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Abstract

In many real world datasets both the individual and coordinated action
of features may be relevant for class identification. In this paper, a compu-
tational strategy for relevant feature selection based on the characterization
of redundant or complementary features is proposed. The characterization
is achieved using fuzzy measures and an interaction index computed from
fuzzy measure coefficients. Fuzzy measure identification requires raw data to
be turned into confidence degrees. This key step is carried out considering
the distributions of feature values across all the classes. Fuzzy measure co-
efficients are then estimated with an improved version of the Heuristic Least
Mean Squares algorithm that includes an efficient management of untouched
coefficients. Then, a generalization of the Shapley index for an arbitrary
number of features is used. Simulations experiments on synthetic datasets
are performed to study the behavior of this generalized interaction index. For
extreme datasets, containing either redundant or complementary features as
well as noise, the index value is defined by mathematical formula. This re-
sult is used to motivate feature selection guidelines that take into account
feature interactions. Experimental results on benchmark datasets show that
the proposal allows for the design of compact, interpretable and competitive
classification models.
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1. Introduction

Feature selection is a critical task in classification problems, especially
when dealing with noisy data of complex structure. Common feature selec-
tion techniques rely on individual feature evaluations [1] assuming indepen-
dence between features. However, this condition is rarely met in practice
[2, 3]. For example, in micro-array datasets, the expression of certain genes,
known to be biologically important for class differentiation, may appear rel-
evant only when evaluated within groups [4]. This suggests that in complex
data domains, even if the support of an individual feature may be small, its
contribution to the support of feature subsets may be significant.

Diverse techniques have been proposed for evaluating the support of fea-
ture subsets in classification problems, including genetic algorithms [5], sta-
tistical methods based on mutual information [6] and fuzzy measures [7, 8, 9].
A main drawback of genetic approaches is that they cannot explain the se-
lection criteria; this drawback is partially solved by mutual information ap-
proaches able to explain the selection of feature pairs. On the other hand,
fuzzy measures naturally characterize the relevance of feature subsets of ar-
bitrary cardinality for general decision making problems. Hence, they are
good candidates for tackling the feature selection and classification problem.

In practice, the estimation of fuzzy measures for n features entails the
identification of 2n coefficients. For small values of n, such identification
problem may be solved by a domain expert. However, when n gets moderate
or large, machine learning procedures are required. Both genetic algorithms
[10, 11, 12, 13] and gradient descent approaches [14, 15, 16, 17, 18] have
been considered in literature. The Heuristic Least Mean Squares (HLMS)
algorithm [15, 19, 20], based on the Choquet Integral, is a representative
of the gradient methods. They exhibit two important properties, the trace-
ability of fuzzy measure estimation due to the lack of random steps and the
efficient use of training data [21]. They also need much less space. While
multiple instances of fuzzy measure coefficients are required by genetic algo-
rithms, HLMS uses only one. Furthermore, the HLMS heuristic based on
the error function minimization of individual samples, usually leads to less
extreme solutions [22]. We note, however, that the original HLMS formu-
lation has some convergence problems and thus, its revised HLMSr version
[20] is recommended.

Fuzzy measures weight all the possible combinations subsets. Hence,
to absolutely characterize a feature subset we need to consider its support
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across all subsets. This can be accomplished by computing the generalized
interaction index proposed in [23], hereafter called GI. Its computation
requires reliable fuzzy measures and thus, special attention must be paid to
raw data preprocessing steps and to the fuzzy measures identification process
itself.

In this paper, a robust feature selection strategy, based on the GI charac-
terization of feature subsets regarding their relevance to classification prob-
lems, is proposed. With this intention, we first analyze GI results when
standard raw data conversion procedure is used for the HLMSr estimation
of fuzzy measures. As a result of this study, a raw data conversion proce-
dure based on normalized confidence degrees and an improved version of the
HLMSr algorithm are proposed. Aiming to understand some unexpected
GI results previously reported in literature [14, 23], we study the GI behav-
ior on homogeneous datasets, i.e., datasets where, in each class, all features
are either redundant or complementary possibly including noisy features. As
a result of this study, some guidelines for the efficient GI characterization of
feature subsets in homogeneous datasets are introduced.

The outline of the paper is as follows. In Section 2, fuzzy measures, the
discrete Choquet integral and GI are briefly reviewed. Then, fuzzy measure
identification process with HLMSr is analyzed, and some modifications to
the algorithm are introduced in Section 3. Section 4 deals with the conversion
from raw data into confidence degrees. In Section 5, the GI behavior is
studied yielding two theorems (proofs are in the appendix). The usefulness of
feature subset selection guided byGI characterizations is evaluated in Section
6 with UCI1 benchmark classification problems. Section 7 summarizes the
main conclusions and perspectives.

2. Preliminaries

This section introduces basic concepts related to fuzzy measures, to the
discrete Choquet integral and to the GI index. The reader may refer to [8,
9, 24] for further details. Let us consider a finite set X = {x1, . . . , xi, . . . , xn}
and let P(X) denote its power set.

1http://archive.ics.uci.edu/ml/
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2.1. Fuzzy measures and the discrete Choquet integral

A fuzzy measure (FM) is a set function µ : P(X) → [0, 1] fulfilling the
following two axioms:

1. Normalization: µ(∅) = 0, µ(X) = 1

2. Monotonicity: A ⊆ B ⊆ X ⇒ µ(A) ≤ µ(B)

While the former allows for fuzzy measure comparisons, the latter ensures
that adding any element to a given subset does not make it less informative.

Fuzzy measures µ : P(X) → [0, 1] are used in the definition of discrete
Choquet integrals. For a given f : X → <+, its discrete Choquet integral C
with respect to a fuzzy measure µ : P(X)→ [0, 1] is defined as follows:

Cµ
(
f(x1), .., f(xn)

)
,

n∑
i=1

(
f(x(i))− f(x(i−1))

)
µ(A(i)) (1)

where x(·) is the rearrangement induced by f(xi), i = 1, . . . , n, sorted in as-
cending order, i.e., f(x(1)) < · · · < f(x(n)) and A(i) = {x(i), x(i+1), . . . , x(n)};
by convention f(x(0)) = 0.

2.2. The GI characterization of features subsets

In the field of cooperative game theory, the Shapley index can be used to
characterize the importance of individual features [25]:

φi =
∑

K⊆X\i

(n− |K| − 1)!|K|!
n!

(
µ(K ∪ {i})− µ(K)

)
(2)

where | · | indicates the cardinality, and 0!=1 as usual. The Shapley value
of µ is the vector φ = [φ1 · · ·φn] which has the property to be linear with
respect to µ, and to satisfy:

n∑
i=1

φi = µ(X) = 1 (3)

This index has been generalized, first to characterize the importance of
feature pairs [26] and finally subsets of arbitrary cardinality [23]:

GI(A) =
∑

K⊆Y \A

ξ(K)
∑
B⊆A

(−1)|A|−|B|µ(K ∪B) (4)
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where

ξ(K) =
(n− |K| − |A|)!|K|!

(n− |A|+ 1)!

Note that GI(A) reduces to the Interaction index when only two elements
belong to A and it further reduces to Shapley index when A is a singleton.
While the Shapley index is known to range in [0, 1] and the Interaction index
in [−1, 1], the problem of characterizing the GI range for feature subsets of
arbitrary cardinality remains open.

3. Improving HLMSr for reliable fuzzy measure identification

To accomplish feature characterization and selection based on GI, a reli-
able fuzzy measure estimation is needed. A promising alternative is the im-
proved version of HLMS [15] proposed by the authors in [20] called HLMSr.
Briefly, HLMSr is an iterative supervised gradient-based algorithm for the
identification of fuzzy measures. The algorithm starts from a set of m train-
ing samples involving n features and a target function T . At the beginning,
fuzzy measures coefficients u are initialized to the so-called equilibrium state
[15]. This initialization strategy reduces the Choquet integral to a simple
arithmetic mean. At each iteration step HLMSr updates the FM coefficient
values, for each sample xj with j = 1, ...,m, according to the difference be-
tween the target T j and the current Choquet integral (Line 12). A given
sample always uses the same coefficients to compute the integral, one for
each subset size between 1 and n− 1. The coefficient associated to a subset
of size l is called ul.

The revised version used in this paper counts with some improvements
with respect to the initial version [15]. Firstly, the update formula (Line
12) has been modified to get a true gradient and allows for coefficients to
converge to the expected value with synthetic data sets. This modification
is discussed in detail in [20]. Secondly, the management of untouched coef-
ficients is changed. There might be coefficients which do not participate in
any integral computation. As their initial value may limit the evolution of
neighboring coefficients, they are identified (Line 6), and not taken into con-
sideration for monotonicity checking (Line 13). The value of an untouched
coefficient ul is set at the end of the algorithm (Line 18). The values fulfilling
the monotonicity condition verify Eq.(5):

5

Author-produced version of the article published in Fuzzy Sets and Systems, 2015, N°270, p. 74-89 
The original publication is available at http://www.sciencedirect.com  
http://dx.doi.org/10.1016/j.fss.2014.09.015



max{u(l−1)} ≤ ul ≤ min{u(l+1)} (5)

These coefficients are set to the minimal authorized value in order not
to influence GI values. Finally, HLMSr proved sensitive to the default
lexicographic order of equal valued features used in the computation of the
core Choquet integral. In this case, only the coefficient of the first feature
is updated. Since there is no reason to use a lexicographic order of features
values, equal feature values are randomly ordered. As a result, features
providing the same information are now considered equally relevant.

Algorithm 1 Revised HLMS

1: Input: Training dataset D with samples (xj, T j), j = 1, ...,m
2: Output: Fuzzy measure coefficients u = [up] , p ∈ P(X)
3: for p ∈ P(X) do {Initialization}
4: up = |p|

|X|
5: end for
6: Identify Untouched(D)
7: repeat
8: examples ← random(1 : m) {Sensitivity to data presentation order}
9: for j ∈ examples do

10: ej = Cu(xj)− T j {Individual error calculation}
11: for l ∈ (1 : n− 1) do

12: ul = ul − α× ej

emax
× (xj(n−l+1) − x

j
(n−l)) {Coefficient update}

13: Neighbors Monotonicity (ul) {Monotonicity check }
14: end for
15: end for

16: E ←
√

1
m

m∑
j=1

(Cu(xj)− T j)2 {Error calculation}

17: until Stop Criterion(E)
18: Untouched Monotonicity(D, u) {Final monotonicity correction}

The inputs of HLMSr are commensurable confidence degrees. The first
step of the feature characterization process has to transform raw feature
values into confidence degrees.
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4. Raw data to confidence degree conversion

Raw data cannot be used for fuzzy measure identification using HLMSr.
Indeed, what is needed is commensurable information, i.e., the values must
be in the same scale and have a common meaning, for instance the higher the
more likely to belong to the class (a detailed discussion can be found in [27]).
Many methods for raw data conversion have been proposed in literature,
including Parzen Windows, possibilistic histograms and Gaussian densities
[21]. Among these proposals, Gaussian densities appear as a good option due
to their conceptual simplicity and low computational complexity. They have
been used, e.g. for image features aggregation [28].

Using Gaussian densities, the relevance of an individual feature value for
the identification of a given class is taken from the probability density dis-
tribution of feature values within the class. The transformed feature value
is then interpreted as a partial evidence that the corresponding sample be-
longs to the given class: the higher the transformed feature value, the higher
the evidence provided by the feature that the sample belongs to the given
class. Overall sample support to a given class can be then obtained by the
aggregation of partial evidences, e.g., by means of the discrete Choquet in-
tegral. Though useful and intuitive, the Gaussian transformation exhibits
some problems when dealing with feature values falling in distribution tails.
For example, let us consider the synthetic classification problem shown in
Figure 1. This problem involves two relevant features (V1 and V2) and one
noisy feature (V3). For class 1, features V1 and V2 are complementary, since
both are needed to classify the samples. On the other hand, they are redun-
dant for class 2. Although these observations are acceptable reflected by GI
results shown in Table 4, HLMSr classification results are poor: a detailed
inspection of misclassified samples shows that the problem is at the small
relevance assigned to feature values falling in the Gaussian tails.

7

Author-produced version of the article published in Fuzzy Sets and Systems, 2015, N°270, p. 74-89 
The original publication is available at http://www.sciencedirect.com  
http://dx.doi.org/10.1016/j.fss.2014.09.015



−4 −2 0 2 4

−4

−2

0

2

4

V1

V
2

x

x
x

xx
x

Figure 1: The synthetic Atom
dataset in the V1-V2 projection.
Class 1 is plotted with triangles
(nucleon) and class 2 with circles
(ring). Misclassified samples are
marked with crosses.

Coalition Class 1 Class 2
V1 0.52 0.22
V2 0.33 0.69
V3 0.14 0.07
V1-V2 0.61 -0.41
V1-V3 0.15 0.06
V2-V3 -0.24 -0.11

Table 1: GI results for the Atom
dataset. For class 1, the GI in-
dicates that both V1 and V2 are
relevant and quite complementary.
For class 2, the GI indicates that
feature V2 is more relevant than
V1 and that they are quite redun-
dant.

Actually, what is happening is that some transformed feature values are
being underestimated, i.e., although the absolute relevance of a feature value
for a given class may be low, it should be consider relevant if being absolutely
irrelevant for remaining classes. This observation suggests that raw data
conversion processes must also take into account the distribution of features
across all classes. Hence, the following process to convert raw data into
confidence degrees is proposed:

x̊jik =
x̃jik

{
p∑
s=1

x̃jis}
(6)

where x̃jis is the frequency of the xj raw value in the Gaussian distribution
of feature i for class s. x̊jik represents the normalized confidence degree over
all the classes. This normalization remarkably improved classification results
(100% of accuracy for the Atom dataset). However, anomalous GI results
were still observed for completely redundant features, i.e., with features hav-
ing exactly the same values. Although, these type of features rarely occur in
practice, they are frequent after raw data conversion into confidence degrees.
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Let us consider the data shown in Figure 2. The problem involves two
completely relevant redundant features (V 1 and V 2) as well as a noisy one,
V 3, not shown). For both classes, any of the V 1 or V 2 features is able to
classify the samples. This leads to binary confidence degrees, either {1, 1}
or {0, 0} for the pair V 1-V 2. In this case only the pair, and none of the
singletons, would be updated, yielding unexpected GI values.

This problem is solved by introducing a small amount of random noise,
ε = N (0, 0.01):

x̊jik =
x̃jik

{
p∑
s=1

x̃jis}+ ε

(7)

Thanks to the noise introduction, the GI results, shown in Table 4, are
the expected ones and the classification is correctly achieved.

0 1 2 3 4

0

1

2

3

4

V1

V
2

Figure 2: Synthetic Balls dataset
with the V1-V2 projection. Class
1 is plotted with triangles (top)
and class 2 with circles (bottom).

Coalition Class 1 Class 2
V1 0.5 0.5
V2 0.5 0.5
V3 0 0
V1-V2 -1 -1
V1-V3 0 0
V2-V3 0 0

Table 2: GI results for the Balls
dataset. For class 1, the GI in-
dicates that both features V1 and
V2 relevant and that they are com-
pletely redundant.

This study highlights the importance of this preprocessing step. Now that
fuzzy measures seem to be correctly identified, the next step is to analyze
the GI behavior.
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5. Characterization of feature subsets by fuzzy measures and the
GI index

To gain insight into the GI behavior, simulations were performed using a
synthetic Master dataset with seven normalized and commensurable features,
i.e., normalized confidence degrees, A1 to A7, and one binary target T (see
Table 3). It can be observed that features A1 and A2 are redundant for class
1 (T=1) since either A1 or A2 can be used for class identification. Features
A3 and A4 are complementary for class 1. Finally, features A5 to A7 can be
considered noise for both classes. From the Master data, three datasets, Inf ,
Red and Comp. They correspond to typical situations like noise, redundancy
or complementariness. The Inf dataset, A1, A5 to A7 and T , contains only
one informative feature, A1. The Red one, A1, A2, A5, A6 and T , includes
two redundant features, A1 and A2. In the Comp dataset, A3, A4, A5, A6
and T , A3 and A4 are complementary for class 1. These three datasets are
used to analyze the effectiveness of HLMSr for fuzzy measure estimation and
the posterior computation of GI values. In these experiments, HLMSr was
set to work with a maximum of 1000 iterations and a learning rate α = 0.01.

Sample A1 A2 A3 A4 A5 A6 A7 T
1 0.60 0.80 0.80 0.90 0.55 0.33 0.53 1
2 0.60 0.55 0.80 0.80 0.97 0.01 0.29 1
3 0.70 0.90 0.75 0.80 0.72 0.27 0.17 1
4 0.60 0.80 0.70 0.60 0.63 0.30 0.56 1
5 0.75 0.90 0.80 0.80 0.04 0.68 0.05 1
6 0.65 0.60 0.90 0.90 0.00 0.47 0.03 1
7 0.80 0.75 0.70 0.80 0.96 0.65 0.07 1
8 0.70 0.90 0.80 0.70 0.96 0.81 0.16 1
9 0.00 0.10 0.10 0.50 0.41 0.17 0.28 0
10 0.10 0.20 0.40 0.10 0.78 0.35 0.46 0
11 0.20 0.30 0.50 0.15 0.17 0.64 0.57 0
12 0.10 0.20 0.10 0.60 0.45 0.73 0.18 0
13 0.20 0.10 0.50 0.20 0.48 0.68 0.47 0
14 0.30 0.35 0.60 0.10 0.08 0.49 0.60 0
15 0.10 0.20 0.70 0.20 0.65 0.92 0.04 0
16 0.20 0.25 0.10 0.80 0.61 0.25 0.50 0

Table 3: The synthetic Master dataset after relative raw data conversion
across 16 samples. Columns A1 to A7 correspond to features values and
column T to the target value.
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Results on the Inf dataset are shown in Table 4. Fuzzy measure co-
efficients turn to be binary valued, being one for the informative feature
A1, and for all subsets containing it, in agreement with the monotonicity
constraint. As expected, they are zero for all subsets including only noisy
features. Although being informative, fuzzy measure coefficient may be dif-
ficult to analyze due to the monotonicity constraint. The GI values make
the analysis easy: in this case, the only non null value is the one of the
informative feature.

FM set A1 A5 A6 A7 A1-A5 A1-A6 A1-A7 A5-A6 A5-A7 A6-A7 A1-A5-A6 A1-A5-A7 A1-A6-A7 A5-A6-A7
FM value 1 0 0 0 1 1 1 0 0 0 1 1 1 0
GI 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Inf dataset: Fuzzy measure (FM) coefficients and GI values

Results on the Red dataset are shown in Table 5. As expected, Fuzzy
measure coefficients are zero for all combinations of noisy features. For sub-
sets containing features A1 or A2 they seem to indicate the relevance of these
features but do not directly designate them. Furthermore, no insight about
their interaction can be inferred. GI values help. For singletons, the signif-
icant GI values, known to range in [0, 1], are those of features A1 and A2.
GI(A2) > GI(A1) means that the evidence brought by A2 is greater than
the one by A1, this is in agreement with the data. Only one pair is given
a significant GI value, known to range in [−1, 1], A1-A2. The negative sign
characterizes this subset as redundant. For subsets of cardinality three, the
GI shows some type of interaction in A1-A2-A5. This is in agreement with
the residual correlation between A5-A1 and A5-A2 regarding class 1.

FM set A1 A2 A5 A6 A1-A2 A1-A5 A1-A6 A2-A5 A2-A6 A5-A6 A1-A2-A5 A1-A2-A6 A1-A5-A6 A2-A5-A6
FM Value 0.45 0.93 0 0 1 0.72 0.45 0.93 0.93 0 1 1 0.72 0.93
GI 0.30 0.64 0.05 0 -0.52 0.13 0 -0.13 0 0 -0.27 0 0 0.0

Table 5: Red dataset: Fuzzy measure (FM) coefficients and GI values

Results on the Comp dataset are shown in Table 6. Fuzzy measure coeffi-
cients are one only for all subsets containing the complementary pair A3-A4
and zero for the remaining subsets including singletons A3 and A4 since nei-
ther A3 nor A4 can be individually used to identify class 1. GI values are the
same for both singletons, indicating their equal relevance, and it is also one
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for the pair. This positive interaction characterizes the complementariness
of the two features.

FM set A3 A4 A5 A6 A3-A4 A3-A5 A3-A6 A4-A5 A4-A6 A5-A6 A3-A4-A5 A3-A4-A6 A3-A5-A6 A4-A5-A6
FM Value 0 0 0 0 1 0 0 0 0 0 1 1 0 0
GI 0.5 0.5 0 0 1 0 0 0 0 0 0 0 0 0

Table 6: Comp dataset: Fuzzy measure (FM) coefficients and GI values

Above mentioned results confirm that the GI is positive valued for com-
plementary feature pairs and negatively valued for complementary ones. In
addition, they suggest that GI characterizes as relevant all subsets in it power
set. These observations hold for higher cardinality. For instance, if subset
A1-A2-A3 is complementary, GI also identify subsets A1-A2, A1-A3, A2-A3
as complementary, and the three singletons as relevant. Moreover, the sign
of GI for both complementary and redundant sets of features of cardinality
three was positive, suggesting an alternating behavior for redundant feature
subsets.

These trends can be formalized in extreme situations, where a subset
of features are fully redundant or complementary while the remaining only
bring noise. The two following theorems are proved (the proof is given in the
Appendix ):

Theorem 1 - Complementary features
Let N be a dataset with n features among which, for a given class, c of

them are fully complementary and n−c are noise. Let C be the subset defined
by the c fully complementary features. The GI for power set members of C
with cardinality a ∈ {1, . . . , c} is:

GI(a) =
1

c− a+ 1

This yields 1/c for each of the c singletons and 1 for the whole feature subset
C.

Theorem 2 - Redundant features
Let N be a dataset with n features among which, for a given class, r of

them are fully redundant and n − r are noise. Let R be the subset defined
by the r fully redundant features. The GI for power set members of R with
cardinality a ∈ {1, . . . , r} is:
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GI(a) =
(−1)a+1

r − a+ 1

This yields 1/r for each of the r singletons, 1 for the whole feature subset R
when r is odd and −1 when r is even.

The above results are used to propose some feature selection guidelines.

Feature selection guidelines using GI

Singletons: Relevant individual features are those with GI >
1

n
[21].

Pairs: In this case, the union of complementary feature pairs, i.e., those with
a significant positive GI, must be enriched with features coming from redun-
dant feature pairs, i.e., those with a significant negative GI. This can be
accomplished by checking that at least one of the features in each redundant
feature pair is in the final set of selected features. A reasonable choice for GI
thresholds is to set them to the mid value of the GI of fully complementary
or redundant feature pairs already known to be ±1, i.e., GI ≥ 0.5 for the
complementary case and GI ≤ −0.5 for the redundant one. Alternatively,
they can be set according to expert knowledge, as done in [14].

Higher cardinality sets: The pair selection reasoning can be extended to
sets of higher cardinality. As follows from Theorems 1 and 2, the GI of fully
complementary or redundant feature set of arbitrary cardinality is also ±1
and thus, setting GI threshold to ±0.5 remains valid.

To complete the classification process, once the Choquet integrals are
computed for all the classes, using the selected features, the sample is as-
signed the class label, k, for which the support of the FM is maximum, as
shown in Eq.(8):

k = arg max
k∈1,...,p

Cµk (8)

6. Experimental results

The fuzzy measure and interaction index approach for feature selection
and classification was evaluated on three UCI benchmark datasets (see Table
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7). The Iris dataset is a well known dataset, easy to analyze, and allows for
a fair comparison with results reported in [21].

#Features #Samples #Classes
Iris 4 150 3
Breast Cancer 9 683 2
Wine 13 178 3

Table 7: Dataset characteristics

6.1. Experimental protocol

Datasets were first pre-processed with the raw data conversion method
described in Section 4. Fuzzy measure coefficients required for the computa-
tion of the GI were estimated with the modified HLMSr algorithm described
in Section 3. For this purpose, the HLMSr algorithm was set to work with
a maximum of 2000 iterations and a learning rate α = 0.05.

Classification performance was evaluated by means of the classification
accuracy in 5-Fold cross validation experiments taking care that the original
proportion of samples per class was preserved. Finally, the robustness CI
classification under GI feature selection was also evaluated. For this purpose,
features were ranked using the sum of their positions in the five GI ranks.
This global ranking was then used to measure CI classification accuracy using
feature subsets of increasing cardinality. GI feature selection results were
compared with those obtained with the SVM -RFE [29] feature selection
technique based on a core SVM classifier set to work with a radial kernel
and default constant complexity C=1. Features selected by the GI and
SVM -RFE techniques were used to evaluate the performance of SVM and
CI classifiers. In these evaluations, the number of GI selected features was
used as a cut-off for SVM -RFE.

6.2. Iris dataset

As shown in Table 8, fuzzy measure coefficients of V 1, V 2 and V 1-V 2 are
null in all classes suggesting that they are irrelevant for the classification
task. For class 1, the GI = −1 for coalition V 3-V 4 points out that these
features are completely redundant, i.e., only one of them is needed. This is
confirmed by the data projection in V 3-V 4, shown in Figure 3, and by the
high relevance, GI = 0.5, of individual features V 3 and V 4.
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Figure 3: Iris data set. Class 1 is plotted with circles , Class 2 with triangles
and Class 3 with plus sign

For class 3, the GI = −0.56 for coalition V 3-V 4 points out that these
features are redundant for the class. For classes 2 and 3, the GI of feature
V 4 is higher than that of V 3, pointing out that V 4 is more relevant than V 3
for these classes.

Fuzzy measures GI values
Feature set Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
V 1 0 0 0 0 0.01 0.01
V 2 0 0 0 0 0 0
V 3 1 0.21 0.61 0.5 0.29 0.33
V 4 1 0.66 0.91 0.5 0.71 0.66
V 1-V 2 0 0 0 0 0 -0.01
V 1-V 3 1 0.26 0.63 0 0.02 0
V 1-V 4 1 0.66 0.96 0 -0.02 0.01
V 2-V 3 1 0.21 0.61 0 0 -0.01
V 2-V 4 1 0.66 0.96 0 0 0.02
V 3-V 4 1 1 1 -1 0.11 -0.56
V 1-V 2-V 3 1 0.26 0.63 0 0 0.02
V 1-V 2-V 4 1 0.66 0.96 0 0 -0.02
V 1-V 3-V 4 1 1 1 0 0 -0.04
V 2-V 3-V 4 1 1 1 0 0 -0.02

Table 8: Iris - Fuzzy measure coefficients of feature subsets together with
their GI values

A comparison of these GI results with those reported in [21] shows that
feature singletons are assigned roughly similar relevance values, except for V 1
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and V 2 which relevance values are close to zero in our case. When considering
feature pairs, the highest absolute GI value in [21] is met for coalition V 1-V 3
in class 2, a result quite difficult to explain. Similarly, coalition V 3− V 4 in
class 1 is assigned GI = −0.05 suggesting the lack of interaction between
both features in this class, a result quite difficult to explain when observing
the data.

Ranking SVM -RFE GI
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

1 V3 V4 V3 V4 V3 V4* V4* V4* V4* V4*
2 V4 V3 V4 V3 V4 V3* V3* V3* V3* V3*
3 V1 V1 V1 V1 V2 V1 V1 V1 V1 V1
4 V2 V2 V2 V2 V1 V2 V2 V2 V2 V2
# Misclassified by SVM 1 2 1 1 1 2 0 1 1 1
# Misclassified by CI 2 1 1 1 1 2 0 1 1 1

Table 9: Iris - Features rankings induced by the SVM − RFE and the GI
methods. Features relevant to at least one class in the GI method are marked
with ∗. The number of misclassified samples by SVM and CI classifiers is
shown at the bottom of each of partition, from P1 to P5.

GI and SVM -RFE feature selection results are shown in Table 9. In
both methods, features V 3 and V 4 are more relevant than V 1 and V 2 for the
classification. Although classification errors and selected features are roughly
similar for both approaches, in agreement with the 96.7 % reported in [21]
using all features, an interpretable feature characterization is additionally
provided by the GI approach.

6.3. Breast Cancer dataset

This dataset has been widely used in scientific literature. To our knowl-
edge, the best classification accuracy results have been obtained with IncNet
(97.1%) [30]. With CI classifiers, the best reported classification accuracy is
91.5% [31]. As shown in Table 10, GI feature selection and CI classification
yield a classification accuracy of 97.5%. Thanks to the untouched coefficient
management in HLMSr around 425 coefficients are identified on average
over the different classes (512 for HLMS).

The four most significant features according SVM -RFE (V 1, V 3, V 6 and
V 7) belong to set of relevant features selected by GI (Table 10). It is worth
noting that GI selected features are also relevant for SVM as indicated by
the reduction of misclassified samples. Stability of CI classification under
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Ranking SV M-RFE GI
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

1 V3 V6 V3 V3 V6 V6* V6* V6* V6* V6*
2 V6 V7 V1 V1 V1 V3* V1* V7* V3* V3*
3 V1 V1 V6 V6 V4 V8 V3* V1* V1* V7*
4 V7 V9 V8 V8 V7 V1 V7 V3* V9* V9*
5 V8 V4 V7 V9 V3 V2 V2 V2 V2 V4
6 V9 V8 V4 V7 V9 V5 V9 V8 V8 V8
7 V4 V2 V5 V4 V8 V9 V4 V4 V4 V1
8 V5 V3 V9 V5 V5 V7 V5 V9 V7 V5
9 V2 V5 V2 V2 V2 V4 V8 V5 V5 V2
# Misclassified by SVM 5 9 10 3 6 5 6 7 2 6
# Misclassified by CI 7 11 9 5 6 7 4 6 4 6

Table 10: Breast Cancer - Features rankings induced by the SVM − RFE
and the GI methods. Features relevant to at least one class in the GI method
are marked with ∗. The number of misclassified samples by SVM and CI
classifiers is shown at the bottom of each of partition, from P1 to P5.

GI feature selection with a global rank 〈 V 6, V 1, V 3, V 7, V 9, V 2, V 8, V 4,
V 5 〉 is shown Fig. 4. The classification error stabilizes after considering 7
out of 9 features.
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Figure 4: Classification error (%) of CI classifiers under GI feature selection
with an increasing number of features in order of relevance for Breast Cancer
dataset(left) and Wine dataset (right).

6.4. Wine dataset

As reported in [32], classes in the wine dataset are separable. However,
only the regularized discriminant analysis method has been able to accom-
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plish 100% classification accuracy. As shown in Table 11, using GI feature
selection and CI classification, a classification accuracy of 98.5% can be ac-
complished. Thanks to modifications in HLMSr relative to the treatment
of untouched coefficients, on average over the different classes, around 840
coefficients are identified (8192 for HLMS).

Ranking SV M-RFE GI
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

1 V7 V7 V7 V7 V7 V13* V13* V13* V13* V13*
2 V11 V1 V1 V12 V1 V7* V7* V7 * V7* V10*
3 V1 V13 V4 V13 V12 V10* V10* V10* V10* V7*
4 V13 V12 V3 V1 V13 V11* V11* V11* V12* V11*
5 V12 V11 V12 V11 V4 V2* V1* V12* V1* V12*
6 V4 V3 V13 V4 V3 V1* V12* V1* V11* V1*
7 V3 V4 V11 V3 V10 V12* V2* V3* V2 V2
8 V2 V10 V9 V10 V9 V4 V4 V2 V3 V4
9 V10 V8 V10 V2 V2 V6 V5 V6 V5 V5
10 V6 V6 V6 V6 V11 V5 V6 V4 V4 V6
11 V8 V2 V2 V9 V5 V3 V3 V5 V6 V3
12 V9 V5 V8 V8 V6 V9 V9 V9 V9 V9
13 V5 V9 V5 V5 V8 V8 V8 V8 V8 V8
# Misclassified by SVM 1 1 0 2 1 1 1 0 1 1
# Misclassified by CI 1 4 1 2 3 1 3 0 0 3

Table 11: Wine - Features rankings induced by the SVM−RFE and the GI
methods. Features relevant to at least one class in the GI method are marked
with ∗. The number of misclassified samples by SVM and CI classifiers is
shown at the bottom of each of partition, from P1 to P5.

The four most significant features according SVM -RFE, (V 7, V 1, V 12
and V 13) belong to set of relevant features selected by GI. As with Breast
cancer, GI selected features are also good for SVM classification but the con-
verse does not hold. Stability of CI classification under GI feature selection
with a global rank 〈 V 13, V 7, V 10, V 11, V 12, V 1, V 2, V 4, V 3, V 5, V 6,
V 9, V 8 〉 is shown Fig. 4. The classification error stabilizes after considering
6 out of 13 features. This suggests that the CI classifier is robust to noise,
since adding irrelevant features does not affect the classification error.

7. Conclusions

A computational strategy for the selection of relevant features based on
feature interactions has been presented. The strategy is based on the care-
ful characterization of feature interactions by means of fuzzy measures and
the posterior computation of the generalized Shapley index, called GI. A
detailed analysis of the raw data conversion process and the HLMSr algo-
rithm required for the identification of fuzzy measures revealed that both
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tasks needed to be improved. Regarding the raw data conversion process, a
normalization step that takes into account the distribution of features across
all classes was introduced. The computational complexity of the HLMSr
algorithm was remarkably improved by disregarding monotonicity checking
of untouched coefficients during algorithm’s evolution. A more reliable es-
timation of fuzzy measure coefficients has been gained by identifying and
solving the HLMSr sensitivity to equal valued features.

A detailed analysis of the GI index on synthetic datasets containing noisy
together with either redundant or complementary features uncovered a sur-
prising GI behavior. The GI turns to be always positive in datasets with
complementary features and of alternating sign in those with redundant ones.
This result was used to propose some feature selection guidelines. Experi-
mental results on benchmark datasets involving a dozen of features showed
that competitive and interpretable fuzzy integral classifiers can be designed
in this way. Furthermore, selected features seem to be also useful for the
design of accurate SVM classifiers.

Further work is still needed to allow interpretable feature selection in
datasets involving hundreds of features. In this regard, studies are first re-
quired to investigate the GI behavior involving both complementary and re-
dundant features. Moreover, the reduction of both space and time required
by the fuzzy measure identification to make the process tractable with huge
datasets is still an open challenge.

8. Appendix

Mathematical formalization of features characterization for complementary
and redundant features using GI

In extreme situations, when the only relevant features are either redun-
dant or complementary, the GI expressions are easy to compute.

Theorem 1 - Complementary features. Let N be a dataset with n
features among which, for a given class, c of them are fully complementary
and n−c are noise. Let C be the subset defined by the c fully complementary
features. The GI for power set members of C with cardinality a ∈ {1, . . . , c}
is:

GI(a) =
1

c− a+ 1

19

Author-produced version of the article published in Fuzzy Sets and Systems, 2015, N°270, p. 74-89 
The original publication is available at http://www.sciencedirect.com  
http://dx.doi.org/10.1016/j.fss.2014.09.015



This yields 1/c for each of the c singletons and 1 for the whole feature subset
C.

Proof : The set N of n features includes a set C ⊂ N of c fully com-
plementary features, while the remaining, N \ C, only bring noise. In this
extreme situation, the only coefficients different from zero are the ones of C
and the ones needed to keep monotonicity, i.e., the coefficients in C ∪L with
L ∈ P(N \ C). The value of all these coefficients is 1, as shown in Table 6
for c = 2. For given A ⊆ N , its GI is given by the Eq.(4):

I(A) =
∑

K⊆N\A

(n− k − a)!k!

(n− a+ 1)!

∑
B⊆A

(−1)a−bµ(K ∪B) (9)

Two cases have to be considered. The first case deals with subsets A
entirely contained in C. The second case deals with subsets A having non-null
fuzzy measure values only due to the monotonicity condition, i.e., A = C ∪L
with L ∈ P(N \ C).

• A ⊆ C, a ≤ c

In this case, B should be equal to A, otherwise, elements of C would be
out of K ∪B, and the resulting coefficients are 0. As a result, a− b = 0
and (−1)a−b is always positive. The non null coefficients are those of
the combinations for which C ⊆ K ∪A, meaning all the ones included
in K = {C \ A} ∪ S where S ⊆ N \ C. As a result, k = c − a + s,
µ(K ∪B) = 1 and the Eq.(9) becomes:

I(A) =
∑

S⊆N\C

(n− c− s)!(c− a+ s)!

(n− a+ 1)!
(10)

This comes to:

I(A) =
1

(n− a+ 1)!

n−c∑
s=0

(
n− c
s

)
(n− c− s)!(c− a+ s)! (11)
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As

(
n− c
s

)
=

(n− c)!
s!(n− c− s)!

:

I(A) =
(n− c)!

(n− a+ 1)!

n−c∑
s=0

(c− a+ s)!

s!
(12)

Remarking that
(c− a+ s)!

s!
=

(
c− a+ s

s

)
(c− a)!, it becomes:

I(A) =
(n− c)!(c− a)!

(n− a+ 1)!

n−c∑
s=0

(
c− a+ s

s

)
(13)

It can be proven, by recurrence, that2:
n∑
s=0

(
m+ s

s

)
=

(
m+ n+ 1

n

)
,

so replacing
n−c∑
s=0

(
c− a+ s

s

)
by

(
n− a+ 1

n− c

)
finally yields:

I(A) =
1

c− a+ 1
(14)

• C ⊂ A, a > c

All the sets B to consider must include C, they are of size b = c + p.
There are

(
a−c
p

)
of size c + p in A which include C. The GI formula

can be written as:

I(A) =
1

(n− a+ 1)!

n−a∑
s=0

(
(n− a− s)!s!

a−c∑
p=0

(
a− c
p

)
(−1)a−c−p

)
(15)

The second sum is the binomial formula:
n∑
p=0

(
n

p

)
(−1)n−p =

(
1 + (−1)

)n
= 0.

2Recurrence relation:
n+1∑
s=0

(
m+ s

s

)
=

(
m+ n+ 1

n

)
+

(
m+ n+ 1

n+ 1

)
=

(
m+ n+ 2

n+ 1

)
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Hence, the only non-zero GI index values for a set N of n features where
c of them are fully complementary and n− c are noise are those belonging to
subsets A in P(C). Furthermore, GI values depend just on the cardinality

a of such subsets: GI(A) =
1

c− a+ 1
.

Theorem 2 - Redundant features. Let N be a dataset with n features
among which, for a given class, r of them are fully redundant and n− r are
noise. Let R be the subset defined by the r fully redundant features. The
GI for power set members of R with cardinality a ∈ {1, . . . , r} is:

GI(a) =
(−1)a+1

r − a+ 1

This yields 1/r for each of the r singletons, 1 for the whole feature subset
R when r is odd and −1 when r is even.

Proof : The set N of n features includes a set R ⊂ N of r fully redundant
features, while the remaining , N \ R, only bring noise. In this extreme
situation, all the coefficients belonging to P(N \ R) are assigned zero while
all the subsets including at least one element from R are assigned a value of
1.Table 5 illustrates this trend with 2 partially redundant features. For given
A ⊆ N , its GI formula in Eq.(4) can be written as:

I(A) =
∑

K⊆N\A

(n− k − a)!k!

(n− a+ 1)!

∑
B⊆A

(−1)a−bµ(K ∪B) (16)

As previously, µ(K ∪ B) is either 0 or 1. The number of elements to
sum can be computed as the total number of combinations according to the
cardinalities minus the number of null coefficients. µ(K ∪ B) is null if and
only if both B and K are included in P(N \R).

The total number of combinations is given by:

TotC =
a∑
b=0

(
a

b

)
(−1)a−b

n−a∑
k=0

(
n− a
k

)
(n− k − a)!k!

(n− a+ 1)!
(17)

Let’s define A as an union:
A = {Q ⊂ R} ∪ {L ⊂ N \R}, with a = q + l, and q ≤ r and l ≤ n− r.
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The sum of null coefficients over all K is computed from the all combi-
nations of N \R in N \ A. It is given by:

NulC =
n−r−l∑
k=0

(
n− r − l

k

)
(n− k − a)!k!

(n− a+ 1)!
(18)

This sum is non null only for B ⊆ A ⊆ P(N \R).
Two cases have to be considered:

• A ⊆ R, l = 0

Substituting l by zero and developing the binomial coefficient, Eq.(18)
becomes:

NulC =
(n− r)!

(n− a+ 1)!

n−r∑
k=0

(n− k − a)!

(n− r − k)!
(19)

This is exactly Eq.(12) with k = n− r − s.

So, when l = 0, NulC =
1

r − a+ 1
.

The number of subsets of size p ≤ a in A is

(
a

p

)
, but the only subset

for which this difference is non null is B = ∅. All the others partial
sums are the same, with alternate signs. The final GI absolute value
is NulC, and the sign depends on the cardinality, a:

I(A) = (−1)a+1 1

r − a+ 1
(20)

• l 6= 0

Two cases have to be considered. The first, trivial, one is q = 0,
A ⊆ N \ R. In this case, all the subsets B give the same sum with
alternate signs and the index is zero.

The remaining case includes both kinds of features: redundant and
noisy ones. The partial sums are the same for all B ⊆ Q, TotC, and it
is also the same, TotC−NulC, for all B ⊆ L. Thanks to the alternate
signs and the sum of the binomial coefficients, the overall index is zero.
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For a set of r fully redundant features, while the others only bring noise,
the GI values are null for all the combinations except for the power set of the
r features. In this case, its value depends on the cardinality of the subset, a

and is: (−1)a+1 1

r − a+ 1
.
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