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ABSTRACT

This study evaluates the role of the interdecadal Pacific oscillation (IPO) in modulating the El Niño–
Southern Oscillation (ENSO)–precipitation relationship. The standard IPO index is described together with

several alternatives that were derived using a low-frequency ENSO filter, demonstrating that an equivalent

IPO index can be obtained as a low-frequency version of ENSO. Several statistical artifacts that arise from

using a combination of raw and smoothed ENSO indices inmodeling the ENSO–precipitation teleconnection

are then described. These artifacts include the potentially spurious identification of low-frequency variability

in a response variable resulting from the use of smoothed predictors and the potentially spurious modulation

of a predictor–response relationship by the low-frequency version of the predictor under model mis-

specification. The role of the IPO index in modulating the ENSO–precipitation relationship is evaluated

using a global gridded precipitation dataset, based on three alternative statisticalmodels: stratified, linear, and

piecewise linear. In general, the information brought by the IPO index, beyond that already contained in the

Niño-3.4 index, is limited and not statistically significant. An exception is in northeastern Australia using

annual precipitation data, and only for the linear model. Stratification by the IPO index induces a nonlinear

ENSO–precipitation relationship, suggesting that the apparent modulation by the IPO is likely to be spurious

and attributable to the combination of sample stratification and model misspecification. Caution is therefore

required when using smoothed climate indices to model or explain low-frequency variability in precipitation.

1. Introduction

The El Niño–Southern Oscillation (ENSO) phenom-

enon is a coupled ocean–atmosphere mode of climate

variability that influences weather patterns globally, and

its alternate phases of El Niño and La Niña lead to en-

hanced or diminished risk of droughts, floods, cyclones,

bushfires, heatwaves, and other meteorological extremes

(Nicholls andWong 1990; Ropelewski andHalpert 1987).

Because of the economic and societal disruption that is

often attributed to ENSO extremes, significant research

has been conducted to better understand its dynamics

(Battisti and Hirst 1989; Bjerknes 1969; Neelin et al.

1998; Suarez and Schopf 1988), predict its occurrence

(Barnston et al. 2012; Cane et al. 1986; Latif et al. 1998),

and describe its teleconnection with societally important

hydrometeorological variables such as temperature,

precipitation, and streamflow (Dai and Wigley 2000;

Horel and Wallace 1981; Ropelewski and Halpert 1987;

Trenberth et al. 1998; Walker 1924).

Although ENSO is commonly described as a pseudo-

periodic phenomenon with a spectral peak in the 2–7-yr

band (Cane 2004; McPhaden et al. 2006; Torrence and

Compo 1998; Trenberth 1997), there has been greater

recent attention paid to its lower-frequency dynamics, with

extended periods of reduced or elevatedENSO frequency

and/or intensity identified in the twentieth-century
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instrumental record (Rasmusson et al. 1994; Wang and

Ropelewski 1995) and in longer-termpaleo reconstructions

(Biondi et al. 2001; D’Arrigo et al. 2001). This low-

frequency variability is associated with two lower-

frequency indices, described below.

d The Pacific decadal oscillation (PDO), defined as the

leading principal component of Pacific sea surface

temperature poleward of 208N (Mantua et al. 1997;

Zhang et al. 1997). This index is sometimes described

as the ‘‘reddened’’ response to both atmospheric noise

and the ENSO phenomenon (Newman et al. 2003),

and it has a greater degree of decadal variability

than ENSO.
d The interdecadal Pacific oscillation (IPO) index, de-

fined as the second principal component of low-

frequency filtered global sea surface temperature

(Parker et al. 2007; Power et al. 1999). This index is

often described as exhibiting ‘‘ENSO-like’’ decadal

patterns (Power and Colman 2006; Power et al. 2006),

although the relative importance of the decadal var-

iability increases away from the equator (Power and

Colman 2006).

There has been considerable debate about whether

the low-frequency variability is externally forced or

arises because of the internal dynamics of ENSO. For

example, Wang and Ropelewski (1995) suggest that

multidecadal and ENSO-scale variability are distinct,

and Gu and Philander (1997) provide a mechanism by

which an influx of water from the extratropics can drive

variability in the tropics at interdecadal time scales. An

alternative view is given by Jain and Lall (2001), who use

the Zebiak and Cane (1987) model of tropical ENSO

dynamics to show that it is possible to obtain significant

interdecadal variability without requiring external low-

frequency forcings, with the lower-frequency variations

arising because of the nonlinear dynamical behavior of

the ENSO system (see also Fedorov and Philander 2000;

Kirtman et al. 2013; Newman et al. 2003; Power and

Colman 2006; Walland et al. 2000; Wittenberg 2009).

Power et al. (2006) furthermore showed that the IPO

index can be derived as a low-frequency representation

of several ENSO indices, particularly when focusing on

the period subsequent to 1945 when the quality of the

SST measurements is highest. This implies that, re-

gardless of the mechanism that causes ENSO to vary at

interdecadal time scales, this variability is contained

within standard indices of ENSO such as the Southern

Oscillation index (SOI) and the Niño-3.4 index. A re-

cent review summarizing this debate is given in

Liu (2012).

In addition to interdecadal variability in ENSO it-

self, the associations between ENSO and hydrological

variables such as precipitation and streamflow also appear

to vary at interdecadal frequencies, suggesting that the

IPO and PDO may ‘‘modulate’’ the relationship between

ENSO and various hydrometeorological variables. For

example, the IPO and PDO have been shown to influence

the relationship between ENSO and precipitation in

Australia (Power et al. 1999), North America (Gershunov

and Barnett 1998; Khedun et al. 2014), southern Africa,

and northern India (Dong and Dai 2015), as well as

drought (Henley et al. 2013) and flood (Franks and

Kuczera 2002; Ishak et al. 2013; Kiem et al. 2003;

Micevski et al. 2006; Pui et al. 2011; Verdon et al. 2004)

risk in Australia. This information has been used as the

basis for developing models of flood risk conditional on

the IPO phase (Kiem et al. 2003), and also as an input to

climate-informed stochastic models for drought risk

(Henley et al. 2011), suggesting the importance of un-

derstanding the nature and causes of interdecadal vari-

ability for water resources applications.

The apparent modulation of the ENSO–precipitation

teleconnection by the IPO is difficult to interpret phys-

ically, particularly in light of the finding by Power et al.

(2006) that the IPO index can be derived as a smoothed

version of ENSO indices. Consider the case where a

given year exhibits a strong El Niño but the surrounding

years are all La Niña events: for that year the ENSO

index is likely to have the opposite sign to the IPO index.

In this case, how can the atmosphere ‘‘know’’ the state of

ENSO (the leading mode of SST variability) in these

surrounding years? The atmosphere has limited internal

memory beyond approximately 10–14 days, with the

seasonal predictability of atmospheric variables such as

precipitation attributed to the relatively longer time

scales of variability in the atmosphere’s lower boundary

layer: the land surface and the sea surface temperature

(SST) field (Goddard et al. 2001; Palmer and Anderson

1994). Furthermore, land surface precipitation responds

almost instantaneously to SST forcing at seasonal or

annual time scales (Westra and Sharma 2010), with any

identified lags being due to the persistence in the SST

field. Note that unlike for precipitation, the issue of

memory is easier to explain for drought and flood risk,

given the role of catchment moisture stores in influ-

encing flood risk (e.g., Pathiraja et al. 2012; Pui

et al. 2011).

A resolution to this issue was proposed by Power et al.

(2006), who showed that the apparent modulation could

arise because of a combination of the use of smoothing

in deriving the IPO index, and the apparent nonlinearity

(or ‘‘asymmetry’’) in the association betweenENSOand

precipitation. This asymmetry has been observed in

Australia in several other studies (Cai et al. 2010; King

et al. 2013; Sun et al. 2014), althoughCai et al. (2010) and
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King et al. (2013) both suggest that the degree of asym-

metry in the relationship betweenENSOand precipitation

may itself change as a function of the IPO. However, the

precise way in which smoothing can lead to the apparent

modulation in the teleconnection between the IPO/PDO

and hydroclimatic variables such as precipitation has re-

ceived limited attention in the literature.

This paper extends the work of Power et al. (2006),

using theoretical and empirical results to assess the im-

plications of using smoothed time series in statistical

modeling of data with nonlinear predictor–response

relationships. Taking as a starting point the working

hypothesis that the IPO index can be obtained as a

smoothed version of standard representations of

ENSO (discussed further in section 3), we examine

potential issues associated with using smoothed data

as a covariate to predict seasonal and annual global

precipitation (we focus on the IPO rather than the

PDO in this research, because the PDO is derived using

only the SST data in the extratropical northern Pacific,

and therefore its relationship with ENSO is likely to be

more complex). We also investigate the conditions

under which the apparent modulation of the ENSO–

precipitation relationship by the IPO index can be ex-

plained by the application of smoothed data, or by the

nonlinearity of the association between ENSO and

precipitation.

Given that many of the studies that find a modulation

use stratified analyses in which the relationships be-

tween ENSO and precipitation and/or streamflow are

stratified by both the phase of ENSO and by the IPO

(Khedun et al. 2014; Kiem et al. 2003; Verdon et al.

2004), we devote particular attention to this class of

model. We then describe how artifacts can be in-

troduced from a combination of 1) using a predictor

along with its smoothed version in developing

predictor–response relationships, 2) stratifying accord-

ing to the ENSO phase when the true ENSO–

precipitation relationship is in fact continuous, and 3)

assuming that a linear ENSO–precipitation relationship

is modulated by the IPO when the true ENSO–

precipitation relationship is nonlinear.

The remainder of this paper is structured as fol-

lows. The data used for our analysis are described first

(section 2), followed by a demonstration that IPO-like

indices can be derived from standard indices of the

ENSO phenomenon (section 3). The theoretical im-

plications of using smoothed predictors under model

misspecification are then described (section 4), fol-

lowed by an analysis using global seasonal and annual

precipitation data (section 5). Practical implications of

using smoothed data are discussed in section 6, fol-

lowed by conclusions in section 7.

2. Data

A global precipitation product, the global sea surface

temperature anomaly (SSTA) field, and indices of ENSO

and the IPO were used as the basis for our investigations.

The extended sea surface temperature anomaly dataset

was obtained fromKaplan et al. (1998) and Reynolds and

Smith (1994), and is available on a 58 latitude by 58 lon-
gitude global grid. This dataset was obtained from the

International Research Institute for Climate and Society

data library (http://iridl.ldeo.columbia.edu/). The Niño-
3.4 index was also obtained from this data library, and is

defined as the average SSTA calculated over the domain

bounded by 58S–58N, 1208–1708W.

The updated IPO data developed by Parker et al.

(2007) using the Hadley Centre Sea Surface Tempera-

ture version 2 dataset (HadSST2; Rayner et al. 2006)

were downloaded from the Institute of Global Envi-

ronment and Society (www.iges.org/c20c/IPO_v2.doc).

The IPO index is derived by projecting the HadSST2

field onto the second empirical orthogonal function

(EOF) applied to the low-frequency filtered HadSST2

covariance matrix. The low-frequency filtered HadSST2

field is obtained by applying an 11-yr low-pass Chebychev

filter to the SST data. The ‘‘smoothed’’ IPO index is

then obtained by projecting the low-frequency fil-

tered HadSST2 data directly onto this EOF, while the

‘‘unsmoothed’’ IPO index is obtained by projecting the

unfiltered monthly HadSST2 field onto the same EOF.

The Global Precipitation Climatology Centre (GPCC)

full data reanalysis product (v6) from 1901 to 2010 was

downloaded from http://www.esrl.noaa.gov/psd/data/

gridded/data.gpcc.html (Schneider et al. 2011, 2014).

The data are available in the form of monthly gridded

precipitation depth, and the 2.58 latitude by 2.58 longitude
resolution product was used for our analysis. To minimize

the potential for spurious results because of insufficient

sampling, only data from 1921 to 2005were used (see Fig. 1

for station availability over this period). The data were

aggregated to seasonal and annual time scales.

3. The IPO index as a smoothed version of ENSO

A foundation of our analysis is that the IPO index can

be represented as a smoothed version of standard rep-

resentations of ENSO, and we begin by showing that

IPO-like indices can be obtained through smoothing

standard representations of the ENSO phenomenon.

Figure 2, top panel, shows the annual time series of the

Niño-3.4 index, the unsmoothed IPO index, and the first

principal component (PC1) of the detrended global sea

surface temperature field (obtained by removing the linear

trend at each grid point). All series were standardized and

the sign of PC1 was reversed to facilitate comparison
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between indices. These series are highly correlated,

with a correlation coefficient of 0.94 between the un-

smoothed IPO index and PC1, 0.93 between the Niño-
3.4 index and PC1, and 0.85 between the Niño-3.4 index
and the unsmoothed IPO index.

To approximate the smoothed IPO index from Parker

et al. (2007) (Fig. 2, bottom), we applied a local poly-

nomial regression (loess, with span 5 0.35) to the un-

smoothed IPO index, with the span selected tomaximize

the similarity with Parker et al.’s (2007) smoothed IPO

index. Our loess-smoothed IPO index is clearly very

similar to the standard smoothed IPO index, despite the

substantial differences in how each series was derived. A

moving average filter was also applied to the un-

smoothed IPO index using a 13-yr centered window, and

again the time series exhibit similar features. Finally, the

loess smoothed series of the PC1 and Niño-3.4 indices

are presented, and both series show similar features to

the IPO index except for some differences in the Niño-
3.4 series prior to 1945. Similar findings were obtained

by Power et al. (2006), who suggested that the difference

between the Niño-3.4 index and the IPO index prior to

1945 might be due to higher levels of observational un-

certainty in the earlier period of record. Interestingly,

visual inspection of the raw (unsmoothed) IPO and

Niño-3.4 series (Fig. 2, top) shows that the raw time

series are highly correlated throughout the period of

record, with the correlation coefficient between the

Niño-3.4 and IPO indices being 0.89 for the period prior

to 1945 and 0.84 for the period from 1945 onward.

An alternative perspective can be obtained by pre-

senting the correlation between both the Niño-3.4 and

unsmoothed IPO time series and the raw sea surface

temperature data (Fig. 3). The magnitude and spatial

pattern of the correlation coefficients are almost in-

distinguishable, suggesting a high degree of similarity

between the series.

This analysis corresponds closely to that conducted by

Power et al. (2006), who noted high levels of association

between series of the SOI, Niño-3.4, and the IPO after

FIG. 1. Average number of stations available for each grid cell over the period 1921–2005.

FIG. 2. Time series of (top) annual unsmoothed series and (bottom) annual smoothed series,

with details provided in main text.
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applying a low-pass spectral filter with 13-yr cutoff, par-

ticularly in the period from 1945 when confidence in the

SST observations in the tropical Pacific increased sig-

nificantly (Kaplan et al. 1998). Power et al. (2006) also

applied a low-pass filter to the first principal component of

the unfiltered sea surface temperature data and obtained a

correlation coefficient of 0.97 with the IPO index.

We conclude that the IPO index can be obtained as a

low-frequency representation of standard measures of the

ENSOphenomena.We stress that this conclusion does not

depend on an understanding of the presence of, or physical

reasons for, low-frequency variability in ENSO, or

whether it is internally or externally forced; all that is re-

quired for the arguments in the following section is that

the IPO index can be obtained as a smoothed version of

ENSO. We now examine possible implications of using

smoothed series when statistically modeling the asso-

ciation with hydrometeorological series such as

precipitation.

4. Smoothing, stratification, and model
misspecification

Here we present theoretical results that describe im-

plications and possible artifacts that result from relating

unsmoothed and smoothed predictors (e.g., the Niño-3.4
index and the IPO index) to a response variable (e.g.,

precipitation), including the case where the statistical

model has been misspecified.

a. A simplified representation of the
IPO–ENSO–precipitation relationship

Consider the situation in which a predictor

(Xt)t51:NT
;
iid

N(0, s2
x) is associated with response (Rt)t51:NT

via the linear model:

Rt 5 b1 aXt 1 «t and (1)

(«t)t51:N
T

;
iid

N(0,s2
«) , (2)

where a and b are constants, and s2
x and s2

« are the

variances of X and «, respectively. We also construct a

moving average of the predictor:

Yt 5
1

v
�

(v21)/2

k52(v21)/2

Xt1k , (3)

where v is the moving average window (assumed to be

an odd number to simplify notation). For all three time

series, the time index t 5 1: NT can be thought of as

representing successive years, or possibly a season over

successive years. Several statistical properties of the

joint distribution (Xt,Yt,Rt) are described in section a of

the appendix.

For this example, Xt represents a climate index of in-

terannual variability (e.g., some ENSO index), except

that the Xt values are assumed to be independent and

identically distributed (iid), whereas ENSO indices typi-

cally exhibit some autocorrelation (e.g., Torrence and

Compo 1998).Also,Rt represents a precipitation variable,

which in this example depends linearly on Xt. Since Rt

only depends onXtwith iid residuals,Rt is not expected to

exhibit autocorrelation. Finally, Yt is a smoothed version

ofXt, which is designed to be analogous to the IPO index

being derived as a smooth version of theNiño-3.4 index as
described in section 3. Here, smoothing is implemented

through a moving average with a window of size v cen-

tered on the current time step, and is analogous to the

moving average filter of ENSO depicted in Fig. 2. It is

acknowledged that the standard derivation of the IPO

index (which involves low-pass filtering of the SSTA field

FIG. 3. Correlation between the extended sea surface temperature anomaly field from 1920 to 2005, and both the

Niño-3.4 time series (contours) and the unsmoothed IPO series (shading). Contours are presented in intervals of 0.2

units of the correlation coefficient, with black contours representing positive values and gray contours representing

negative values; the thick black line represents zero correlation.

15 JUNE 2015 WESTRA ET AL . 4757



followed by an EOF analysis) is considerably more

complex than indicated in Eq. (3); however, this simpli-

fied representation enables the derivation of analytical

results that highlight possible effects of smoothing.

b. Autocorrelation of the smoothed predictor and its
relationship to the response

Afirst remark is that smoothing, by construction, creates

apparent low-frequency variability. In the case of the

moving average used in Eq. (3), it can be shown that the

autocorrelation function of Yt decreases linearly as a

function of the time lag t [i.e., r(t) 5 max(1 2 jtj/v, 0)],
creating the low-frequency behavior. This is a pure conse-

quence of the moving average filter and does not denote

any existing low-frequency component in the raw variable

Xt (which is iid here).

A second remark is that the averaging window encom-

passes the current time step t, so that Xt and Yt are statisti-

cally dependent, with correlation coefficient r 5 v21/2 (see

proof in section b of the appendix). In other words, knowing

the value taken by Yt provides some information on the

value ofXt. As a consequence, any variable that depends on

Xt may also depend on Yt through the information brought

by Yt about Xt. More formally, the distribution of Rt

knowing thatYt takes the value y is (see proof in section c of

the appendix)

(Rt jYt 5 y);N(b1 ay,s2
«1 a2s2

x[12v21]) , (4)

yielding a correlation coefficient between Rt and Yt

equal to

r(Rt,Yt)5

�
v

�
11

s2
«

a2s2
x

��21/2

. (5)

Equation (4) shows that while Rt is defined without any

reference toYt, its conditional distribution knowing Yt5 y

does dependon y.More precisely, the relationship between

Rt and Yt is similar to the relationship between Rt and Xt,

with the same b1 ay linear relationship, but with residual

variance increased from s2
« to s2

« 1 a2s2
x(12v21).

In practice, the correlation between Rt and Yt implies

that one may spuriously attribute some low-frequency

variability in precipitation to a low-frequency climate

mode with the following reasoning:

1) The smoothed indexYt exhibits low-frequency variabil-

ity, but this might be a pure consequence of filtering.

2) Precipitation is related to the smoothed index, but

this might be a consequence of precipitation being

related to the unsmoothed index, which may or may

not exhibit a low-frequency component.

An alternative perspective of the relationship between

Rt andYt can be obtained by examiningRt conditional on

alternative values of Yt. Following the approach of Thyer

et al. (2006), we evaluate the probability that Rt in the

‘‘wet’’ phase of Yt [denoted as R
1y
t 5 (Rt jYt 5Dy)] is

less than Rt in the ‘‘dry’’ phase [denoted as

R
2y
t 5 (Rt jYt 52Dy)], for some separation measure Dy.

This probability is denoted as P(R
1y
t , R

2y
t ), where

P(R1y , R2y)/ 0:5 indicates that the distributions are

‘‘highly similar’’ with little or no separation, and

P(R1y , R2y)/ 0 indicates that the distributions are

less similar and have a higher separation.

We can express Dy as function of the number of

standard deviations (c) of sy (i.e., Dy5 csy 5 csxv
21/2)

and refer to c as the ‘‘degree of separation.’’ Since

a represents the coefficient of the linear relationship

between Xt and Rt, while s« represents the noise in this

relationship, we can also introduce a pseudo signal-to-

noise ratio as d 5 a/s«. This allows us to develop an

expression forP(R
1y
t ,R

2y
t ) in terms of c and d, which is

given as Eq. (A4) in section d of the appendix.

Using a typical value of v 5 13, as used for the IPO

index in Fig. 2, we can plot the ‘‘similarity measure’’ as a

function of the typical ranges of c and d. This is shown in

Fig. 4, with the similarity measures P(R1y ,R2y) de-

creasing toward values closer to zero, suggesting the ex-

istence of distinct wet and dry states with a high

separation, andwith increasing values of both c andd.This

is in contrast to the model in Eqs. (1)–(3) that has no low-

frequency variability and no distinct wet and dry states. To

provide a guide to the range of values for P(R1y ,R2y),

Thyer et al. (2006) found values of 0.13–0.30 for annual

rainfall from capital sites around Australia. This example

illustrates that the distribution of precipitation can vary

substantially when conditioning on smoothed indices,

and highlights the potential for misleading conclusions

when using this form of analysis to investigate the nature

of low-frequency variability in precipitation.

c. Spurious modulation due to stratifying on multiple
correlated climate indices

An additional issue is linked to the practice of strati-

fying the precipitation data according to a categorical

discretization of the climate index. For instance, one

may separate precipitation data according to the sign of

the ENSO index, and evaluate whether the distribution

of precipitation during positive ENSO phase (ENSO1)

and negative ENSO phase (ENSO2) are significantly

different. In this section, we show that this approach

might create spurious modulations when several corre-

lated variables are used: typically, a climate index and its

smoothed version.

Assume a category for climate index Xt is defined as

Xt 2 Ix. As an illustration, an El Niño event might be

defined as Niño-3.4 index .0.58C, yielding the interval
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Ix 5 (0.5; 1‘). Similarly, a category for the smoothed

climate index Yt can be defined as Yt 2 Iy. It is then of

interest to consider the distribution of the following

conditional random variables: (Rt jXt 2 Ix) (repre-

senting precipitation stratified by ENSO category) and

(Rt jXt 2 Ix, Yt 2 Iy) (representing precipitation strati-

fied by both ENSO and IPO categories).

It is possible to derive explicit formulas for these two

conditional distributions (section e of the appendix), and

they are illustrated in Fig. 5. The gray curve shows the

marginal distribution of precipitation, representing

what one knows about precipitation in the absence of

any external information. If we receive information

that Xt . 0, the distribution shifts toward higher pre-

cipitation values (black curve), as a consequence of

the Xt 2 Rt linear relationship of Eq. (1). When con-

ditioning on both Xt . 0 and Yt . 0, one may intui-

tively expect the same distribution when conditioning

on Xt . 0 alone (black curve) since, by construction, Rt

is defined based on Xt alone. This is actually not the

case: the distribution of Rt knowing that bothXt. 0 and

Yt . 0 is slightly higher (light red curve) than when

conditioning only onXt. 0. Conversely, the distribution

of precipitation knowing that Xt . 0 and Yt , 0 (light

blue curve) is slightly lower than when conditioning only

on Xt . 0. The difference between the light blue and

light red curves could be incorrectly interpreted as a

‘‘modulation’’ of the ENSO effect by the IPO phase.

This difference is even larger when conditioning on

‘‘extreme’’ Yt values (dark red and blue curves).

The observations in Fig. 5 can be explained as follows.

The distribution of Rt conditional on a given value

Xt 5 x is indeed independent of Yt. However, the dis-

tribution of Rt conditional on a range of Xt values (e.g.,

Xt . 0) depends on the information available on Yt [see

Eq. (A5) in section e of the appendix]. In the particular

case of Fig. 5, knowing that Yt is larger than 1 (i.e., that

the moving average of Xt is larger than 1) suggests that

Xt is less likely to be close to zero. In contrast, if the

(more precise) information that, for example,Xt5 2 was

available, then any information on Yt would become

irrelevant.

d. Spurious modulation due to model
misspecification

Assessing the presence of a modulation of the ENSO–

precipitation relationship by the IPO requires the

assumption of a statistical model that describes this

modulation. A simple way to derive such a model is to

assume a linear ENSO–precipitation relationship, whose

slope varies depending on the IPO phase. This can be

written as

Rt 5

�
m01m1Xt 1 «t , if Yt . 0

m01 (m11 g)Xt 1 «t , if Yt # 0
. (6)

Equation (6) defines the distribution of Rt conditional

on the values taken by both Xt and Yt, where m0, m1,

and g are regression coefficients. It is also interesting to

evaluate the distribution of Rt conditional on Xt alone.

It can be shown (see section f of the appendix) that with

the assumptions made in Eqs. (2) and (3), this distribu-

tion is a mixture of two Gaussian distributions, with the

following mean:

E[Rt jXt 5 x]5m01m1x1 gxp(x) , (7)

where

p(x)5F

�
0;

x

v
,
v2 1

v2
s2
x

�
, (8)

with F(u; m, s2) denoting the cumulative distribution

function of a Gaussian distribution with mean m and

variance s2, evaluated at u. Equation (7) has an important

consequence: it shows that the initial shape of the Xt–Rt

relationship, as defined within each Yt phase, is not pre-

served when precipitation is conditioned on Xt alone.

This is illustrated in Fig. 6: while the Xt–Rt relationship

is linear within each Yt phase, it is not linear anymore

when one ignores the information on Yt. Interestingly,

when x / 1‘, the expected precipitation conditional

on Xt 5 x tends toward the expected precipitation con-

ditional on both Xt 5 x and Yt . 0 (and similarly when

x / 2‘). This can be explained as follows: when a very

largeXt valueoccurs, it is very likely thatYt is positive (since

FIG. 4. The probability P(R1y ,R2y), represented as a function

of the number of standard deviations of separation and the pseudo

signal-to-noise ratio.
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the latter is the moving average of the former), so that

the relationship of the positive Yt phase holds.

A statistical model that assumes a linear Xt–Rt re-

lationship within each Yt phase therefore does not result

in a linear overall Xt–Rt relationship. This may be

problematic in cases where the trueXt–Rt relationship is

nonlinear: indeed, the statistical model may use the Yt

modulation to induce some curvature in the overall

Xt–Rt relationship (as shown by the black curve in Fig. 6),

therefore detecting a spuriousYtmodulation effect that is

in fact attributable to a model misspecification (i.e.,

assuming a linearXt–Rt relationship within eachYt phase

when the true relationship is nonlinear).

This can be illustrated as follows. Assume that the true

Xt–Rt relationship is no longer linear, but rather piece-

wise linear, as suggested by several recent studies (e.g.,

Sun et al. 2014). This leads to modifying Eq. (1) as

follows:

Rt 5

�
b1 a1Xt 1 «t , if Xt . 0

b1 a2Xt 1 «t , otherwise
. (9)

We then fit the model of Eq. (6), corresponding to the

illustration in Fig. 6. If parameter g is found to be non-

zero, this would indicate there is a modulation of the

Xt–Rt relationship by Yt. Note that this model is mis-

specified: while the true precipitation depends non-

linearly on onlyXt, the model assumes that precipitation

depends linearly on Xt, but that the slope of the re-

lationship may vary according to the Yt phase.

The model misspecification results in the spurious

detection of a modulation effect. This is illustrated by a

Monte Carlo experiment using 1000 simulations of

precipitation simulated according to Eq. (9) (n 5 85,

sx 5 1, v 5 7, b 5 40, a2 5 28, a1 5 0, and s« 5 5).

Figure 7 shows that the g parameter is positive in ap-

proximately 91% of the 1000 simulations, providing

apparent evidence of modulation. The model in Eq. (6)

is compensating for its structural inadequacy by

detecting a spurious modulation effect.

Figure 8 yields additional insights into this compen-

sation mechanism. It corresponds to one particular re-

alization over the 1000 Monte Carlo replications

described above. A first observation is that most largely

negative Yt events (blue dots) correspond to negative

Xt values: this is not surprising, and is simply a conse-

quence of Yt being a smoothed version of Xt. Another

observation is that the mean of Rt jXt 5 x no longer

FIG. 5. Probability density functions for several conditional

precipitation variables.

FIG. 6. Conditional expectation of Rt given Xt and Yt (red and

blue curves), and conditional expectation of Rt given Xt alone

(thick black curve). Setup usesm05 60,m15 6, g525,v5 7,sx5 1,

and s« 5 5.

FIG. 7. Histogram of the modulation effect g estimated over 1000

Monte Carlo simulations from Eq. (9).
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depends linearly on x. It therefore appears that

themisspecifiedmodel of Eq. (6) is trying to recreate the

nonlinear relationship of Eq. (9) by means of the

modulation term.

5. Application to global precipitation data

The theoretical results described in the previous section

show that a predictor–response relationship can be spuri-

ously ‘‘modulated’’ by the smoothed version of the pre-

dictor when stratifying and under model misspecification.

Using a global monthly precipitation product together with

standard indices of ENSO and the IPO, we now evaluate

whether it is possible to detect an apparent ENSO–

precipitation modulation by the IPO, and then examine

whether alternative model formulations reduce or elimi-

nate this modulation. We begin by describing three alter-

native model formulations for examining the role of

ENSO–precipitation modulation by the IPO.

a. Three formulations of the ENSO–precipitation
relationship

The following three statistical models will be considered:

1) a stratified formulation,

Rt 5

8>><
>>:
m0 1m11 «t ,
m0 2m11 «t ,

if ENSOt . 0 and IPOt # 0
if ENSOt # 0 and IPOt # 0

�
IPO2 relationship

m0 1m11 g1 «t ,
m0 2m12 g1 «t ,

if ENSOt . 0 and IPOt . 0
if ENSOt # 0 and IPOt . 0

�
IPO1 relationship

, (10)

2) a linear formulation,

Rt 5

�
m01m1ENSOt 1 «t ,
m01 (m11 g)ENSOt 1 «t ,

if IPOt # 0g IPO2 relationship
if IPOt . 0g IPO1 relationship

, and (11)

3) a piecewise linear formulation,

Rt 5

8>><
>>:
m01m1ENSOt 1 «t ,
m01m2ENSOt 1 «t ,

if ENSOt # 0 and IPOt # 0
if ENSOt . 0 and IPOt # 0

�
IPO2 relationship

m01 (m11 g1)ENSOt 1 «t ,
m01 (m21 g2)ENSOt 1 «t ,

if ENSOt # 0 and IPOt . 0
if ENSOt . 0 and IPOt . 0

�
IPO1 relationship

. (12)

In Eqs. (10)–(12), the residual term «t is assumed to

follow a Gaussian distribution with mean zero and un-

known standard deviation s«. In each formulation, the

Niño-3.4 index described in section 2 was used to rep-

resent the ENSO phenomenon, and the IPO index de-

veloped by Parker et al. (2007) was used to represent the

IPO. Figure 9 illustrates the three formulations:

1) The stratified formulation assumes constant mean

precipitation within each combination of ENSO/IPO

phase. The difference in mean precipitation between

ENSO phases is modulated by IPO: it is equal to 2m1

during negative IPO phase (IPO2) and to 2(m1 1 g)

during positive IPO phase (IPO1). The parameter

g can therefore be interpreted as the modulation of

the ENSO effect by the IPO phase. Note that this

formulation depends only on the sign of ENSO; its

strength is not considered.

2) The linear formulation assumes a linear relationship

between the mean precipitation and ENSO, with the

slope of this relationship differing between positive

and negative IPO phases. The difference in the slope

between IPO phases is controlled by the modulation

parameter g.

FIG. 8. Scatterplot of simulated xt and rt (see text for simulation

setup), and distribution of Rt jXt 5 x according to Eq. (6) (repre-

sented by the conditional mean and a conditional 90% interval).

The dot size is proportional to the absolute value of yt. Estimated

parameters are m0 5 42.7, m1 5 26.7, g 5 5.4, and s« 5 5.2.
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3) The piecewise linear formulation is similar to the

previous model, except that the linear relationship is

replaced by a piecewise linear relationship, allowing for

different impacts on the mean rainfall during La Niña
and El Niño phases. As a consequence, two distinct

modulation parameters g1 and g2 are introduced.

b. Estimation and testing

All three formulations introduced in section 5a can be

written as linear statistical models (see section g of the

appendix). Beware of the possible confusion with the ad-

jective ‘‘linear’’ here: in the statistical sense, a linear model

is linear with respect to its parameters. All three models in

Fig. 9 are linearwith respect to their parameters, so that the

standard statistical framework of linearmodels can be used

for parameter estimation and hypothesis testing. However,

only the second model assumes a linear relationship (or

more precisely, an affine relationship) between ENSO and

precipitation within each IPO phase. Note also that all

formulations of section 5a assume normally distributed

residuals, whichmay be problematic in some regions of the

world where the distribution of seasonal/annual pre-

cipitation is asymmetric. To circumvent this problem, a

normal score transformation is applied to the raw seasonal/

annual precipitation values. Last, all formulations of sec-

tion 5a assume that the standard deviation of residuals s«

remains constant between IPO phases. This assumption

has been evaluated by testing the equality of residual var-

iances between IPO phases using a standard F test. Inmost

cases no significant difference was found, with the few

significant differences being safely attributable to the error

level of the test (not shown). All computations have been

implemented with the package lm in R.

Weare particularly interested in assessing the significance

of ENSO and modulation effects. Tests of the significance

ofENSOandmodulation parameters are easy to apply on a

site-by-site basis, and this local procedure is repeated over

all sites with available data.However even in the absence of

anyENSO/modulation effect on precipitation, we expect to

find locally significant effects in a percentage of sites close to

the error level of the test. It is therefore necessary to assess

significance at the global scale or, in other words, to de-

termine which sites show globally significant effects,

knowing that the local tests have been repeated over Ns

sites. The false detection rate (FDR) approach (Benjamini

andHochberg 1995; Renard et al. 2008; Ventura et al. 2004;

Wilks 2006) is used for this purpose. The results presented

below will therefore distinguish two types of significance:

local significance (related to the p value of a local test) and

FDR significance (denoting sites where effects remain sig-

nificant after accounting for the repetition of the test over a

large number of sites).

c. Results at the seasonal scale

We commence by examining the results from each

formulation for individual 3-month periods (seasons),

defined as January–March (JFM), April–June (AMJ),

July–September (JAS), and October–December (OND).

Results below are for the season OND; results for other

seasons (not shown) are qualitatively similar, but they all

exhibit less pronounced ENSO/modulation effects.

Figure 10 shows the significance of ENSO effects. The

stratified and linear formulations yield similar results:

a locally significant ENSO effect is detected in many pla-

ces, and in most cases this effect remains FDR significant.

The spatial patterns are in agreement with the well-known

spatial distribution of ENSO–precipitation teleconnections

reported in other papers (e.g., Ropelewski and Halpert

1987). In comparison to the first two formulations, the

piecewise linear formulation, which distinguishes ENSO

effects during El Niño and La Niña phases, exhibits fewer

FDR-significant effects. This is likely to be due to the higher

complexity of the piecewise linear formulation, which uses

FIG. 9. Schematic of the three formulations of the ENSO–precipitation relationship considered in this study.
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five parameters (plus the residual standard deviation)

versus three parameters for the other formulations. The

additional complexity can result in higher p values for

significance tests, decreasing the number of FDR-

significant effects.

Figure 11 shows the significance of the modulation ef-

fects. They aremuch less significant than theENSOeffects

for all three formulations, suggesting that the information

brought by the IPO index beyond the information already

contained in the Niño-3.4 index is quite limited. In ad-

dition, modulation effects never reach FDR significance:

this further suggests that while locally significant modu-

lations may be detected in certain cases, the hypothesis

that they are all false detections attributable to the rep-

etition of the test over many sites cannot be excluded.

d. Results at the annual scale

While results for all four seasons suggest that modu-

lation effects are not FDR significant for all formula-

tions, results at the annual scale are slightly different.

Figure 12 shows that FDR-significant modulations exist

in northeastern Australia with a linear formulation (top-

right panel). However, the modulations are not FDR

significant with a stratified formulation (top-left panel) or

with a piecewise linear formulation (bottom panels).

The particular case of northeastern Australia is in-

vestigated further by plotting the normal-scored pre-

cipitation against ENSO values for one cell located in

the dark red region in the top-right panel of Fig. 12.

Figure 13 shows the ENSO–precipitation relationship for

this site, along with the ENSO-conditional precipitation

distribution according to each of the three formulations.

These distributions are derived from the distribution of

precipitation conditional on both the Niño-3.4 and IPO

indices specified in Eqs. (10)–(12), as described in section

4d and section f of the appendix.

Figure 13 highlights an apparent nonlinearity in

the ENSO–precipitation relationship. Since a linear for-

mulation cannot describe such nonlinearity, the model is

using the modulation parameter to recreate the nonlinear

ENSO–precipitation relationship suggested by the data

(see the curvature of the conditionalmean inFig. 13b). This

closely corresponds to the synthetic example given in sec-

tion 4d (cf. Figs. 8 and 13b). Conversely, the piecewise

linear formulation is able to describe such nonlinearity by

using very different slopes during El Niño and La Niña

FIG. 10. Significance of ENSO effects (m1 and m2) at the seasonal scale, at error level a 5 10%.
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phases (Fig. 13c) and therefore does not need amodulation

effect to induce this behavior. This explains why modula-

tion effects are not FDR significant with this formulation.

6. Discussion and implications

The previous section showed that the modulation of the

ENSO–precipitation relationshipwas not FDRsignificant in

all locations globally for all seasons, andwas FDRsignificant

for the annual data only for a region in northeastern Aus-

tralia and only for the linear formulation.When the ENSO–

precipitation relationship was modeled for this specific

region, a nonlinear association could be detected, suggesting

that the apparentmodulation by the IPOcould be explained

by the nonlinear ENSO–precipitation association. In this

section we describe potential implications of these findings,

starting with alternative physical interpretations associated

with nonlinear ENSO–precipitation relationships compared

to one modulated by the IPO.

a. Physical interpretation of alternative models

Linear ENSO–precipitation models have often been

assumed for convenience (Hoerling et al. 1997); however,

there are no a priori reasons to assume that the association

is linear. In fact, numerous papers have highlighted the

apparent nonlinearity in the ENSO–precipitation associ-

ation (Nicholls and Wong 1990; Power et al. 2006; Sun

et al. 2014), including the potential for asymmetry de-

pending onwhether the ENSO is positive or negative (Sun

et al. 2014; Zhang et al. 2014). It has been suggested that

the nonlinearity (or asymmetry) of the relationship is

due to the asymmetry in midtropospheric circulation,

and attendant thermodynamic controls on deep con-

vection (Hoerling et al. 1997; Zhang et al. 2014).

In contrast to a nonlinear ENSO–precipitation relation-

ship, the physical mechanism that could explain the modu-

lation of the ENSO–precipitation relationship by

a smoothed version of ENSO is less clear. Continuing with

the argument made in section 3 that the IPO index can be

represented as a smoothed version of standard representa-

tions of ENSO such as the Niño-3.4 index, then the IPO

index for a given year t can be divided into three distinct

components: the ENSO series at time t, the ENSO series in

previous years, and the ENSO series in future years. If there

is a relationship between ENSO and precipitation at time t,

then it is not surprising that a relationship between the IPO

index and precipitation can also be detected, since the IPO

FIG. 11. Significance of modulation effects (g, g1, and g2) at the seasonal scale, at error level a 5 10%.
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index is partly made up of ENSO variability at time t (see

theoretical discussion in section4b).However, assuming that

this component is already accounted for by directly model-

ing the ENSO–precipitation relationship, then the re-

sidual influence of the IPO (i.e., after accounting for

ENSO at time t) must be due to the ENSO state in the

years before, or after, year t. Using the simplified re-

presentation in Eq. (3) and assuming a 13-yr window

as was adopted in Fig. 2, this corresponds to the parts

v21�(21)
k526Xt1k and v21�6

k51Xt1k, respectively.

It is difficult to provide a physical interpretation for the

modulating role of ENSO up to six years in the past on

FIG. 13. Annual normal-scored precipitation over northeastern Australia vs the ENSO index. The distribution of Rt j ENSOt 5 x is

represented by the conditional mean and a conditional 90% interval. The dot size is proportional to the absolute value of IPOt.

FIG. 12. Significance of modulation effects (g, g1, and g2) at the annual scale, at error level a 5 10%.
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the teleconnection between ENSO at time t and pre-

cipitation at time t. As discussed in the introduction, the

atmosphere itself has limited internal memory beyond

approximately 10–14 days (Goddard et al. 2001; Palmer

and Anderson 1994), and land surface precipitation ap-

pears to respond almost instantaneously to SST forcing at

seasonal or annual time scales (Westra and Sharma 2010).

Although there is evidence that atmospheric variables

such as equatorial winds can affect decadal variability of

ENSO (Wang andAn2002), this variability occurs as part

of a coupled system with the ocean, rather than being

independent of it; therefore it is unclear how the atmo-

sphere can maintain multiyear memory in the absence of

that variability being detected in the SSTA field.

It is possible that some of the information on historical

ENSO variability transfers to non-ENSO SST variability

at time t (e.g., through thermocline depth variations or

some form of atmospheric bridge; McPhaden et al. 2011;

Wang and An 2002), which could then influence the

ENSO–precipitation relationship at time t. However, the

orthogonality of the ENSO signal with other elements of

SST variability (based on ENSO being described by the

first principal component of SST variability, which is by

definition orthogonal to the remainder of the SST field),

combinedwith the fact that the variance accounted for by

each non-ENSOmode of variability is much smaller than

the variance accounted for by ENSO (e.g., Westra and

Sharma 2010), suggests that this is unlikely to fully explain

the apparent modulation of the ENSO–precipitation re-

lationship. Even less clear than the role of ENSO vari-

ability up to six years in the past, however, is the physical

relevance of the state of ENSO up to six years into the

future with regard to precipitation at time t.

Although it is not possible to prove conclusively that the

IPO does not modulate the ENSO–precipitation tele-

connection, we have shown how an apparent modulation

can arise spuriously because of the nonlinear ENSO–

precipitation association and, furthermore, that the effect

of the IPO after accounting for ENSO is no longer FDR

significant, with the exception of a small region in north-

eastern Australia using annual data for one of the three

model formulations described here. Combining this with

the difficulty in physically explaining the mechanism

causing IPO modulation of the ENSO–precipitation tele-

connection as described in this section, we suggest that the

apparent IPO modulation of the ENSO–precipitation re-

lationship may be spurious and attributable to the use of a

combination of a smoothed time series, stratification by

ENSO phase, and model misspecification.

b. Use of the IPO index for prediction

It is sometimes suggested that use of the IPO index can

lead to improved short-term forecasts of hydrological

variables, with potential applications for operational flood

management, infrastructure maintenance, and reservoir

management (Kiem et al. 2003; Verdon et al. 2004). The

justification for this is because of the persistence of the IPO

index itself, so that knowledge of the current phase of the

IPOwill provide significant information on the future state

of the IPO (as discussed in Power and Colman 2006).

As argued in section 4b, the persistence in the IPO

index can be induced by smoothing the data, regardless

of whether the underlying data is autocorrelated or not.

Furthermore, given that smoothing of the IPO index is

centered on time t, it is not possible to obtain a ‘‘real

time’’ estimate of the IPO. This is reflected in the

moving average IPO formulation described in Eq. (3), in

which assuming a 13-yr moving window one needs to

knowENSO up to six years into the future; similarly, the

official website for the IPO (www.iges.org/c20c/IPO_v2.

doc) cautions that ‘‘future values [of SSTs] may signifi-

cantly affect the filtered values for about themost recent

five years, so these should be regarded with caution.’’

We therefore suggest that to improve forecasts of

precipitation, streamflow, and other hydrometeorological

variables, research efforts should focus on improving

ENSO predictions (Barnston et al. 2012; Cane et al. 1986;

Latif et al. 1998) or better understanding the role of other

climate modes of variability such as the Indian Ocean

dipole (Cai et al. 2011), the North Atlantic Oscillation

(Qian et al. 2000), or sea surface temperatures more

generally (Westra and Sharma 2010). However, given the

potential for spurious effects when using smoothed data,

it is generally recommended that relevant climate modes

be represented using unsmoothed indices in preference to

smoothed indices when developing predictive models.

We note that the identification of potentially spurious

effects when using smoothed series does not negate the

possibility that parts of the climate system exhibit signifi-

cant low-frequency variability, which may be expressed

through large-scale climate modes or which may be found

in hydroclimatic variables such as precipitation (Dai 2013).

Better understanding of the nature of this low-frequency

variability might ultimately provide a basis for developing

decadal-scale climate forecasts, with research in this area

having intensified in recent years (Kirtman et al. 2013).

To this end, a number of frequency-based methods are

available, and can been used to 1) assess the significance of

one or several low-frequency components in a hydro-

climatic time series (e.g., Boé and Habets 2014); 2) assess

the presence of significant coherence between two series at

one or several frequency levels (e.g., through the use of

wavelet coherence analyses; Park and Mann 2000;

Dieppois et al. 2013); and 3) develop predictive models of

one or several hydroclimatic variables (e.g., Rajagopalan

et al. 1998). However, our results indicate that simply

4766 JOURNAL OF CL IMATE VOLUME 28

http://www.iges.org/c20c/IPO_v2.doc
http://www.iges.org/c20c/IPO_v2.doc


using a combination of unsmoothed and smoothed climatic

series of the same or closely related phenomena (such as

ENSO and the IPO) can lead to misleading conclusions

and should probably not be used in a predictive context.

c. Extensions to other surface variables

This paper has focused on the effects of the IPO on

seasonal and annual precipitation. The implications for

other atmospheric variables, including precipitation ex-

tremes or atmospheric temperature, are unknown but

given the limited persistence in these variables (other than

through persistence in the atmosphere’s lower boundary),

it is likely that the conclusions would be consistent with

those presented here.

Much of the research into the IPO has focused on hy-

drological variables such as seasonal streamflow (Verdon

et al. 2004) and flood risk (Kiem et al. 2003) rather than

directly on precipitation. In such cases, there is likely to be

significant persistence in streamflow time series, because of

the role of catchmentmoisture stores (e.g., soil moisture and

groundwater) in imparting low-frequency behavior to these

hydrological variables (Pathiraja et al. 2012). In these cases, a

significant IPO–streamflow association might remain after

accounting for ENSO at time t, for the following reasons:

1) The precipitation up to k time steps in the past

influences the catchment moisture store at time

t, as a result of the persistence in the soil moisture

and/or groundwater levels in the catchment.

2) The precipitation over the period from t2 k to t2 1

may be associated with ENSO over the same time

period, with at least some of the ENSO variability

from this period being incorporated into the defini-

tion of the IPO index at time t.

Although this provides amechanism bywhich the prior

states of ENSO can influence streamflow, it is likely to be

preferable to explicitly simulate the persistence structure

of soil moisture and/or groundwater in a catchment, since

the dynamics and time scales of the moisture stores will

vary markedly from one catchment to the next whereas

the time scale of the IPO index is a fixed quantity.

7. Conclusions

This study evaluated the role of the interdecadal Pa-

cific oscillation (IPO) in modulating the El Niño–
Southern Oscillation (ENSO)–precipitation relation-

ship. The outcomes of the study are the following:

1) The IPO index can be derived as a smoothed version

of standard representations of ENSO.

2) It is theoretically possible to spuriously attribute mod-

ulation of the ENSO–precipitation teleconnection to

the IPO, whereas in reality the apparent modulation is

due to a combination of data stratification and model

misspecification.

3) Based on observational data of global land surface

precipitation, it was found that the information brought

by the IPO index beyond the information already

contained in ENSO is quite limited, and could be

explained by the role of stratification and model

misspecification (i.e., assuming a linear model to

simulate a nonlinear predictor–response association).

This paper has focused entirely on the possible mod-

ulation of the teleconnection between ENSO and pre-

cipitation by the IPO index; as such, the analysis does

not require assumptions as to whether the ENSO phe-

nomenon itself exhibits low-frequency variability, and

whether this low-frequency variability in ENSO is

forced internally or externally to the ENSO system.

We also described a number of potential issues associated

with using the IPO index to statistically model the ENSO–

precipitation relationship, including the difficulty in physi-

cally explaining the mechanism that causes the modulation,

and we caution against the use of the IPO index for pre-

dicting future precipitation. In the absence of the identifi-

cation of a physical mechanism of how the IPO modulates

the ENSO–precipitation relationship, the IPO index is not

recommended as the basis for statistical modeling of sea-

sonal or annual precipitation because of the potential for

statistical artifacts when stratifying and using smoothed

series to simulate the ENSO–precipitation relationship.
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APPENDIX

Statistical Derivations

a. Preliminaries: The joint distribution of (Xt, Yt, Rt)

The following definitions link the random variables

Xt, Yt, and Rt:

(X1, . . . ,XN
T
);
iid

N(0,s2
x) ,

Yt 5

�
(v21)/2

k52(v21)/2

Xt1k

v
, and

Rt 5b1 aXt 1 «t, «t ;N(0,s2
«)

independent of Xt .
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We start by showing that the joint distribution of (Xt,Yt,

Rt) is a trivariate normal distribution. To achieve this, it

suffices to show that any linear combination Z5 a1Xt 1
a2Yt 1 a3Rt is univariate normal,

Z5a1Xt 1a2Yt 1a3Rt

5a1Xt 1a2v
21 �

(v21)/2

k52(v21)/2

Xt1k 1a3(b1 aXt 1 «t)

5a3b1 �
(v21)/2,k6¼0

k52(v21)/2

a2v
21Xt1k

1 (a11a2v
211 aa3)Xt 1a3«t .

Therefore, Z can be written as a constant plus a

linear combination of independent normal variables,

since for any k 6¼ 0, the random variables Xt1k, Xt,

and «t are independent and normal by construction.

Since any linear combination of independent normal

variables remains normal (i.e., the normal family

is stable), it follows that Z is also normal for any

value of (a1, a2, a3), and therefore (Xt, Yt, Rt) is

trivariate normal.

We now derive themean and covariancematrix of (Xt,

Yt,Rt). It is straightforward to show that themean vector

is equal to m 5 (0, 0, b). For the covariance matrix, we

start by deriving the marginal variances.

Var(Xt)5s2
x by definition

Var(Yt)5Var

 
�

(v21)/2

k52(v21)/2

Xt1kv
21

!

5
1

v2 �
(v21)/2

k52(v21)/2

Var(Xt1k)

by independence of the Xts

5
vs2

x

v2
5s2

xv
21

and

Var(Rt)5Var(b1 aXt 1 «t)

5Var(aXt)1Var(«t)

by independence of Xt and «t

5 a2s2
x1s2

« .

The covariance terms are computed as follows:

Cov(Xt,Yt)5E[(Xt 2E[Xt])(Yt 2E[Yt])]

5E[XtYt]

5E

"
Xt �

(v21)/2

k52(v21)/2

Xt1kv
21

#

5 �
(v21)/2

k52(v21)/2

E[XtXt1k]v
21

5 �
(v21)/2,k6¼0

k52(v21)/2

E[XtXt1k]v
211E[X2

t ]v
21

5 �
(v21)/2,k6¼0

k52(v21)/2

01s2
xv

21

by independence of the Xts

5s2
xv

21 ,

Cov(Xt,Rt)5E[Xt(Rt 2 b)]

5E[Xt(aXt 1 «t)]

5 aE[X2
t ]1E[Xt«t]

5 as2
x1 0 by independence of Xt and «t

5 as2
x ,

and

Cov(Yt,Rt)5Cov(Yt, b1 aXt 1 «t)

5Cov(Yt, aXt)1Cov(Yt, «t)

5 aCov(Yt,Xt)

5 as2
xv

21 .

Finally, the joint distribution of (Xt, Yt, Rt) is

(Xt,Yt,Rt);N

0
B@
2
4 0

0

b

3
5,s2

x

2
64 1 v21 a

v21 v21 av21

a av21 a21s2
«s

22
x

3
75
1
CA.

(A1)

Most subsequent results are derived from this tri-

variate normal distribution. In particular, we will make

use of the following well-known result for conditional

distributions of a multivariate normal distribution

(Mardia et al. 1976). Let Z be a random variable

following a multivariate normal distribution with

mean m and covariance matrix S. Let us further as-

sume that Z, m, and S are partitioned as

Z5 (Z1,Z2), m5 (m1,m2), and S5

�
S11 S12

S21 S22

�
.

4768 JOURNAL OF CL IMATE VOLUME 28



The distribution of (Z1 jZ2 5 z) is then multivariate

normal, with the following mean and covariance:

m
(Z

1
jZ

2
5z) 5m1 1S12S

21
22 (z2m2) and

S
(Z

1
jZ

2
5z) 5S11 2S12S

21
22 S21 . (A2)

b. Correlation between Xt and Yt

This correlation is directly obtained from Eq. (A1) as

Cor(Xt,Yt)5
Cov(Xt,Yt)

[Var(Xt)Var(Yt)]
1/2

5
s2
xv

21

sxsxv
21/2

5v21/2 .

c. Dependence between Rt and Yt

We first deduce the conditional distribution of

(Rt jYt 5 y) from Eq. (A2):

E[Rt jYt 5 y]5 b1
as2

x

v

�
s2
x

v

�21

y

5 b1 ay

and

Var(Rt jYt 5 y)5 (s2
xa

21s2
«)2 a

s2
x

v

�
s2
x

v

�21

a
s2
x

v

5s2
xa

2 1s2
«2 a2s2

xv
21

5s2
«1 a2s2

x(12v21) .

The correlation between Rt and Yt is directly obtained

from Eq. (A1) as

Cor(Yt,Rt)5
as2

xv
21

(sxv
21/2)(sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 1s2

«s
22
x

p
)

5
av21/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21s2
«s

22
x

p 5

�
v

�
11

s2
«

a2s2
x

��21/2

.

d. Rt conditional on Yt

Consider the following conditional distributions:

R1y5(Rt jYt5Dy);N(b1a[Dy],s
2
«

1a2s2
x[12v21]) and

R2y5(Rt jYt52Dy);N(b1a[2Dy],s
2
«1a2s2

x[12v21]),

where R6y is shorthand for the distribution of Rt condi-

tional onYt56Dy, andwhereDy represents ameasure of

the separation between the two conditional distributions.

As the two distributionsR6y are normally distributed, the

probability that R1y is less than R2y can be evaluated as

P(R1y,R2y)5 12F

0
B@ mR1y 2mR2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
R1y 1s2

R2y

q
1
CA (A3)

where F(Z) is the cumulative probability function for

the standard Gaussian distribution.

If we express Dy as function of the number of stan-

dard deviations (c) of sy (i.e., Dy 5 csy 5 csxv
21/2), we

can refer to c as the ‘‘degree of separation.’’ Hence, the

numerator of Eq. (A3) can be rewritten as

mR1y 2mR2y 5 2acsxv
21/2 .

To further simplify the numerator, we assume that the

Xt have been standardized so that sx 5 1. As a repre-

sents the coefficient of the linear relationship between

Xt and Rt, while s« represents the noise in this re-

lationship, we define a pseudo signal-to-noise ratio as

d 5 a/s«. Using these relationships, the denominator in

Eq. (A3) can be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
R1y 1s2

R2y

q
5 a

ffiffiffi
2

p �
1

d2
1

�
12

1

v

��1/2

so that Eq. (A3) simplifies to

P(R1y,R2y)5 12F

�
c

�
2

w(d221 1)2 1

�1/2�
. (A4)

e. Stratified distributions of Rt

The probability density function of (Rt jXt2 Ix) can be

derived using Bayes’s theorem as follows:

p(Rt 5 r jXt 2 Ix)5
p(Xt 2 Ix jRt 5 r)p(Rt 5 r)

p(Xt 2 Ix)
.

In this expression, the denominator and the second

term of the numerator are known since the marginal

distributions of Rt and Xt can be deduced directly from

Eq. (A1). To compute the first term in the numerator,

one needs to derive the distribution of (Xt jRt 5 r). By

applying Eq. (A2),

m
(X

t
jR

t
5r) 5 01 as2

x(a
2s2

x1s2
«)

21(r2 b)

5
a(r2 b)

a21s2
«s

22
x

and
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S
(X

t
jR

t
5r) 5s2

x 2 as2
x(a

2s2
x1s2

«)
21as2

x

5s2
x

�
12

a2

a21s2
«s

22
x

�
.

The pdf of (Rt jXt 2 Ix) is hence equal to

p(Rt 5 r jXt 2 Ix)

5
F(Ix;m(X

t
jR

t
5r),S(X

t
jR

t
5r))f (r; b, a

2s2
x1s2

«)

F(Ix; 0,s
2
x)

,

where we introduced the following notation:

d f(u; m, s2) is the pdf of a univariate normal

variable with mean m and variance s2, evaluated

at u, and
d F(I;m,S) is the probability that a multivariate normal

variable with mean m and variance S belongs to I.

Note that there is no explicit formula for this proba-

bility, but it can be approximated numerically (see,

e.g., package mvtnorm in R).

With a similar reasoning, the pdf of (Rt jXt2 Ix,Yt2 Iy) is

p(Rt 5 r jXt 2 Ix,Yt 2 Iy)5
p(Xt 2 Ix,Yt 2 Iy jRt 5 r)p(Rt 5 r)

p(Xt 2 Ix,Yt 2 Iy)

5
F(Ix3 Iy;m(X

t
,Y

t
jR

t
5r),S(X

t
,Y

t
jR

t
5r))f (r;b, a

2s2
x1s2

«)

F(Ix3 Iy;m(X
t
,Y

t
)
,S

(X
t
,Y

t
)
)

, (A5)

where

m
(X

t
,Y

t
)
5 (0, 0),

S
(X

t
,Y

t
)
5s2

x

�
1 v21

v21 v21

�
,

m
(X

t
,Y

t
jR

t
5r) 5

 
0

0

!
1s2

x

 
a

av21

!
(a2s2

x1s2
«)

21(r2 b)

5
a

a21s2
«s

22
x

"
r2 b

(r2 b)v21

#
, and

S
(X

t
,Y

t
jR

t
5r) 5s2

x

 
1 v21

v21 v21

!
2s2

x

 
a

av21

!
(a2s2

x1s2
«)

21s2
x

 
a

av21

!T

5s2
x

 
1 v21

v21 v21

!
2

s2
x

a2 1s2
«s

22
x

 
a2 a2v21

a2v21 a2v22

!

5s2
x

" 
1 v21

v21 v21

!
2

a2

a21s2
«s

22
x

 
1 v21

v21 v22

!#
.

f. Distribution of Rt given Xt in a modulation
model

The following statistical model is assumed in this

section:

Rt 5

�
m0 1m1Xt 1 «t , if Yt . 0

m01 (m1 1g)Xt 1 «t , if Yt # 0
.

The objective is to derive the distribution of Rt condi-

tional on the value taken by Xt. This can be done by

applying the law of total probability as follows:

p(Rt 5 r jXt 5 x)

5 p(Rt 5 r jXt 5 x,Yt . 0)p(Yt . 0 jXt 5 x)

1p(Rt 5 r jXt 5 x,Yt # 0)p(Yt # 0 jXt 5 x) .

To compute the terms of this equation, one needs to

determine the distribution of Yt conditional on Xt 5 x.

By applying Eq. (A2),

m
(Y

t
jX

t
5x) 5 01

s2
x

v
(s2

x)
21x5

x

v
and

S
(Y

t
jX

t
5x) 5

s2
x

v
2

s2
x

v
(s2

x)
21s

2
x

v
5

v2 1

v2
s2
x .

Consequently,
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p(Rt 5 r jXt 5 x)5 f (r;m01m1x,s
2
«)[12F(0;m

(Y
t
jX

t
5x),S(Y

t
jX

t
5x))]

1 f (r;m01 [m1 1g]x,s2
«)F(0;m(Y

t
jX

t
5x),S(Y

t
jX

t
5x))

5 f (r;m01m1x,s
2
«)[12p(x)]1 f (r;m01 [m11 g]x,s2

«)p(x) ,

where F(u;m, s2) is the cumulative distribution function

of a univariate normal variable with mean m and vari-

ance s2, evaluated at u.

The distribution of (Rt jXt5 x) is therefore a mixture of

two normal distributions. Its expectation can be derived as

E[Rt jXt 5 x]5 (m01m1x)[12p(x)]

1 [m01 (m11 g)x]p(x)

5m01m1x1 gxp(x) .

g. Rewriting of the three formulations as linear
statistical models

Using the notation

1fZ
t
.0g 5

�
1, if Zt . 0

0, otherwise
,

the models can be rewritten as follows:

stratified formulation,

Rt 5m01m1(1fENSO
t
.0g 2 1fENSO

t
#0g)

1 g(1fENSO
t
.0,IPO

t
.0g 2 1fENSO

t
#0,IPO

t
.0g)1 «t ,

(A6)

linear formulation,

Rt 5m0 1m1ENSOt

1 g1fIPO
t
.0gENSOt 1 «t, and (A7)

piecewise linear formulation,

Rt 5m0 1m11fENSO
t
#0gENSOt 1g11fENSO

t
#0,IPO

t
.0gENSOt

1m21fENSO
t
.0gENSOt 1 g21fENSO

t
.0,IPO

t
.0gENSOt 1 «t . (A8)
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