-

teresting feature with regards to numerical modeling (mesh generation and compu-

tation time). As a consequence, a 3D pavement structure is represented by plate 

geometry. In each layer of the M4-5n, the usual stress tensor is replaced by the 

generalized stresses 𝑀𝛼𝛽
𝑖 (𝑥, 𝑦), 𝑄𝛼

𝑖 (𝑥, 𝑦), 𝑁𝛼𝛽
𝑖 (𝑥, 𝑦) (bending, shear and normal 

components) per layer i (𝛼, 𝛽 ∈ {1,2}, 𝑖 ∈ {1, 𝑛}). The related generalized dis-

placements are 𝛼
𝑖 (𝑥, 𝑦), 𝑉𝑖(𝑥, 𝑦), 𝑈𝛼

𝑖 (𝑥, 𝑦) (rotation, vertical and horizontal dis-

placements). The link between two consecutive layers, i and i+1, is ensured by the 

interface shear 𝜏𝛼
𝑖,𝑖+1(𝑥, 𝑦) and the normal ν𝑖,𝑖+1(𝑥, 𝑦) stresses. Each M4-5n layer 

has its own set of equations: compatibility, equilibrium and elastic constitutive 

law. The introduction of a vertical crack across a layer is performed by zeroing 

some of the generalized stresses along the crack contour projected on the (x,y) 

plane, in accordance with the assumptions made in terms of load transfer. On the 

other hand the debonding of interface (i,i+1) can be taken into account by zeroing, 

on the relevant area, 𝜏𝛼
𝑖,𝑖+1(𝑥, 𝑦) and possibly ν𝑖,𝑖+1(𝑥, 𝑦) depending on the contact 

conditions considered in the vertical direction. Discontinuities in the model are 

then induced from one side to the other of the contour of cracks or delaminated ar-

eas. The direct derivation of the M4-5n mathematical equations leads to a linear 

system of partial differential equations of second order with boundary conditions. 

This system involves a large number of unknown variables. The whole set of 

equations related to the pavement modeling using the M4-5n and the Winkler soil 

can be found in (Nasser and Chabot 2015). In this paper we present the main 

guidelines for the development of a mixed FEM method to solve more generally 

this set of equations. This method is then applied to a beam geometry example in-

cluding a vertical crack across a layer and its implementation is validated by com-

parison with earlier results obtained with the FDM. 

2 The mixed FEM to solve the M4-5n equations 

The developed approach is inspired from the derivation of the H-R principle 

(Reissner 1950) for 3D elastic problems that we transpose to the generalized fields 
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of stresses and displacements of M4-5n.  To accomplish this, we start from the 

theorem of maximum complementary energy, using the elastic density energy re-

lated to the generalized stresses of the M4-5n layers. The equilibrium equations 

and the stress boundary conditions are taken into account through fields of La-

grangian variables which, for an appropriate choice, appear to be the generalized 

displacements fields of M4-5n. The expression of a Lagrangian (L) is thus ob-

tained. This can be integrated by parts to lower the derivation order of the general-

ized stresses. Then the mixed formulation is obtained by expressing the stationari-

ty of L with respect to all fields (𝛿𝐿 = 0). The resulting variational formulation is 

similar to that of H-R principle expressed in terms of the generalized displacement 

and stress fields. Then this formulation can be solved using a mixed FEM in 

which the generalized stress and displacement fields are discretized. A special at-

tention must be paid to the dimensions of the interpolation spaces of the different 

fields to avoid undetermined system of algebraic equations (Lagrangian spaces to 

be chosen with lower dimension than those of the dual generalized stresses). 

3 Example of 2D cracked pavement structure 

To test the method described in the previous section, a specific FE numerical pro-

gram along the x direction was developed for the computation of the M4-5n struc-

tures located in the real 2D (x, z) plane. All the M4-5n fields depend on x only 

(13n-4 for this “beam” geometry). Hereafter the results obtained with this numeri-

cal program for some given data set are compared to those from simulations based 

on FDM (Nasser and Chabot 2015). The structure under consideration is taken 

similar to a 2D composite pavement composed of three layers: a surface layer of 

0.08m of semi-coarse asphalt concrete (BBSG, E
1
 = 5400MPa, 1

 = 0.35); a base 

layer of 0.15m of gravel-bitumen (GB3, E
2
 = 9300MPa, 2

 = 0.35); a foundation 

layer composed of 0.23m of cement-treated base (GC3, E
3
 = 23000MPa, 3

 = 

0.25). A fourth layer resting on Winkler springs (k) represents the soil (E
4
 = 

120MPa, 4
=0.35, k=45.6 MPa/m) (Figure 1). 

   

 

Fig. 1 Sketch of the structure considered for the comparison between the mixed FEM and FDM 
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The third layer is assumed to be crossed by a vertical crack simulating the 

shrinkage of the cement material. A unit pressure load (1MPa), q(x)=H(x-a)-H(x-

b), is applied at the surface of the structure over interval [a,b] with (b-a) = 0.15m. 

The right edge of the load is taken coincident with the x location of the crack. The 

length of the structure is taken equal to 6m. The horizontal displacements 

𝑈𝑖(𝑥)and rotations 𝑖(𝑥) are blocked on the lateral boundaries, whereas the shear 

efforts per layer i, 𝑄𝑖(𝑥) are set to zero. For this example, after integration by 

parts and here omitting the contribution of the crack for the sake of simplification, 

the Lagrangian writes as (Eq. 1): 

 

𝐿(�̂�1, �̂�1, �̂�1, 𝜏0,1⏟
=0

, 𝜈0,1⏟
−𝑞(𝑥)

, �̂�1, ̂
1

, �̂�1, �̂�2, … , �̂�1,2, �̂�1,2, … , 𝜏4,5⏟
=0

, �̂�4,5, … , �̂�4) =

− ∫ (𝑤5𝑛
∗ +

𝑙

−𝑙
𝑤𝑊𝑖𝑛𝑘𝑙𝑒𝑟

∗ )𝑑𝑥 + ∑ ∫ [�̂�𝑖�̂�′𝑖 + �̂�𝑖̂′𝑖 + �̂�𝑖�̂�′𝑖 + �̂�𝑖̂
𝑖
] 𝑑𝑥

𝑙

−𝑙
4
𝑖=1 −

∑ ∫ [(�̂�𝑖,𝑖+1−�̂�𝑖−1,𝑖)
𝑙

−𝑙
3
𝑖=2 �̂�𝑖 + (�̂�𝑖,𝑖+1 − �̂�𝑖−1,𝑖)�̂�𝑖 +

𝑒𝑖

2
(�̂�𝑖−1,𝑖 + �̂�𝑖,𝑖+1)̂

𝑖
]𝑑𝑥 −

∫ [�̂�1,2(�̂�1 −
𝑒1

2
̂

1
) − �̂�1(𝑞(𝑥) + �̂�1,2) + �̂�3,4(�̂�4 +

𝑒4

2
̂

4
) + �̂�4(�̂�4,5 −

+𝑙

−𝑙

�̂�3,4) 𝑑𝑥 − ∑ [�̂�𝑖�̂�𝑖 + �̂�𝑖̂
𝑖
]−𝑙

+𝑙4
𝑖=1        (1) 

 

The symbol ( ̂ ) is used to distinguish the virtual generalized fields from the 

solution of the problem. 𝑤5𝑛
∗  and 𝑤𝑊𝑖𝑛𝑘𝑙𝑒𝑟

∗ are the density of the elastic stress ener-

gy of the M4-5n and the energy of Winkler’s springs. These are expressed as fol-

lows (Eq. 2-3): 

 

𝑤5𝑛
∗ (�̂�1, �̂�1, �̂�1, 𝜏0,1⏟

=0

, 𝜈0,1⏟
−𝑞(𝑥)

, �̂�2, … , �̂�1,2, �̂�1,2, … , 𝜏4,5⏟
=0

, �̂�4,5) =
1

2
∑ [

1−𝜐𝑖2

𝑒𝑖𝐸𝑖 �̂�𝑖2
+4

𝑖=1

12(1−𝜐𝑖2
)

𝑒𝑖3
𝐸𝑖

�̂�𝑖2
+

12(1+𝜐𝑖)

5𝑒𝑖𝐸𝑖 �̂�𝑖2
] + ∑ [

13𝑒𝑖

35𝐸𝑖 (�̂�𝑖−1,𝑖2
+ �̂�𝑖,𝑖+12

) +
9𝑒𝑖

35𝐸𝑖 �̂�𝑖−1,𝑖�̂�𝑖,𝑖+1 +3
𝑖=2

4𝑒𝑖(1+𝜐𝑖)

15𝐸𝑖 (�̂�𝑖−1,𝑖2
+ �̂�𝑖,𝑖+12

) −
2𝑒𝑖(1+𝜐𝑖)

15𝐸𝑖 �̂�𝑖−1,𝑖  �̂�𝑖,𝑖+1 −
2(1+𝜐𝑖)

5𝐸𝑖 �̂�𝑖(�̂�𝑖−1,𝑖 + �̂�𝑖,𝑖+1)] +

13𝑒1

35𝐸1
(𝑞(𝑥)2 + (�̂�1,2)2) +

9𝑒1

35𝐸1 𝑞(𝑥)�̂�1,2 +
4𝑒1(1+𝜐1)

15𝐸1 (�̂�1,2)2 −
2(1+𝜐1)

5𝐸1 �̂�1�̂�1,2 +

13𝑒4

35𝐸4
((�̂�3,4)2 + (�̂�4,5)2) +

9𝑒4

35𝐸4 �̂�3,4�̂�4,5 +
4𝑒4(1+𝜐4)

15𝐸4 (�̂�3,4)2 −
2(1+𝜐4)

5𝐸4 �̂�4�̂�3,4 (2) 

 

𝑤𝑊𝑖𝑛𝑘𝑙𝑒𝑟
∗ =

1

2

(�̂�4,5)2

𝑘
       (3) 

 

The solution fields are those which make the Lagrangian be stationary and 

check the condition δL = 0 for all variations of the virtual fields. The discretiza-

tion of this condition by the FEM leads to a mixed algebraic system having the 

typical shape given in (Eq. 4). Σ and U denote the vectors of nodal values of the 

generalized stresses and displacements, respectively. 𝐹Σ, 𝐹U  are the vectors of 

nodal forces related to q(x). 
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[
𝐾ΣΣ 𝐾ΣU

𝐾ΣU
𝑡 0

] (
Σ
𝑈

) = (
𝐹Σ

𝐹U
)      (4) 

 

As expected this linear system is symmetric since it derives from a quadratic 

form for the Lagrangian (excepted the terms including the pressure load q(x)). All 

the fields are interpolated by Lagrange polynomials (℘(x )) with the following 

orders (Eq. 5) ensuring the determination of the system: 

dim(℘𝑁) = 5, dim(℘𝑀) = 3, dim(℘𝑄) = 4, dim(℘𝜏) = 4, dim(℘𝜈) = 4, 

dim(℘𝑈) = 4, dim(℘ ) = 2, dim(℘𝑉) = 3    (5) 

Figure 2 shows the typical 1D finite element used to calculate the elementary 

matrix between two consecutive nodes j and j+1. A local condensation method is 

used to eliminate the internal nodes and keep only the end nodes.  
 

 

Fig. 2 1D M4-5n mixed finite element for 2D problems with multiple nodes related to the order 

of interpolation of each field and multiple degree of freedom related to the number of layers 

The global matrix is then obtained as usual by assembly of the elementary con-

densed matrices for the whole 1D mesh. To introduce the vertical crack in a sys-

tematic way, we first double the nodes at the crack location and then all the de-

grees of freedom (dof) for these nodes. The continuity of stresses and 

displacements in the non-cracked layers is ensured by first penalty terms. The nil 

values of �̂�3, �̂�3, �̂�3 in layer 3 at the crack edge (Figure 1) are accounted for by 

other penalty terms. The nodal values of the interfacial stresses τ̂2,3, τ̂3,4, ν̂2,3, ν̂3,4 

as well as the displacements of the cracked layer Û3, ̂
3
, V̂3 are left free without 

any special treatment and thus can reflect discontinuities. By doing so the Lagran-

gian of Eq. 1 becomes an augmented Lagrangian leading to some additional coef-

ficients with large values in the final algebraic system.  

4 Results and Validation 

We compared the mixed FEM described in this paper with the FDM defined in 

(Nasser and Chabot 2015) on the 2D composite pavement example presented in 

section 3 with a vertical crack across layer 3 (Figure 1). The structure is discre-

tized into 160 finite elements of the same length (0.0375m). Figure 3 shows the 

good agreement obtained between the two methods. We can also note on these 

graphs the discontinuities induced by the crack (Figure 3.b). Moreover, as illus-

trated in Figure 3.c-d, the M4-5nW leads to finite values of the shear and the nor-
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mal stress at interfaces and near cracks. These values could be used directly to 

evaluate the risk of a debonding phenomenon in a mixed mode fracture condition. 

 

   

  

Fig. 3 Comparison between the mixed FEM and FDM: a) deflection 𝑽𝟑(𝒙); b) rotation 𝟑(𝒙); c) 

interfacial shear stress 𝝉𝟐,𝟑(𝒙); d) interfacial normal stress 𝝂𝟐,𝟑(𝒙)  

5 Conclusion 

This paper shows the advantages of the mixed variational H-R principle applied to 

M4-5n in terms of generalized stresses and displacements. This leads to a compact 

writing of the problem, making it possible to derive systematic numerical solving 

methods which can be extended in particular to plate geometry domains with 

cracks and partial delamination areas between two layers. The implementation of 

this extension will be our next step in order to apply the M4-5n to the modeling of 

3D pavement structures (27n-6 unknowns for the plate geometry). The numerical 

developments will be based on the use of specialized open source software. 
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