
HAL Id: hal-01357534
https://hal.science/hal-01357534

Submitted on 30 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Feedback on Prog&Play: A Serious Game
for Programming Practice

Mathieu Muratet, Patrice Torguet, Fabienne Viallet, Jean Pierre Jessel

To cite this version:
Mathieu Muratet, Patrice Torguet, Fabienne Viallet, Jean Pierre Jessel. Experimental Feedback on
Prog&Play: A Serious Game for Programming Practice. Computer Graphics Forum, 2010, 30 (1),
pp.61-73. �10.1111/j.1467-8659.2010.01829.x�. �hal-01357534�

https://hal.science/hal-01357534
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1–12

Experimental feedback on Prog&Play: a serious game for
programming practice

M. Muratet1,3, P. Torguet1,3, F. Viallet2,3 and J.P. Jessel1,3

1IRIT/VORTEX
2CREFI-T/DiDiST

3Université Paul Sabatier, Toulouse, France

Abstract
This paper presents an experimental feedback on a serious game dedicated to strengthening programming skills.
This serious game, called Prog&Play, is built on an open source real-time strategy game. Its goal is to be compa-
tible with different students, teachers and institutions. We based its evaluation on an iterative process that allows
to implement the game and carry out experimentations in several contexts. Through this assessment, we define
a framework which has been tested by third parties and we analyse both positive and negative points in order
to improve the project. Evaluation is indeed beneficial and enables you to establish communication about the
implemented practices.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer science education I.3.0 [Computer Graphics]: General—

1. Introduction

In many countries, students are becoming less and less in-
terested in science. In computer science, for example, ac-
cording to Crenshaw et al [CCMT08] and Kelleher [Kel06],
the number of students has been shrinking. Moreover, “col-
leges and universities routinely report that 50% or more of
those students who initially choose computer science study
soon decide to abandon it” [ACM05, p. 39]. Our university
has been experiencing the same phenomenon with a decrease
of 16.6% over the last four years in students studying com-
puter science.

In order to find a solution to this problem, we bet on se-
rious games. Since the first boom in video games in the
1980s, the gaming industry has held an important place in
the world market. According to the Entertainment Software
Association figures [Ent09], in 2008 the market of U.S. com-
puter and video games amounted to $11.5 billion. This has
overwhelmed the U.S. movie market [Num] ($10 billion in
2008). Students currently in universities were born in the
video games era. Thus, those games are as much a part of
their culture as TV, movies or books. We think that the use
of video games technologies in a serious game context to
practice programming could be a solution to attract and re-

tain students in computer science. Currently, serious games
exist in several fields such as education, government, health,
defence, industry, civil security and science. Let us first de-
fine a serious game.

For Zyda [Zyd05], a serious game is “a mental contest,
played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate
training, education, health, public policy, and strategic com-
munication objectives.” Serious games use entertainment to
pursue different learning objectives. For example: “Darfur is
dying” [Dar] tries to raise public awareness; “Tactical Lan-
guage & Culture” [Tac] aims to teach foreign languages and
cultures; “America’s Army” [Ame] tries to recruit young
people for the US Army. Serious games should be created
according to the needs and expectations of different sectors,
and within the available resources (physical and financial)
for their implementation.

1.1. Related work

Learning programming is the basis of computer science
training and an important topic in many scientific courses.
However, programming fundamentals are hard to learn, es-
pecially for novices. Several approaches exist to motivate

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available
at diglib.eg.org and www.blackwell-synergy.com.

2 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

students. For example, Stevenson and Wagner [SW06] ana-
lyse assignments from textbooks and historical usage to look
for students’ problems and propose a “good programming
assignment” in computer science. These exercises could be
completed by using block-based graphical languages like
Scratch [MBK∗04], StarLogo [KY05] or Alice2 [KCC∗02].
Indeed, these novice-programming environments allow stu-
dents to forget syntax and directly experiment with program-
ming.

Another approach uses video games in order to hook the
player and bring him/her into programming. Two uses have
been experimented: implementing new video games and
playing video games. For example, Chen and Cheng [CC07]
asked students to implement in C++, through a collaborative
project, a small-to-medium scale interactive computer game
in one semester, using a game framework. Gestwicki and
Sun [GS08] based a case study on EEClone. This game is an
arcade-style computer game implemented in Java: students
analyse various design patterns within EEClone, and from
this experiment, learn how to apply design patterns in their
own game software. Leutenegger and Edgington [LE07]
used a “Game First” approach to teach introductory pro-
gramming. These authors believe that game programming
motivates most new students. They have used 2D game de-
velopment as a unifying theme.

Another solution is to let students learn when they play
a game. Wireless Intelligent agent Simulation Environment
(WISE) [CHYH04] combines activities from virtual and
physical versions of the Wumpus World game. It enables
physically distributed agents to play an interactive game
and provides a dynamic learning environment that can en-
hance a number of computer science courses: it can be used
as a medium to demonstrate techniques in lectures; during
classes, students can carry out practical work that tests, ex-
pands, or modifies the simulator. The Wumpus World game
can be played cooperatively or competitively.

Robocode [Roba] is a Java programming game, where the
goal is to develop a robot battle tank to fight against other
tanks programmed by other players. It is designed to help
people learn Java programming. The robot battles are run-
ning in real time and on-screen. It is suitable for all kinds
of programmers from beginners (simple robot behaviour can
be written in just a few minutes) to experts (perfecting an
AI - Artificial Intelligence - can take months). Other such
games are Marvin’s Arena [Mar] using any .NET compati-
ble language, Gun-Tactyx [Gun] using SMALL and Robot
Battle [Robb] using a specific script language.

Colobot [Col] is the only example we know of a com-
plete video game which mixes interactivity, storytelling and
programming. In this game, the user must colonise a planet
using some robots that s/he is able to program in a specific
object-oriented programming language similar to C++.

1.2. Overview

Our approach consists in reusing existing games as the ba-
sis of a serious game and making it compatible with a ma-
ximum of teaching contexts. There are many open source
video game projects available on the Internet. We think that
reusing them offers advantages in playing and robustness.
In order to build our serious game, we used an open source
real-time strategy game. Building an efficient tool for a spe-
cific teaching course is interesting, and it can often be reused
in other contexts. Our approach consists in working on a se-
rious game compatible with different students, teachers and
institutions. This serious game is called Prog&Play and is
introduced in section 2.

The evaluation of this type of tools in real contexts is a
complex task mainly because of the large number of un-
controllable parameters. An iterative evaluation is proposed
(section 3) and results are presented in the context of several
experimentations.

2. Prog&Play

We consider Prog&Play as a serious game dedicated to pro-
gramming practice. Prog&Play is based on an open source
real-time strategy (RTS) game called Kernel Panic [Ker].
Kernel Panic uses computer science metaphors, like bits and
pointers, as units (i.e. graphical objects which are controlled
by the player). It is a simplified RTS with the following
features: there is no resource management except for time
and space; all units are free to create; it has a small techno-
logy improvement tree with fewer than ten units; and it uses
low-end vectorial graphics which match the universe. Owing
to these characteristics, differences between two players are
about strategies and tactics used (and not about knowledge
of units features and relative advantages). Thus, the game is
action-oriented while always remaining user friendly.

Kernel Panic takes place inside a computer where play-
ers command one of the three available factions: “Systems”,
“Hackers” and “Networks”. Each of them offers units, like
Bits, Bytes and Assemblers for the System side, Virus, Bugs
and Worms for the Hacker side and Ports, Firewalls and
Packets for the Network side. Figure 1 shows the hierarchy
of unit development for System factions. The Kernel (which
is the main unit of Systems) can build Bits, Bytes, Poin-
ters and Assemblers. The latter can build Sockets (which can
solely build Bits) and Terminals.

Starting with Kernel Panic, we designed an applicative
programming interface that enables students to interact with
the game through programming (subsection 2.1). The func-
tional architecture of this library is detailed in subsection 2.2.
Following these technical details, we point out two solutions
to map learning objectives into the game and we detail the
one we used during experimentations in section 2.3.

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play 3

Table 1: specification of the Prog&Play API.

Operators Descriptions
Open Opens Prog&Play API

Refresh Loads the last state of the game
Close Shuts down and cleans up the Prog&Play API

Changeover Indicates if the game is over or not
Map Size Returns the map size

StartPosition Returns the player starting position on the map
NumSpecialAreas Returns the number of special areas on the map

SpecialAreaPosition Returns the position of a specific special area
Resource Returns the level of a specific resource
NumUnits Returns the number of visible units being a member of a specific coalition
GetUnitAt Returns a specific unit which is a member of the indicated coalition

GetUnitCoalition Returns the coalition of a specific unit
GetUnitType Returns the type of a specific unit

GetUnitPosition Returns the position of a specific unit
GetUnitHealth Returns the health of a specific unit

GetUnitMaxHealth Returns the maximum health of a specific unit
GetUnitGroup Returns the group of a specific unit

GetUnitNumPendingCommands Returns the number of pending commands of a specific unit
GetUnitPendingCommandAt Returns a specific pending command which is associated to the indicated unit

SetUnitGroup Defines the group of a specific unit
SetUnitAction Defines an action for a specific unit

The Bit

The Kernel

The Byte The Pointer
The Assembler

The Socket The Terminal

Figure 1: Units development hierarchy for System factions.

2.1. Applicative Programming Interface

In RTSes, a player gives orders to his/her units to carry out
operations (i.e. moving, building, and so forth). Typically,
these instructions are given by clicking on a map with the
mouse. We modified the game to allow the player to give
these instructions through a program. Thus, students interact

with the game using the Prog&Play Applicative Program-
ming Interface (API). This API simplifies programming as
much as possible. It hides the game synchronisation com-
plexity and gives access to a sub-set of the game data. Ta-
ble 1 details its specification. Using this API, programs can
load game data like unit features (such as number, position
and type), map size, etc. Using these data, the player pro-
gram can create a set of commands and send it to the game.
When the game receives these commands, it executes them,
modifying the game state.

The specification detailed in table 1 uses concepts called
coalition and special areas. Three coalitions are available
in order to structure units: MY_COALITION representing
units controlled by the player, ALLY_COALITION repre-
senting units controlled by allies of the player and EN-
EMY_COALITION representing units controlled by ene-
mies of the player. Special areas allow transferring a set of
positions through the API. With Kernel Panic these special
areas are used to specify zones where factory building is al-
lowed.

The Prog&Play API is available in different program-
ming languages: C (Appendix A gives a program example),
C++, Java, OCaml, Ada, Scratch and an interpreted language
called “Compalgo” (used in a specific course at our univer-
sity). Thus, the serious game is adaptable to teaching choices
and is usable in different teaching approaches (imperative,
object-oriented, functional and graphical).

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

4 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

2.2. Functional architecture

From a technical point of view, communication between the
student program and the video game is carried out through
a shared memory. Figure 2 shows the functional architecture
of the Prog&Play API which is an interface to manage this
shared memory in order to simplify communication and syn-
chronisation between student programs and Kernel Panic.
Two interfaces are available: the “Client” is used by the
player to code his/her programs and the “Supplier” is inte-
grated into the game engine. On student’s program demand,
pertinent data of the game are copied into the shared me-
mory. To avoid incoherent situations, the student’s program
works on this copy. The student’s program reads data and
writes commands through the “Client” interface. The shared
memory is regularly checked by the game engine to carry
out pending commands. With this solution, at any time, the
player can stop his/her program execution, modify it and ex-
ecute it again. Thus, the program is able to connect to the
shared memory without disturbing the game simulation.

Game engine

Program

use interact

Player

Shared
memory
Game state

copyProg&Play
(Client)

Prog&Play
(Supplier)Pending

commands

modify

read

readwrite

write

Figure 2: Functional architecture of the Prog&Play API.

The “Supplier” is responsible for shared memory manage-
ment. First, the “Supplier” creates and initialises the shared
memory so that it is available to the “Client”. After this ini-
tialisation, the game enters the simulation loop and for each
iteration consults the shared memory to know if an update
is required. If this is the case, the “Supplier” computes the
update according to the current game state and copies this
update into the shared memory. Then, the “Supplier” pro-
cesses pending commands defined by the “Client”. Finally,
when the game is over, the “Supplier” frees and cleans up
the shared memory.

On the “Client” side, calling API’s operators can be car-
ried out after a first call to the Open and Refresh operators.
If there is a problem, API’s operators return an error code
or an exception depending on the language used. When the
“Client” asks for a refresh, this call is blocking until the
“Supplier” has detected and carried out the update.

2.3. Mapping learning objectives into the game

In our previous paper [MTJV09], we identified two solutions
to map learning objectives into the game. First a campaign
can be used, divided in missions (equivalent to exercises),
to gradually introduce learning topics and enable students to
learn how to play and program AIs (student motivation is
maintained by the campaign story). Second skirmishes can
be used as a project approach where students program their
own AIs in order to use them in a multiplayer session (the
student motivation is maintained by competition between
players).

Currently, we have only tested the first solution (i.e. the
campaign). As the original Kernel Panic was only a multi-
player game and did not provide campaigns, we had to build
one dedicated to our educational objectives. We have taken
advantage of the Kernel Panic universe and offered students
the following scenario: “For a certain number of years, a se-
cret war has been rife inside computers. Steady attacks have
been led against innocent victims. Today is your turn. Your
aggressor captured your mouse controller. You must recover
it. Your only solution: programming”. To achieve this objec-
tive, five missions were created. During the first, the player
controls only one Bit and has to move it to a specific posi-
tion in order to retrieve a lost Byte. In the second mission,
the player controls two units (one Bit and one Byte) and has
to place them in two different positions in order to find more
units. Thus, in this mission, the conditional control structure
is introduced to give a target position to each unit according
to their types (Bit or Byte). In the third mission, the player
controls a weak army which is made up of seven Bits and
three Bytes. In order to strengthen his/her army, the player
has to move it to meet up with an Assembler. To do this, the
iterative control structure is introduced to loop through each
unit and move them towards the right position. In mission
four, the player has to use the Assembler capability to repair
all the army. This is the most complex mission and it requires
overlapping iterative and conditional control structures. Fi-
nally, during the last mission, the player launches an attack
against opponents in order to retrieve the mouse controller.

Thus, the serious game presented in this paper is a com-
bination of three entities (see figure 3): the first one is a
standard video game (Kernel Panic); the second one, the
Prog&Play API, provides the programming facilities; the
third one, the game mode (campaign or skirmish), trans-
forms the programming game into a pedagogical artefact,
i.e. a serious game. As each entity can be changed as long as
it interfaces with the two others, new versions of the serious
game can be built. For example we can replace Kernel Panic
with another game, create new campaigns adapted to object-
oriented programming teaching or work with different pro-
gramming languages.

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play 5

Kernel
Panic

Campaign
Skirmish

Prog&Play
API

Programming
tool

Game

Serious
game

Training

Figure 3: Serious game composition.

3. Evaluation

The conception of an evaluation to assess the positive or ne-
gative impacts of our serious game on students is a complex
task. This is due to the large number of uncontrollable pa-
rameters inherent to experiments in a real context. Neverthe-
less, an evaluation is necessary for several reasons. First, it
allows defining a framework which will be tested by third
parties in different contexts. Second, results of evaluation
show negative points and mistakes and will be analysed in
order to improve pedagogical aspects of our serious game.
Indeed, evaluation is beneficial and allows communication
about the implemented practices.

In subsection 3.1 we define the methodology of design
experiments that serves as theoretical framework. Then, we
present in subsection 3.2 an iterative implementation of this
framework. Finally, we define evaluation criteria and we give
experimentation results in subsection 3.3.

3.1. Theoretical framework

We propose to study whether serious games could be useful
to teach programming, to attract and retain computer science
students. The question is: Is it interesting to use a serious
game to teach programming?

To achieve this goal, we propose to use the methodo-
logy of design experiments [CCD∗03]: “prototypically, de-
sign experiments entail both “engineering” particular forms
of learning and systematically studying those forms of learn-
ing within the context defined by the means of supporting
them. This designed context is subject to test and revision,
and the successive iterations that result play a role similar
to that of systematic variation in experiment”. The aim of
this methodology in educational research is to investigate
the possibilities for educational improvement by bringing
about new forms of learning in order to study them. Be-
cause designs are typically test-beds for innovation, the na-
ture of the methodology is highly interventionist, involving a

research team, one or more teachers, at least one student and
possibly school administrators. Design contexts are concep-
tualised as interacting systems and are implemented with a
hypothesised learning process and the means of supporting
it. Design experiments are conducted in a limited number
of settings and aim to develop a relatively humble theory
which targets a domain specific learning process. To pre-
pare a design experiment, the research team has to define a
theoretical intent and specify disciplinary ideas and forms of
teaching which constitute the prospective goals or endpoints
for student learning. The challenge is to formulate a design
which embodies testable conjectures about both significant
shifts in student learning and the specific means of suppor-
ting those shifts. In our experiments, the theory we attempt
to develop is the process of learning programming through
serious games.

3.2. Iterative evaluation

The design experiment is based on an iterative process which
allows the serious game and its evaluation to evolve. Each
iteration is made up of three stages: preparing for a design
experiment, conducting a design experiment and conducting
retrospective analysis. In the first stage, the theoretical in-
tent has first to be clarified (what is the point of this itera-
tion? What will be tested?). After this we need to select a
course to conduct experimentation corresponding to the ob-
jectives of this iteration. Then, according to the conjectured
starting points (the environment where Prog&Play will be
used), elements of trajectory (how the missions will be ful-
filled), and prospective endpoints (the improvement of stu-
dents’ programming skills or motivation), an appropriate de-
sign experiment has to be formulated either by us, the teach-
ers or both. Finally, in order to adequately document the
learning ecology, we have to choose the evaluation crite-
ria, associated indicators and the way to support them. The
second stage carries out the experimentation and collects a
maximum amount of data to ensure that retrospective analy-
ses will result in rigorous, empirically grounded claims and
assertions. Finally, the third stage analyses experimentation
data in order to verify the theoretical intent and optionally
proposes new experiments. Three iterations have so far been
carried out with Prog&Play.

3.2.1. First iteration

The first iteration’s objective is to observe student behaviour
in relation to the serious game to determine its motivational
potential and influence on teacher activity. To carry out this
first iteration, we have chosen to test the serious game in a
familiar environment during some practical work. The expe-
rimentation took place with first-year students learning com-
puter science at an institute of technology in Toulouse (IUT
A). Among 196 students, we chose 15 students from 40
volunteers. Students were novices: at the time of the experi-
ment, they did not know any programming language, except

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

6 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

“Compalgo”, an algorithmic language developed by teachers
of IUT A. During five sessions of an hour and a half each,
students used Compalgo in the Windows environment.

In order to select these students, we designed a ques-
tionnaire to evaluate their motivation to play video games
and learn programming. We gave priority to students who
were not motivated by programming but very motivated
by video games. This questionnaire is based on the goals
of Viau [Via97]; the value and success expectation model
of Bandura [Ban97]; and the causal model of Pintrich and
Schunk [PS96]. Each model suggests specific indicators
which we adapted to students’ motivation in learning pro-
gramming and practising video games. We drew inspira-
tion from the “motivated strategies for learning” question-
naire [PMB93].

For this experiment, we structured lessons in two phases.
In the first, students play the game in a multiplayer session
without programming. Thus, they become familiar with the
game universe and units. The second phase is a presentation
of the Prog&Play API which students learn to use through
mission solving. After these two phases, students should be
able to achieve small-scale programming compatible with
Kernel Panic.

3.2.2. Second iteration

The second iteration’s objective is to study the implementa-
tion of our serious game on a large scale in order to evaluate
its influence on students’ results and teachers’ assessment.
As a matter of fact, teachers involved in this experiment were
not members of our research team and had no previous ex-
perience of serious games. To carry out this second itera-
tion, we introduced Prog&Play in the first semester of the
computer science core curriculum (bachelor’s degree - Paul
Sabatier University). In this course, computer programming
is dealt with a functional approach. Students apply basic
knowledge of this programming paradigm during six prac-
tical work sessions of two hours each using the “OCaml”
programming language on Linux.

The class is made up of more than three hundred students
structured in practical work groups of about fifteen. Stu-
dents’ distribution into those groups is achieved randomly.
About twenty teachers work in this course. To evaluate the
influence of the serious game on students’ results, half the
groups were reference groups which followed the standard
teaching whereas the other half used the serious game.

The teaching team’s required condition to validate the
game’s integration into the curriculum concerns the ability
of the serious game to preserve basic knowledge processed
during standard teaching. Table 2 shows teaching objectives
of standard practical work (PW) sessions.

PW sessions one, three and four were modified. After va-
lidation by the teaching team, modifications are as follows:

Table 2: Teaching objectives of the practical work sessions
(PW).

PW Objectives
1 Working environment presentation: opera-

ting system (Linux - Mandriva 2008), win-
dow manager (KDE), OCaml interactive loop
and word processor (Kate).

2 Arithmetical functions: pattern matching, n-
tuple parameter, closure and recursion; intro-
duction to dichotomy.

3 Use of the graphical library: definition of a
library, trigonometrical arithmetic, optimisa-
tion and recursion.

4 Lists handling: list management and con-
struction; pattern matching and recursion
with lists; introduction to predicates; sorting.

5 and 6 Data structures management: reuse of pre-
vious functions; projection, doublet removal,
selection, update and sorting; user data type
manipulation.

• PW 1: in addition to the working environment presenta-
tion, this first session presents the game universe. An ap-
pendix to the teaching documentation describes the pro-
cess of creating a multiplayer game. Students are invited
to test the game by themselves before the third session.

• PW 3: the third session is centred on library use. The
teaching documentation has been completely rewritten to
present the Prog&Play API and the campaign. In order to
match this with the original PW, a new mission (called
1a) has been added to the campaign between the first and
the second missions. Now, at the end of the first mission,
the lost Byte is not present at the indicated position. Thus,
in this new mission, additional information is supplied to
find the Byte. The player controls only one Bit (the same
as in the first mission) and knows the Byte’s direction (ex-
pressed in degrees, 0 being north) and relative distance.
The player has to compute the Byte position according to
the above information. During this session, students have
to complete missions 1, 1a, 2 and 3. Thus, students learn
how to use the library with mission 1, how to carry out a
trigonometrical exercise on mission 1a and how to handle
pattern matching with mission 2 and recursion in mission
3.

• PW 4: finally, the teaching aid of the fourth session has
also been rewritten. Here, students work on the fourth
mission. They start by creating functions to manage lists
of units and use them to solve the mission simply. With
sorting algorithms, students code a second, more efficient,
solution and glimpse the optimisation principles which
was removed from PW 3.

Owing to the number of teachers taking part in this experi-
ment, a teacher training session took place in order to present

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play 7

the serious game, the teaching aids modifications and solu-
tions to the new exercises.

3.2.3. Third iteration

Prog&Play can be seen as an artefact. We have built a Web-
site where teachers can have access to the serious game and
adapt it to their own pedagogy by themselves. The third ite-
ration aims to test the usability of this artefact by third par-
ties.

The first experimentation has been carried out in collabo-
ration with Jérémie Guiochet, teacher at the department of
electrical engineering, electronics and industrial informatics
at an institute of technology in Toulouse (IUT A). He chose
to use the game with students in difficulty. The teacher ex-
pected this could motivate them to practice programming.
Fifteen students used the C++ language to complete the cam-
paign over nineteen hours.

The second experimentation has been carried out in
collaboration with Elisabeth Delozanne and Françoise Le
Calvez from Pierre and Marie Curie university (Paris VI).
They have deployed the game in a transversal teaching
unit based on information and communication technologies
in education. In this teaching unit, teachers propose a set
of projects, one of which is based on our serious game.
Among volunteers, eight students who have followed intro-
ductory courses in imperative programming have been re-
tained. Teachers supervised two sessions of two hours in or-
der to introduce the game and programming concepts not
studied during lectures (library use and data structures). Fol-
lowing this presentation, the first three missions have been
completed using a pure algorithmic language and then coded
again using the C language. Then, students had two months
to complete the campaign and prepare a presentation of their
achievements.

3.3. Evaluation criteria and results

In order to define the evaluation criteria, we summarise ob-
jectives revealed from iterations: determine the motivational
potential of the serious game; evaluate its influence on stu-
dents’ results and retrieve teachers’ views.

From these objectives, we define four evaluation criteria:
enhancement of programming skills; system usability; en-
tertainment; and teachers’ assessment. The first and third
criteria evaluate the “serious game” concept. Indeed, it is
fundamental to check the “serious” side (enhancement of
programming skills) and the “game” side (entertainment) of
Prog&Play. The second criterion allows identifying bottle-
necks which could hinder students (installation problems,
hardware requirements, software bugs, etc.). The last crite-
rion allows obtaining a qualitative evaluation of the serious
game by teachers.

Before presenting each criterion and associated results,

we synthesise all the means we have used during experimen-
tations to collect data (see figure 4). The latter operation is
organised in three stages: before, during and after the use of
the serious game. For example, we massively used question-
naires instead of interviews in order to make data processing
easier and reuse them for several iterations. Please note that
we did not use all these solutions for each iteration.

Start of
experiment

End of
experiment

Observation

Pre-questionnaire on
video game and serious
game a priori (teachers)

Post-questionnaire on
 - usability(students/teachers)
 - entertainment (students)
Report (teachers)

Results of
mid-semester
examination

Results of final examination

Students' works analysis:
 - game progress
 - number of compiling
 instances and executions

Students' future courses

TimeExperimentation

Figure 4: Synthesis of means used to collect data during
experimentations.

3.3.1. Criterion 1: enhancement of programming skills

The learning evaluation is based on works of Chen and
Cheng [CC07], Gestwicki and Sun [GS08] and Leuteneg-
ger and Edgington [LE07]. We define three indicators: quan-
tity of work achieved, acquired knowledge and students’
future courses. Quantity of work achieved is evaluated us-
ing the game progress (number of missions completed). Ac-
quired knowledge is evaluated with students’ results of mid-
semester and final examinations. These examinations are de-
signed by teachers external to the research team and are the
same for all students.

During the first iteration, we analyse the first indicator
(quantity of work achieved) by processing data produced by
students during experiments. We count the number of mis-
sions completed by each student and for each mission the
number of compiling instances and executions necessary to
perfect their solution. These data have been collected thanks
to a software spy integrated into the development environ-
ment used during sessions. With these data, we can define a
difficulty ratio (noted “dm”) for each mission “m” shown in
figure 5. This difficulty ratio is computed as indicated in for-
mula 1, where “nbStudentsm” is the number of students who
have completed mission “m”, “nbCompim” and “nbExecim”
are respectively the number of compiling instances and the
number of executions required for the student “i” to com-
plete mission “m”.

dm =
∑

nbStudentsm
i=1 nbCompim +nbExecim

nbStudentsm
(1)

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

8 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

M
ission 1

M
ission 2

M
ission 3

M
ission 4

M
ission 5

0

5

10

15

20

25

Difficulty ratio
Number of
students who
completed a
mission

Figure 5: Difficulty ratio for each mission.

Contrary to what we expected, the difficulty caused by
the various missions is not progressive. There is an impor-
tant difference in difficulty between the first three missions
and the fourth. For future experiments, we plan to split mis-
sion 4 into two new missions in order to propose a more pro-
gressive challenge. The players getting familiar with the API
seems to lessen the difficulty between missions 1 and 3. Fi-
nally, we will update mission 5 to offer a better challenge to
end the campaign. Indeed several students who reached this
mission have been frustrated by its simplicity. Johnson et
al. [JVM05] argue that story maintains user interest, encou-
rages the player to progress constantly and links actions and
future objectives. Challenges are introduced with the story
and must match players’ experience. Greitzer et al. [GKH07]
highlight the difficulty to build a suitable scenario which is
neither too easy nor too difficult in order toubmit a challenge
without discouraging the player.

The other indicators (acquired knowledge and students’
future courses) have been evaluated during the experimen-
tation of the second iteration. Concerning the “acquired
knowledge” indicator, we have collected students’ results of
mid-semester and final examinations. Figure 6 shows the av-
erage marks for reference and serious game groups. Please
note that we did not have those marks when we started ex-
perimentation.

Mid-semester Final
6

7

8

9

10

11

Reference
groups

Serious
game
groups

Evaluation

A
ve

ra
ge

Figure 6: Average marks for each examination by groups
(20 being the top mark).

First, we notice a decline in marks between mid-semester
and final examinations whatever group we take. However,
this decline is less important for the serious game groups
(1.25 points) than reference groups (1.55 points). We can-
not link this result only to the serious game because experi-
mentations have been carried out with a large number of un-
controllable parameters. Nevertheless, we consider that the
serious game is partly responsible for this positive result.

Concerning the “students’ future courses” indicator, we
used students’ choices for their second semester. Indeed, af-
ter the first semester, nine major courses are available, one
of which is dedicated to computer science. Among students
from the serious game groups 55% have chosen this major
course compared to 49% in the reference groups.

Thus, these results show that even if missions’ difficulty is
less progressive than it was expected, the campaign supplies
a sufficient difficulty to encourage work and stimulate stu-
dents’ interest. From a statistical point of view, we note that
the serious game has contributed to reduce students’ failure
compared to reference groups and to recruit more students
for computer science for the second semester.

3.3.2. Criterion 2: system usability

System usability is based on a post-questionnaire. We ask
students to evaluate the serious game. Using works of Siang
and Rao [SR03], we define questions to evaluate the hierar-
chy of the players’ needs in order to identify which part of
our serious game needs improvement. This hierarchy is di-
vided into seven levels and lower levels are to be fulfilled
before moving on to the higher levels in the pyramid. The
seven levels by priority order are as follows: Rules need,
players seek information to understand the basic rules of the
game; Safety need, players need guidance about the game
software; Belongingness need, players need to become fa-
miliar with the game in order to feel capable to achieve ob-
jectives; Esteem need, players need to be motivated by the
game (feedbacks, scores, competition, etc.); Need to know
and understand, players need to understand and know more
information about the game (e.g. different strategies or hid-
den items) in order to reuse it during play time; Aesthetic
need, players need good graphics and visual effects, ap-
propriate music, sound effects, etc; Self actualisation need
players need to be able to transfer their creativity and imagi-
nation into the game as long as it conforms to the game rules.

Additionally, we ask students to express their criticisms,
remarks and suggestions about the serious game as well as
their point of view about the interest of a serious game to
learn computer programming. Questions are presented in
figure 7.

During the first two iterations, we evaluate the hierarchy
of players’ needs. Figure 8 shows students’ satisfaction for
each level of this hierarchy.

Concerning the first iteration, the lowest satisfaction level

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play 9

• Q1: In your opinion, is it interesting to use a video game
to learn how to program? (1=“not at all”, 7=“essential”)

• Q2: Do you think that practical work sessions based on
a video game are adapted to this course? (1=“not at all”,
7=“perfectly adapted”)

Figure 7: Opinion-related questions in the post-
questionnaire.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Iteration 1 Iteration 2

Satisfaction percentage

(7) Self actualisation need
(6) Aesthetic need

(5) Need to know and understand
(4) Esteem need

(3) Belongingness need
(2) Safety need
(1) Rules need

Figure 8: Students’ satisfaction for the hierarchy of the
players’ needs.

concerns the aesthetic need with an average value of 47%.
The low-end vectorial graphics of Kernel Panic seem dis-
turbing to our students. Nevertheless, this simplified RTS
allows a quick learning curve which takes part in the posi-
tive satisfaction of lower needs. Therefore, we still think that
Kernel Panic is not a bad choice to support Prog&Play.

For the second iteration, we observe lower satisfaction
rates although the serious game is the same except for
the new mission (1a). In order to explain differences with
the first iteration, we analyse remarks and criticisms ex-
pressed by students. The main criticisms are levelled at the
teaching aids that are considered too descriptive and over-
prescriptive. We suggest that this feeling has counterbalan-
ced the game understanding. Thus, this experiment high-
lights that results obtained depend not only on the serious
game but also on the implementation, supervision, teaching
aids, etc.

Nevertheless, whatever iteration, students have apprecia-
ted the initiative and are interested in this kind of pedagogy.

The average and median answers to the two additional ques-
tions are presented in table 3 for the first two iterations.

Table 3: Average and median answers of questions pre-
sented figure 7 for the two first iterations (highest possible
value being 7).

1st iteration 2nd iteration
Q1 Q2 Q1 Q2

Average 6.17 6 5.05 5.18
Median 6.83 7 5 5

In conclusion about this criterion, the game is functional
because no critical bugs were revealed during experimenta-
tions. The only issue is that some teachers have encountered
difficulties to configure their operating system to use the se-
rious game correctly. The analysis of the hierarchy of play-
ers’ needs shows that students’ satisfaction heavily depends
on implementation. This confirms the importance of super-
vision for our serious game.

3.3.3. Criterion 3: entertainment

This criterion has been evaluated with a questionnaire dis-
tributed to students at the end of experiments. Questions are
presented in figure 9.

• Q3: Do you appreciate the campaign story (missions)?
(1=“not at all”, 7=“a lot”)

• Q4: Do you think that using programming in Kernel Panic
increases entertainment?
� Reduces entertainment � Do not change enter-

tainment
� Enhances entertainment � I don’t know

Figure 9: Questions for the entertainment post-
questionnaire.

The fourth question (Q4, figure 9) was crucial for us.
Introducing algorithmic concepts into the game should not
make it any less entertaining. This requirement is due to our
vision of serious games which have to be, above all, enter-
taining.

Concerning the first iteration, the average and median an-
swers to the third question (Q3, figure 9) are, respectively,
5.85 and 6. These results show that students liked playing
the campaign. We think that missions’ interest is partly due
to the first phase of the experimentation. The multiplayer
session allows students to become familiar with the universe
of the game and makes students’ immersion into the story
easier.

For the fourth question (Q4, figure 9) 100% of students
found that using programming in the game enhances enter-
tainment. We found out during this first experiment that the
game is fun and rewarding: it is fun because all students

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

10 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

found that programming enhances entertainment; and it is
rewarding because even though we initially planned, for the
final session, to let students play a normal multiplayer game,
more than half of the students preferred to continue program-
ming.

Concerning the second iteration, results are slightly lower.
The average and median answers to the third question (Q3,
figure 9) are, respectively, 4.14 and 4. This is the same for
the answers to the fourth question (Q4, figure 9). 15% of
students found that the introduction of programming into
the game reduces entertainment, 22% indicate there is no
change, 42% identify an enhancement and 21% do not give
their opinions. We attribute these results to the same rea-
son identified in criterion 2 analysis: the teaching aids were
perceived as too descriptive and over-prescriptive, they have
counterbalanced the entertainment.

Thus, the campaign is entertaining and it is a real success
from this point of view. Moreover, students appreciate using
their programming knowledge in a real context.

3.3.4. Criterion 4: teachers’ assessment

In order to observe teachers’ activities during experiments,
we propose to film sessions. Particular emphasis has been
laid on activities dedicated to game usability and teaching
contents. The activity called “game usability” concerns ex-
planations on the game’s control (how to launch the game?
How to move the camera?) and on the game’s interac-
tion with students’ programs (how to select or command
units? How to check if programs are correct?). The acti-
vity called “teaching contents” deals with explanations on
programming obstacles like variables (types, assignments,
records), functions (call, argument passing) and control
structure (conditional, iterative). The activity called “other
tasks” concerns administrative tasks (e.g. welcoming stu-
dents, roll call), explanations on operating system usability,
etc.

Furthermore, we submit a questionnaire to teachers about
their perception of video games and serious games before
experimentation. Then, each teacher has to file a report,
which enables us to collect their points of view about the
past experimentation. On this occasion, we ask them if they
encountered difficulties with the serious game and what they
would advise regarding a possible renewal of the experi-
ment.

The observation of the teacher’s activities has been car-
ried out during the second practical work session of the first
iteration. The time spent by the teacher on each activity is de-
tailed in table 4 (please note that some activities are counted
in several categories, which explains why the amount of time
spent is higher than the duration of a session).

As can be seen in the table, the longest activity deals
with “teaching contents”. This distribution is appropriate,

Activity Time spent
Game usability 22m 13s

Teaching contents 1h 3m 42s
Other tasks 41m 27s

Table 4: Time spent by the teacher on each activity during
one session

because, the game’s explanations should not excessively re-
duce teaching activities. Moreover, the time spent on game-
related activities diminishes when students become expert
in game handling. Nevertheless, “game usability” is an im-
portant activity mainly for the first sessions. Indeed, the se-
cond level of the hierarchy of players’ needs (safety need)
has been resolved, in a large part, by teachers. Currently
Prog&Play is a serious game for programming practice; in-
formation about programming, learning contents and game
usability are not included in the game and must be added
through teachers’ speeches or teaching aids.

Concerning the second iteration, we take advantage of the
important number of teachers by asking them about their
perception of video games and serious games before the
experimentation. Three women and twelve men answered
our questions. Nine people said they played video games.
Teachers have mainly pointed out three qualities of such
games: they encourage thinking through strategic develop-
ments, they are entertaining and allow immersion into vir-
tual worlds. To a lesser extent, competition with multiplayer
sessions, storytelling and creativity are identified as intrin-
sic qualities of video games. The main drawback is addic-
tion. Some teachers find video games too complex and asso-
ciate them with a waste of time. Concerning serious games,
seven teachers who have a positive perception think that
they can motivate students to practice computer science ac-
tivities. Moreover, they consider serious games as concrete
tools close to students’ interests. The two teachers who have
a negative perception fear that serious games misrepresent
computer science as only made of video games, give an ad-
vantage to boys, are a waste of time (i.e. explaining the game
instead of the teaching content) and that playing distracts
students from basic knowledge acquisition. The six teachers
who had no opinion said they would consider results before
expressing their convictions.

Again from the second iteration, teachers’ reports are
mixed. On the performance side, they thought that sessions
based on the serious game have been counter-productive for
several students. They do not attribute this consequence to
the serious game but to the teaching aids. Like students, they
felt this documentation was too descriptive. On the plus side,
most teachers have noticed a positive influence of the serious
game on students.

Concerning the third iteration, teachers, who have carried
out experimentations by themselves, give positive reports.

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play 11

First, Mr Guiochet said that the serious game campaign was
well adapted to his students (they needed basic program-
ming practice and had a lot of time for this course). Indeed,
students have shown their interest through some personal
work which was not required. Second, Mrs Delozanne and
Mrs Le Calvez have been impressed by the wide range of
strategies planned and the quality of presentations prepared
by students. They report that students have appreciated the
projects because they have programmed something concrete.
Mrs Delozanne and Mrs Le Calvez added that their sessions
preparation time was quite long due to their inexperience of
video games. In both instances, teachers plan to use our se-
rious game again next year.

In conclusion about teachers’ assessment we can say that
globally they are positive about the influence of the serious
game on students’ work. Indeed, in the second iteration the
negative evaluations are mainly attributed to the teaching
aids and not to Prog&Play. This is very encouraging for us.

4. Conclusion and future work

This paper describes Prog&Play, a serious game aiming
to encourage students to persevere in computer science.
Through a theoretical framework, we designed an iterative
evaluation based on several experiments. During the first ite-
ration, we observed the serious game used by students in a
real context. On this occasion, we identified that Prog&Play
is really appreciated by students. Following this first itera-
tion, the portability of the game was questioned. Thus, a
second iteration was designed to study the game’s imple-
mentation on a large scale. Despite poor teaching aids, the
serious game has helped reduce students’ failure compared
to reference groups. Then, the last iteration was meant to let
teachers implement the game by themselves in their courses.
Reports of these teachers are positive since they plan to con-
tinue using Prog&Play.

Thus, the serious game is functional and motivates stu-
dents. We attribute this success to the original approach of
Prog&Play which allows the use of programs to interact with
a RTS. The second element taking part in this success is the
campaign story which has a twofold objective. Firstly, it mo-
tivates the player by making him/her protagonist in the story
development. Secondly, it gradually introduces the pedago-
gical contents of the serious game. At the end of the story,
students master the programming interface and are able to
program their own AIs.

For pedagogical reasons, we made the Prog&Play API
available in different programming languages. Specifically,
Scratch compatibility opens up new research vistas. In-
deed, it will be interesting to study the impact of these two
technologies (block-based graphical languages and serious
games) on students’ motivation. Another future project con-
sists in adapting the serious game to other RTSes. Indeed,
with the quick evolution of video games engines, its integra-

tion into new RTSes is essential to continue entertaining stu-
dents. It would also be interesting to evaluate this approach
with another video game genre and to compare it with our
RTS based serious game.

The Prog&Play system with Kernel Panic and compatible
interfaces are downloadable at http://www.irit.fr/
~Mathieu.Muratet/progAndPlay_en.php. If you
are interested in our serious game, please do not hesitate to
get in touch with us!

Acknowledgments

This work would not have been possible without the col-
laboration of several learning institutions. The authors thank
the following people and institutions: Christian Percebois
and Max Chevalier (department of computer science) and
Jérémie Guiochet and André Lozes (department of electrical
engineering, electronics and industrial informatics) at IUT A
in Toulouse; Mathias Paulin, Véronique Gaildrat and all Paul
Sabatier university teachers who took part in our experimen-
tation; and Elisabeth Delozanne and Françoise Le Calvez at
Pierre and Marie Curie university in Paris.

References
[ACM05] ACM/IEEE-CURRICULUM 2005 TASK FORCE (Ed.):

Computing Curricula 2005, The Overview Report. IEEE Com-
puter Society Press. and ACM Press., New York, 2005. 1

[Ame] AMERICA’S ARMY: http://www.americasarmy.com/. ac-
cessed 26 August 2010. 1

[Ban97] BANDURA A.: Self-efficacy: The exercise of control.
New York: Worth Publishers, 1997. 6

[CC07] CHEN W.-K., CHENG Y. C.: Teaching object-oriented
programming laboratory with computer game programming. Ed-
ucation, IEEE Transactions on 50, 3 (Aug. 2007), 197–203. 2,
7

[CCD∗03] COBB P., CONFREY J., DISESSA A., LEHRER R.,
SCHAUBLE L.: Design experiments in educational research. Ed-
ucational Researcher 32, 1 (Jan. 2003), 9–13. 5

[CCMT08] CRENSHAW T. L., CHAMBERS E. W., METCALF
H., THAKKAR U.: A case study of retention practices at the
university of illinois at urbana-champaign. 39th ACM Technical
Symposium on Computer Science Education 40, 1 (2008), 412–
416. 1

[CHYH04] COOK D. J., HUBER M., YERRABALLI R., HOLDER
L. B.: Enhancing computer science education with a wireless
intelligent simulation environment. Journal of Computing in
Higher Education 16, 1 (2004), 106–127. 2

[Col] COLOBOT: http://www.ceebot.com/colobot/index-e.php.
accessed 26 August 2010. 2

[Dar] DARFUR IS DYING: http://www.darfurisdying.com/. ac-
cessed 26 August 2010. 1

[Ent09] ENTERTAINMENT SOFTWARE ASSOCIATION: Es-
sential facts about the computer and video game industry.
http://www.theesa.com/facts/pdfs/ESA_EF_2009.pdf, 2009. 1

[GKH07] GREITZER F. L., KUCHAR O. A., HUSTON K.: Cog-
nitive science implications for enhancing training effectiveness in
a serious gaming context. J. Educ. Resour. Comput. 7, 3 (2007),
2. 8

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

http://www.irit.fr/~Mathieu.Muratet/progAndPlay_en.php
http://www.irit.fr/~Mathieu.Muratet/progAndPlay_en.php

12 M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

[GS08] GESTWICKI P., SUN F.-S.: Teaching design patterns
through computer game development. ACM Journal on Educa-
tional Resources in Computing 8, 1 (2008), 1–22. 2, 7

[Gun] GUN-TACTYX: http://apocalyx.sourceforge.net/guntactyx/.
accessed 26 August 2010. 2

[JVM05] JOHNSON W. L., VILHJALMSSON H., MARSELLA S.:
Serious games for language learning: How much game, how
much ai? In Proceeding of the 2005 conference on Artificial Intel-
ligence in Education (Amsterdam, The Netherlands, The Nether-
lands, 2005), IOS Press, pp. 306–313. 8

[KCC∗02] KELLEHER C., COSGROVE D., CULYBA D., FOR-
LINES C., PRATT J., PAUSCH R.: Alice2: Programming without
syntax errors. In 15th annual symposium on the User Interface
Software and Technology (Paris, France, Oct. 2002). 2

[Kel06] KELLEHER C.: Alice and the sims: the story from the
alice side of the fence. In The Annual Serious Games Summit
DC Washington (DC, USA, Oct. 30–31, 2006). 1

[Ker] KERNEL PANIC: http://springrts.com/wiki/Kernel_Panic.
accessed 26 August 2010. 2

[KY05] KLOPFER E., YOON S.: Developing games and simu-
lations for today and tomorrow’s tech savvy youth. TechTrends:
Linking Research and Practice to Improve Learning 49, 3 (2005),
33–41. 2

[LE07] LEUTENEGGER S., EDGINGTON J.: A games first ap-
proach to teaching introductory programming. SIGCSE ’07: Pro-
ceedings of the 38th SIGCSE technical symposium on Computer
science education 39, 1 (Mar. 2007), 115–118. 2, 7

[Mar] MARVIN’S ARENA: http://www.marvinsarena.com/. ac-
cessed 26 August 2010. 2

[MBK∗04] MALONEY J., BURD L., KAFAI Y., RUSK N., SIL-
VERMAN B., RESNICK M.: Scratch: A sneak preview. In 2nd
International Conference on Creating Connecting, and Collab-
orating through Computing (Keihanna-Plaza, Kyoto, Japan, Jan.
2004), pp. 104–109. 2

[MTJV09] MURATET M., TORGUET P., JESSEL J.-P., VIALLET
F.: Towards a serious game to help students learn computer pro-
gramming. Int. J. Comput. Games Technol. 2009 (2009), 1–12.
4

[Num] The Numbers: http://www.the-numbers.com/market/. ac-
cessed 26 August 2010. 1

[PMB93] PINTRICH P., MARX R. W., BOYLE R. A.: Beyond
cold conceptual change: the role of motivational beliefs and
classroom contextual factors in the process of contextual change.
Educational Research 630, 2 (1993), 167–199. 6

[PS96] PINTRICH P. R., SCHUNK D. H.: Motivation in Edu-
cation: theory, research and applications. Englewood Cliffs :
Prentice Hall, 1996. 6

[Roba] ROBOCODE: http://robocode.sourceforge.net/. accessed
26 August 2010. 2

[Robb] ROBOT BATTLE: http://www.robotbattle.com/. accessed
26 August 2010. 2

[SR03] SIANG A., RAO R. K.: Theories of learning: a computer
game perspective. In Multimedia Software Engineering, 2003.
Proceedings. Fifth International Symposium on (Dec. 2003),
pp. 239–245. 8

[SW06] STEVENSON D. E., WAGNER P. J.: Developing real-
world programming assignments for cs1. In ITICSE ’06: Pro-
ceedings of the 11th annual SIGCSE conference on Innovation
and technology in computer science education (Bologna, Italy,
June 2006), pp. 158–162. 2

[Tac] TACTICAL LANGUAGE AND CULTURE:
http://www.tacticallanguage.com/. accessed 26 August 2010. 1

[Via97] VIAU R.: La motivation en contexte scolaire. Bruxelles :
De Boeck, 1997. (in French). 6

[Zyd05] ZYDA M.: From visual simulation to virtual reality to
games. IEEE Computer 38, 9 (2005), 25–32. 1

Appendix A: Example solution

We present in figure 10 a solution (in C) to the following
scenario: “You need to find an allied unit near to the po-
sition of your unit. Tracks indicate that it has moved away
at a distance of 1060 units and an orientation of 209 de-
grees.” In this context, we have used the native Prog&Play
API. In “C”, a unit is an abstract type that can be con-
sulted with a set of functions. For example, the function
PP_Unit_GetPosition(u) allows getting the position of a
unit. With the assistance of teachers, students have to find
in the documentation which function is useful to complete
this exercise.

01 - #include "PP_Client.h"
02 - #include "constantList_KP3.1.h"
03 - #include <math.h>
04 -
05 - int main (){
06 - PP_Unit u;
07 - PP_Pos unitPos, targetPos;
08 - double radianAngle;
09 -
10 - PP_Open(); /* Open the game API */
11 - PP_Refresh(); /* Refresh game state */
12 - u = PP_GetUnitAt(MY_COALITION, 0); /* Get my first unit */
13 - /* Compute target position */
14 - unitPos = PP_Unit_GetPosition(u); /* Get unit's position */
15 - radianAngle = 3.14159265*(209)/180;
16 - targetPos.x = unitPos.x + cos(radianAngle) * 1060;
17 - targetPos.y = unitPos.y - sin(radianAngle) * 1060;
18 - /* Order the unit to move to the position */
19 - PP_Unit_ActionOnPosition(u, MOVE, targetPos);
20 - PP_Close(); /* Close the game API */
21 - }

Figure 10: A solution written in C

submitted to COMPUTER GRAPHICS Forum (8/2010). The definitive version is available at diglib.eg.org and www.blackwell-synergy.com.

