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Abstract

This paper describes the development of a new thermo-invariant material standard (new Multi-Feature Bar (MFB) standard) and an associated
procedure for the identification of 21 geometric errors on 3-axis machine tools (MT). The design of the new standard allows to extract 3 intrinsic
parameters for each position of the MFB: 1 linear positioning error and 2 straightness errors.
To ensure the metrology traceability chain to the SI metre definition, the calibration of the MFB is carried out using an accurate traceable coordinate
measuring machine (CMM) when applying the reversal technique. The established procedure for the identification of the geometric errors was
applied on a 5-axis MT, leading to the identification of the apparent 21 geometric errors of the 3 linear axes. To achieve with this purpose, the
number of required positions of the MFB was optimized and reduced to only 6 positions, while using both rotary axes. The collection of raw
data for each measurement was performed thanks to an accurate touch probe, linear encoders of the MT, as well as a developed interface that is
independent of the industrial computer numerical control (CNC). Furthermore, the sensitivity of the geometric errors on the linear axes position
are highlighted.

Keywords: New material standard, Reversal technique, Calibration, Geometric errors, Machine tools

1. Introduction

With the progress in technology, the demand of high ac-
curate parts becomes a classical need in industry. The manu-
facture of these parts is usually performed via high precision
machine tools (MT) traceable [1] to the SI metre definition
published at the intergovernmental organization”Bureau Inter-
national des Poids et Mesures (BIPM)”. Hence, the traceability
of MTs represents a new challenge for several researchers in-
volved in National Metrology Institutes (NMIs) and/or in man-
ufacturing laboratories or plants. Some of them investigate the
calibration of MTs using physical standards previously cali-
brated on high precision coordinate measuring machine (CMM)
[2]. Such way of MTs calibration can be carried out on line.
Others researchers extend the calibration process to inspect pro-
duced parts under the manufacturing process, directly in the
MTs. Several sources of errors in MTs can be identified in
the literature (e. g. thermal, geometrical, resolution, vibration)
with the geometrical error being the most important one: it can
be estimated to more than 70% of the entire error [3].

∗Corresponding author
Email address: fabien.viprey@ens-cachan.fr (F.VIPREY)

Several standards and procedures for the calibration of MTs
are detailed in ISO 230-1:2012 [4] and ISO 230-7:2007 [5] and
include: gauge blocks, step gauges, ball bars, hole bars, ball
plates, hole plates, straightedges, microscopes, taut wire, laser
angle interferometer, autocollimator, precision level and digital
scale.

Cauchick-Miguel et al. [6] describe the most important
standards and suggest a classification of various testing meth-
ods for mechanical material standards. Moreover, Knapp et
al. [7] distinguished and compared different common material
standards regarding selected criteria. Some of them are the cer-
tification, length of standard, reversal method, transportability,
handling, cleaning, ability to detect geometric errors and espe-
cially the number of positions for checking all errors.

The following review and analysis of the common standards
and devices for the calibration of CMM and MT justifies the
development of a new material standard.

1.1. Gauge blocks

Gauge blocks are usually made with steel or ceramic ma-
terials and used to check the geometric errors of CMM [7, 8].
Osawa et al. [9] used a gauge block to compensate the CMM
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geometric errors when calibrating a cylinder by applying the
substitution or reversal techniques. The use of gauge blocks re-
quires at least 21 positions and different lengths to identify 21
geometric errors, which represent a high number of operations
to perform a MT calibration.

1.2. Step gauges

The step gauges offer the possibility to identify only one in-
trinsic parameter (linear positioning error). They are well used
for testing the CMM calibration, as well as for correcting the
error components ascertained by the calibration procedure. The
calibration test procedure is defined in the ISO 10360-2:2009
[8], such as 5 calibrated test lengths should be considered for
the 7 specified positions (locations and orientations). 4 of the 7
positions shall be the space diagonals.
Busch et al. [10] used a step gauge to check the CMM calibra-
tion in 2 diagonals of the workspace, while Pahk and Kim [11]
used a step gauge to identify the linear positioning errors of a
CMM. Such type of standard is not frequently used in MT since
the calibration procedure can be considered as too long.

1.3. Ball bars and hole bars

Ball bar is a common material standard used to identify the
geometric errors in both MTs and CMMs [12], and exists in
various types.
In particular, the Fixed Magnetic Ball Bar (FMBB) is well used
to identify the geometric errors by measuring the distance be-
tween 2 datum spheres at least in 20 positions in the CMM
workspace [13]. Nevertheless, the Telescopic Magnetic Ball
Bar (TMBB) was developed especially for the identification of
the geometric errors of MT. By combining several measure-
ments with multi-axes motions, both position and orientation
axes errors of a MT were identified [14]. A triangular ball bar
was developed and used by Jouy and Clément [15] in several
positions to identify the angular errors and squareness errors
for both CMM and MT. An additional improved architecture
of the ball bar was proposed by Zhang and Zang [16] to iden-
tify the 21 geometric errors in CMM and MT. Its architecture
is based on several equispaced datum spheres (made with steel
materials) linearly fixed on a rigid beam via steel rods.
The calibration procedure of the latter architecture was defined
by Ouyang and Jawahir [17], while it was based on two indirect
comparisons of measurements performed in two positions. An
accurate calibration of the ball bar was carried out on a preci-
sion CMM, where the motion errors were compensated via sev-
eral substitution measurements using a gauge block. Currently,
ceramic material is frequently selected for the datum spheres,
where the form errors can reach a sub-micrometre level [2].

Another type of material standard is the hole bar, which is
used for the identification of the 21 geometric errors of CMM
[18]. This type of material standard can provide only two in-
trinsic parameters: one positioning error and one straightness.
Thus, at least 17 positions of the hole bar are necessary to de-
termine the whole 21 geometric errors.

For MT calibration, the use of ball bar seems to be more
suitable than the hole bar due to the accessibility of features.

Tilted orientations of the ball bar can be measured by the touch
probe, even if its axis is not perfectly collinear with the spheres
rods. This configuration is unrealisable with the hole bar. How-
ever, the use of the ball bar can present many disadvantages
such as: risk of collisions with the datum spheres, thermal drift
of the rods, the risk of a crash of the spheres surfaces, highly
sensitive to harsh environment. The ball bar calibration by re-
versal technique is nearly impossible, which can drastically in-
fluence its accuracy.

1.4. Ball plates and Hole plates

At NPL (United Kingdom NMI), a ball plate was developed
for the verification of the performance of coordinate measure-
ment systems and particularly CMM softwares [19]. It is made
of steel material. At PTB (Germany NMI), the Zerodur hole
plate was also developed to identify the 21 geometric errors
of CMMs [20, 21] that can be directly obtained by calculating
the residual between the measured and calibrated positions of
the holes. This operation requires once only four positions of
the hole plate in the CMM workspace: two horizontal and two
vertical positions. An accurate calibration of the Hole plate is
performed by applying the reversal technique.
However, the main disadvantage of the hole plate used on MT
is linked to its orientation with regards to the probing device.
Thus, if both the hole plate and the spindle supporting the prob-
ing system are aligned in the same axis, the measurement of the
hole plate becomes difficult. This limitation significantly re-
duces the use of hole plate, even if it provides the identification
of 6 geometric errors for each selected position.
To come up with the discussed limitation, a set of a ball plate
and spacers was developed by Liebrich et al. [22] and cali-
brated on CMM. Afterwards, it was used for the calibration of
a 3-axis MT [23]. Since the spindle supporting the probing sys-
tem was oriented vertically, the ball plate was located in the
horizontal position. The volumetric calibration (3D mesh) of
the MT was performed using the set of the spacers at different
heights. Based on the analysis of the ball plate design, interde-
pendency between the angular errors (roll, pitch and yaw) can
be observed, but this issue was minimized thanks to the pro-
posed mathematical procedure. Furthermore, the design of the
ball plate is highly sensitive to the clamping system, which can
generate significant mechanical deformations. The deforma-
tions directly impact the local positions of the datum spheres
supposed to be fixed. The centre of the datum spheres can
change to reach some micrometres thereby representing a sup-
plementary issue of the ball plate standard use. In addition, the
proposed design of the ball plate is highly sensitive to the sur-
rounding thermal drift in the manufacturing shop floor.

1.5. Suplementary material standard

Some material standards similar to a space frame was devel-
oped and calibrated on a traceable CMM [24, 25]. They were
used only for a checking operation of the volumetric machine
geometry and not for the identification of the geometric errors.
Based on the checking results, the re-calibration of the geo-
metric errors of the machine should be performed only for the
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coordinates where the errors exceed the maximal permissible
error (MPE) [8].

Choi et al. [26] developed a cube array artefact with 8 cubes
to determine the geometric model parameters necessary for the
mapping of the tool’s positioning error. The straightness errors
can be deduced by considering both the angular errors and the
squarenesses.

Another technique was developed for 5-axis MTs by Mayer
[27]. This technique was based on the use of several uncali-
brated master balls fixed on the rotary table. The use of this
technique enables the identification of both the position and the
orientation axes errors, as well as some additional motion errors
of a 5-axis MT.

To identify the geometric errors of a MT, some other tech-
niques were proposed by Ibaraki et al. [28] and Pezeshki et al.
[29], where they applied a machining test, succeeded by CMM
measurements performed on the manufactured workpieces. A
comparison between the measurement data and the CAD model
leads to identify the geometric errors. However, the identifica-
tion results seem to be affected by the thermal errors, spindle
errors, cutting forces, vibrations, and environment conditions.

1.6. Laser interferometer systems

The laser system is a common system typically used for
the calibration of MTs [30]. It requests an adjustment step that
consists in the alignment of the laser beam along the MT axis
equipped with an optical artefact. This first step can be time
consuming. A recent compact Laser Tracer system based on the
multilateration principle was developed by Schwenke [31]. It
ensures lower uncertainty than the laser tracker [32]. All these
laser systems are directly traceable to the SI meter definition.
The wavelength is sensitive to the temperature, humidity and
pressure, which can be measured and compensated when ap-
plying the updated formula of Birch and Downs [33]. Such sys-
tems are also highly sensitive to harsh environment and vibra-
tion. Moreover, the setting system (tripod, floor) can lengthen
the metrology loop and can influence the measurement results.

1.7. Conclusion on the existing material standards

Most of the existing material standards are developed for
CMM calibration, except the ball plates, 1D-ball array, and
TMBB. Hence, the touch probe clamped in the spindle axis
of the MT represents the main limitation to use most of them.
Moreover, the harsh environment (oil, chips, collisions, tem-
perature drift, etc.) also reduces their integration in MTs. Some
aforementioned material standards require too many position-
ing configurations to identify the 21 geometric errors of 3 lin-
ear axes structural loop. Thus, any automation of the calibration
process becomes very complex since it requires several adjust-
ments, and usually the calibration is handled manually. In ad-
dition, steel and ceramic material are commonly selected for
these standards. Because these materials are sensitive to the
variation of the surrounding temperature, they are non-adapted
for interim MT checking or calibration during the production
process in the manufacturing shop floor.

A new design of the Multi-Feature Bar (MFB) is proposed
in this paper. thanks to its new geometric pattern, it allows to
identify 1 linear positioning error and 2 straightnesses of any
linear mechanical guiding system of the MT, and just by 1 mea-
surement of the MFB. The identification of 3 parameters for one
orientation of the MFB leads to minimize MT’s downtime. Fur-
thermore, the combination of measurements performed on two
parallel positions of the MFB leads to maximized the number
of identified geometric errors to 5 (1 linear positioning error, 2
straightnesses and 2 angular errors for each axis).

This paper is organized as detailed below.
Section 2 presents the design and technical attributes of the
new thermo-invariant MFB standard that will be used for di-
mensional metrology on MTs dimensional measurements under
harsh shop floor environmental conditions. The section 3 deals
with the calibration of the proposed MFB by applying reversal
technique. The calibration results are presented and discussed
in section 4, while the section 5 is devoted to the identification
of geometric errors of an investigated MT. Finally, section 6
details identification results and discussions.

2. New design of the thermo-invariant MFB standard

2.1. Concept of the thermo-invariant MFB

The new design of the MFB consists in a repetition of a 3D
pattern in one direction. Each pattern contains 7 features: 4
flat surfaces (vertical planes) and 3 cylinders (one vertical in-
ner cylinder and two horizontal outer cylinders). The patterns
are repeated along the direction ∆ as illustrated in (Figure 1a),
where 1 ≤ i ≤ N and 1 ≤ j ≤ N − 1. Many measurements
are carried out on each pattern. The processing of the measured
data allows to extract one point corresponding to the intersec-
tion of the 7 features mentioned previously. The expected mea-
surements and the post-processing of the measured data can be
completed with respect to the following steps:

• at least 8 points should be measured on each hole HOLi

with a touch probe, as shown in Figure 1b. They are
distributed in 2 orthogonal sections (2 levels): 4 equi-
spaced points in the upper-level and the others in the
lower-level. According to ISO5459:2011 [34], the ex-
traction is achieved by association to define the associ-
ated feature and performed with the measured dataset. A
nominal cylinder is associated to the 8 measured points
by applying the least squares criteria, based on small dis-
placement screw (SDS) method [35]. The least squares
SDS method for cylinder is detailed in Appendix A.
Thereafter, the intrinsic characteristics of each associated
feature establishing the common datum shall be consid-
ered to determine the AXIS i as shown in Figure 1b;

• at least 4 points should be measured on each flat surfaces
PL with a touch probe, as shown in Figure 1c. Based
on the ISO 5459:2011 [34], the post-processing of the
measured dataset with the least squares plane association
allows to define the associated integral feature (nominal
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Figure 1. Principle of MFB: Patterns, probed points, and points of interest.

plane PLL j or PLR j ). The association method is detailed
in Appendix B;

• for each horizontal outer cylinder CYL j, 12 points shall
be probed as shown in Figure 1d. The points are dis-
tributed in 4 orthogonal sections where 3 equispaced points
should be measured for each section. The analysis of the
measured data using the developed SDS method allows
to determine AXIS j;

• the points PL j and PR j are obtained mathematically and
correspond to the intersection of AXIS j with both planes
PLL j and PLR j as illustrated in Figure 1e. The horizontal
least squares plane PLi is associated to the 4 points PL j−1 ,
PR j−1 , PL j and PR j . The last step consists in the identifi-
cation of the point of interest Oi that corresponds to the
intersection of AXIS i and PLi;

The previously detailled steps are repeated as many times to
cover the whole geometry of the MFB (Figure 1f). Thus, the
identified points of interest Oi = (xi, yi, zi) offer 3 intrinsic ge-
ometric parameters in the local frame of the MFB : 1 linear
positioning and 2 straightnesses. RMFB is built using the mea-
sured data on the different surfaces constituting the patterns as
follows:

• a least squares plane PLre f is associated to the 4 points
PL1 , PR1 , PLN−1 and PRN−1 (in Figure 2) leading to the
identification of the ~zMFB axis, which corresponds to the
outer-pointing normal of PLre f ;

• the intersections between PLre f and AXIS 1 as well as
PLre f and AXIS N are the points O1 and ON that are used

for the ~xMFB identification (normalized vector
−−−−→
O1ON);

• the ~yMFB is the cross product ~zMFB ∧ ~xMFB.

As a consequence, RMFB is equal to (O1, (~xMFB, ~yMFB,~zMFB))
when exploiting both horizontal AXIS 1 and AXIS N−1. Never-
theless, the building of RMFB can be performed using any two
AXIS j (1 ≤ j ≤ N − 1) and any two Oi (1 ≤ i ≤ N).

P L1

P R1

P LN

P RN

O1

ON

yHB

xHB

zHB

Oi

PL re
f

Figure 2. Definition of local frame RMFB of the MFB.

2.2. Technical and geometrical attributes of the MFB

The MFB is expected to be used for on line measurement,
directly on the MT under severe conditions (coolant, lubricant,
chips, risks of collisions and temperature gradient). Based on
the NF E 11 019 [36], technical and geometrical attributes were
considered such as:

• the material combines a small coefficient of thermal ex-
pansion (CTE), a high toughness and small brittleness.
The invar material seems the best candidate material com-
pared to those presented in table 2.2 and has been there-
fore selected due to its small CTE, its high toughness and
its small brittleness as shown in table 2.2. Its CTE is
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twenty times larger than CTE of Zerodur but remains ex-
tremely low. For the chosen dimensional characteristics
of the MFB, the deviation between two points of interest
is only 0.5 µm under a temperature gradient of 10◦C;

• all the patterns are accessible via two sides (above or be-
low). This condition is useful for repositioning the MFB
in relation to the ball bar (i.e. rigid beam with several eq-
uispaced datum spheres) during the calibration when ap-
plying the reversal separation error technique. Besides,
the application of the reversal technique on the MT en-
ables the identification of the motion errors of each linear
axis;

• the surfaces to be measured are protected against any
possible collision due to their position. All of the holes
were manufactured using a wire electrical discharge ma-
chining (WEDM). The rods were machined and carefully
ground (Figure 4);

• two selected holes axes were shifted with respect to the
nominal ~xMFB axis, in order to identify the orientation
(returned or not returned) of the MFB whatever of its
positioning in the workspace of the MT. Therefore, the
MFB is provided of mistake-proofing which ensures the
physical signature of the MFB;

• the MFB is fixed on a specific holder, built with mod-
ular inspection equipment system, via isostatic assem-
bly composed of 3 mechanical linkages (spherical joint,
point surface joint and point curve joint). This type of
assembly avoids a transmission of the mechanical and
thermal deformation of the holder to the MFB. The 3 me-
chanical linkages are located on the points of minimum
deflection that were analytically calculated and are not
exactly identical to Airy points. The points of minimum
deflection are separated by a length smin de f defined by
the equation 1 where L = 580 mm. However, between
the Airy points, the length sAiry is defined by the equation
2. As illustrated in figure 3, this precaution minimizes
the defection of the MFB under its own weight (0.16 µm
without tightening operation). This value is compensated
by reversal technique during the calibration of MFB.

smin de f = 0.5537 × L = 321.1 mm (1)

sAiry points =
1
√

3
L = 334.9 mm (2)

Moreover, modular inspection equipment system allows
to orientate and locate the MFB along each direction in
the MT workspace (Figure 5). The change in length of
the MFB when standing vertically, due to its own weight,
is equal to 52 nm and is neglected with respect to the
magnitude of the identified errors (0 − 100 µm).

To characterize a maximum volume of the selected Mikron 5axis
MT workspace, the developed and manufactured MFB has been
defined as follows: the N-1 = 11 rods (AXIS j) and the N = 12
holes (AXIS i) are equispaced (L = 50 mm) along the ~xMFB

axis.

Figure 3. Deflection of a bar under its own weight.

Table 1. Mechanical properties of Zerodur, Invar, Al2O3 and S235 materials.

CTE Young’s modulus Hardness Toughness Brittleness
Material (α) (E) (H) (Kc) (H/Kc)

µm/◦C/m GPa MPa MPa.m1/2 m−1/2

Zerodur 0.05 91 6200 0.9 6900
Invar 1 145 1200 120 10

Al2O3 8 350 20000 4 5000
S235 12 210 1000 50 20

3. Calibration of the MFB

The nominal coordinates of points of interest (Oi) in the lo-
cal frame RMFB are defined in equation 3. Nevertheless, the real
coordinates of the points (Oi) are slightly different from these
expressed in the proposed model. This difference is mainly
caused by the manufacturing procedure of the MFB includ-
ing the Computer-Aided Manufacturing (CAM), interpolation,
WEDM accuracy, material removal process, etc. Thus, a thor-
ough calibration of the MFB has to be performed to extract the
intrinsic geometric errors: one linear positioning error (ExxMFB )
and two straightnesses (EyxMFB , and EzxMFB ). Therefore, the re-
alistic model of the MFB can be written as equation 4.

∀i ∈ J1 ; NK,

xi

yi

zi


RMFB

=

(i − 1) × L
0
0


RMFB

(3)

∀i ∈ J1 ; NK,

xi

yi

zi


RMFB

=


(i − 1) × L + ExxMFB (i)

0 + EyxMFB (i)
0 + EzxMFB (i)


RMFB

(4)

For the calibration of the MFB, the reversal technique ([4,
9, 16, 37]) is applied in order to separate the motion errors of
the used accurate CMM from the geometric errors of the MFB.
This technique concerns only the straightnesses and never the
positioning errors. Thus, the absolute length between each hole
can be corrected by a substitution technique [9, 17].
The motion errors of a CMM contain both systematic compo-
nent (ECMM) and random component (εCMM). The application
of the reversal technique enables to determine the systematic
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O1

yMFB

xMFB

zMFB

Figure 4. 3D-CAD model of MFB.

Spherical
joint

Point
curve joint

Point
surface joint

Figure 5. MFB holder: vertical and horizontal configurations.

components. The random component is still mixed with the ge-
ometric errors of the MFB, that is why the measurements are
repeated many times to average out the random effects.
For the application of the reversal technique, the MFB is care-
fully aligned along the CMM axis (X-axis in figure 6) with the
smallest linear positioning error that was identified using a step-
gauge (Ustep gauge (k=2) = 0.3 µm + 1.5 10−6L) calibrated by a
laser interferometre system traceable to the SI metre definition.

The reversal technique is illustrated in figure 6, where MX ,
MY , MZ are the component of measurement in the direction X,
Y, and Z of RCMM . EyxMFB , and EzxMFB are the straightnesses of
the MFB in the direction of y and z in RMFB. Moreover, the
superscripts NR and R refer to the position of the MFB: “No
Reversal” or “Reversal”.

Whatever the considered straightness of the MFB, ENR
MFB is

equal to −ER
MFB in the machine coordinate system. According

to the figure 7, the relations between the measurement and the
straightnesses of the CMM and the MFB, before and after re-
versal, can be expressed by the equation 5. The term εYXCMM

depicts the zero mean random error of the CMM in the direc-
tion Y along X-axis.

 EyxMFB (i) = MNR
Y (i) +EYXCMM (i) + εYXCMM (i)

−EyxMFB (i) = MR
Y (i) +EYXCMM (i) + εYXCMM (i)

(5)

Thus, the geometric errors can be calculated with respect to
the equation 6.


EyxMFB (i) =

1
2

[
MNR

Y (i) − MR
Y (i)
]

+ εYXCMM (i)

EzxMFB (i) =
1
2

[
MNR

Z (i) − MR
Z (i)
]

+ εZXCMM (i)
(6)

The zero mean random error εYXCMM and εZXCMM cannot be
subtracted directly because they are algebraic values, but av-
eraging over repeated measurements will average the random
terms to close to zero if enough repetitions are used. This strat-
egy is carried out during the calibration procedure.

Afterwards, the linear positioning error ExxMFB of the MFB
is calculated by using the equation 7. The linear positioning
error EXXCMM of the CMM is compensated by the mean of mea-
surements before and after reversal performed along the se-
lected axis.

ExxMFB (i) =
1
2

[
MNR

X (i) + MR
X(i)
]
−(i−1)×L+EXXCMM (i)+εXXCMM (i)

(7)
As the zero mean random error εYXCMM and εZXCMM , εXXCMM

cannot be subtracted directly because they are algebraic values,
but averaging over repeated measurements will average the ran-
dom terms to close to zero.
The calibration procedure can be carried out directly in the MT,
except for the positioning Exx MFB. The application of the re-
versal technique allows to separate the systematic motion errors
of each target axis from the straightnesses of the MFB.

The analysis of the metrology loops when calibrating the
MFB with both the CMM and the MT reveals that the CMM
metrology loop is much more optimized than the MT one. Since
the metrology loop directly influences the measurement accu-
racy, the calibration of the MFB is initially performed using
the CMM to enable a subsequent MT calibration. This strategy
leads to minimizing each of the number of setting-up and the
MT downtime.

4. Calibration results and discussions

The calibration of the MFB was performed using the LNE
CMM, traceable to the SI unit metre definition, along the Z-axis
(figure 8). This Z-axis was selected since it presents the small-
est linear positioning errors. Calibration procedure is repeated
5 times, the duration of each of them being about 1 hour.

The obtained results of the 3 intrinsic calibrated parameters
ExxMFB , EyxMFB , EzxMFB of the MFB are presented in Figures 9
and 10, respectively for the linear positioning error and the two
straightnesses.
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XCMM
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Figure 6. Reversal technique for straightness error EYX of MFB aligned along X-axis of CMM.
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Figure 7. Reversal technique - Zoom on a point of interest Oi of the MFB.

To obtain the results displayed in figures 9 and 10, some pre-
cautions were taken into account; in particular the mistake-
proofing intentionally introduced in the design of the MFB (ma-
terial standard signature) not appear in the figures. The plotted
measurement uncertainty includes scatterings due to the ran-
dom components of the motion errors, resolution of the probing
system, environment conditions, vibrations, thermal variations
and clamping system.
In figure 9, the linear positioning error of the MFB can reach
a maximal value of −42 µm, which reflects the geometric er-
ror of the WEDM machine. Besides, the straightnesses reflect
both the geometry errors of the WEDM machine and the as-
sembly of the different horizontal rods carrefully glued on the
main frame of the MFB. The average uncertainty obtained for
the linear positioning errors and straightnesses is 0.4 µm and
0.7 µm respectively, which can be considered as low values.

Figure 8. MFB calibration set-up on CMM at LNE.

Based on these results, the MFB can be considered as a highly
relevant thermo-invariant material standard for both CMMs or
MTs calibrations.

5. Identification of geometric errors of MTs

5.1. Mikron UCP710 5-axis MT and measurement device

The calibrated MFB by reversal technique was used to map
the geometric errors of the 3 linear axes of the Mikron UCP710
5-axis MT (figure 11). Hence, a high-accuracy 3D touch probe
trigger was integrated in the Mikron MT. A specific interface
was developed to collect, in real time, raw data provided by the
3D probe trigger as well as the linear and rotary encoders of
the Mikron MT. An additional procedure was also developed
to acquire the machine zero point by counting distance-coded
reference marks. The developed interface is used instead of the

7
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Figure 9. Linear positioning error ExxMFB of each point of interest Oi of the
MFB.

Figure 10. Horizontal straightness error EyxMFB and vertical straightness error
EzxMFB of each point of interest Oi of the MFB.

industrial computer numerical control (CNC) of the Mikron MT
to avoid collecting data with any pre-existing error compensa-
tions and uncontrolled processing.
The interface ensures the measurement procedure with regards
to the following steps:

1. acquisition of the MT zero point,
2. collection of the absolute MT coordinate (X, Y, Z, A, C)

in real time ( f = 33 kHz, resolution = 10 nm) and di-
rectly on linear and rotary encoders,

3. collection of the touch probe trigger (U(k=2) = 0.25 µm
with a feedrate equal to 240 mm.min−1),

4. records of the data,
5. fetch recorded data on the hardware device.

All the data are recorded only when the touch probe trigger is
activated.

5.2. Geometric model for the Mikron MT errors

A parametric model with 21 independent components was
developed in order to describe the geometric errors of the 3 lin-
ear axes as defined in the ISO 230-1:2012 [4]. This parametric

X

Y

Z

C'

A'

Figure 11. Mikron UCP710 5-axis machine tool structure according to the ISO
841:2004 [38] and the ISO 10791-6:2014 [39].

model was applied on the Mikron MT structural loop, consid-
ered as a rigid-body (Figure 11). The study does not include A-
and C- rotary axes, but it includes the 3 linear axes X, Y and
Z-axis. The 3 reference straight lines associated with 3 linear
axes are defined by position and orientation errors illustrated in
figure 12. According to ISO 230-1:2012 [4], errors of the zero
position of linear axes (e.g. EX0X) can be set to zero (0) when
checking geometric accuracy of a machine tool. Moreover, as
suggested in [4], the X-axis is chosen as the primary axis. Thus,
the reference straight line of the X-axis coincides with the X-
axis of the machine tool coordinate system (EB0X and EC0X can
be set to zero). In the same way, the Y-axis is chosen as the sec-
ondary axis, the reference straight line of the Y-axis defines the
orientation of the Y-axis of the machine tool coordinate system
(EA0Y can be set to zero).

X
Y

Z

EB0X

EC0XEX0X

Real zero 

Nominal motion

Real motion

Figure 12. Location and orientation errors of reference straight line for a linear
X-axis [4].

Then, each linear axis of the structural loop is composed of
2 solids constituting a link with one degree of freedom biased
by geometric errors, called motion errors. According to ISO
230-1:2012 [4], 6 motion errors (Figure 13) which depend on
the motion (X, Y or Z) are defined as:

• one linear positioning error along the direction of motion:
EXX(X) along X-axis, EYY (Y) along Y-axis, EZZ(Z) along
Z-axis.

• 2 straightness errors in two orthogonal directions of mo-
8
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tion: EYX(X) and EZX(X) along X-axis in the direction Y
and Z respectively; EXY (Y) and EZY (Y) along Y-axis in
the direction X and Z respectively; EXZ(Z) and EYZ(Z)
along Z-axis in the direction X and Y respectively.

• 3 angular motion errors (i.e. roll, pitch and yaw in the
case of horizontal axis): EAX(X), EBX(X) and ECX(X)
along X-axis in the direction X, Y and Z respectively;
EAY (Y), EBY (Y) and ECY (Y) along Y-axis in the direc-
tion X, Y and Z respectively; EAZ(Z), EBZ(Z) and ECZ(Z)
along Z-axis in the direction X, Y and Z respectively.

X
Y

Z

EBX : Angular error
motion around
B-axis (pitch)

ECX : Angular error
motion around
C-axis (yaw)

EYX : Straightness error
motion in Y-axis direction

EAX : Angular error
motion around
A-axis (roll)

EZX : Straightness error
motion in Z-axis direction

EXX :Linear positioning
error motion of X-axis

Figure 13. Motion errors for a linear X-axis [4].

To characterise the biased geometry in the structural loop, a
based homogeneous transformation matrix model was investi-
gated as in equation 8.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸                ︷︷                ︸
R f TRnom X


1 0 0 Xtrue
0 1 0 0
0 0 1 0
0 0 0 1

︸                     ︷︷                     ︸
Rnom X TRmotion X


1 −ECX (X) EBX (X) EXX (X)

ECX (X) 1 −EAX (X) EYX (X)
−EBX (X) EAX (X) 1 EZX (X)

0 0 0 1

︸                                                          ︷︷                                                          ︸
Rmotion X TRnom Y

×


1 −EC0Y 0 0

EC0Y 1 0 0
0 0 1 0
0 0 0 1

︸                             ︷︷                             ︸
Rnom Y TRmean Y


1 0 0 0
0 1 0 Ytrue
0 0 1 0
0 0 0 1

︸                    ︷︷                    ︸
Rmean Y TRmotion Y

×


1 −ECY (Y) EBY (Y) EXY (Y)

ECY (Y) 1 −EAY (Y) EYY (Y)
−EBY (Y) EAY (Y) 1 EZY (Y)

0 0 0 1

︸                                                       ︷︷                                                       ︸
Rmotion Y TRnom Z

×


1 0 EB0Z 0
0 1 −EA0Z 0

−EB0Z EA0Z 1 0
0 0 0 1

︸                                  ︷︷                                  ︸
Rnom Z TRmean Z


1 0 0 0
0 1 0 0
0 0 1 Ztrue
0 0 0 1

︸                   ︷︷                   ︸
Rmean Z TRmotion Z

×


1 −ECZ (Z) EBZ (Z) EXZ (Z)

ECZ (Z) 1 −EAZ (Z) EYZ (Z)
−EBZ (Z) EAZ (Z) 1 EZZ (Z)

0 0 0 1

︸                                                       ︷︷                                                       ︸
Rmotion Z TRnom T


1 0 0 −JX
0 1 0 −JY
0 0 1 −JZ
0 0 0 1

︸                  ︷︷                  ︸
Rnom T TRT


0
0
0
1

︸︷︷︸
RT pt

=


px

R f RRw py
pz

0 0 0 1

︸                       ︷︷                       ︸
R f TRw


x
y
z
1

︸︷︷︸
Rw pw

(8)

where R f RRw =

a d g
b e h
c f i


Where X, Y and Z are the joint parameters and JX , JY and

JZ are the tool offset components. The Rnom frames are the nom-
inal frames of each axis, where position and orientation errors
are defined. The Rmean frames correspond to the mean frames
attached on the reference straight line [4], where the linear mo-
tion is defined. And finally, the Rmotion frames are the frames
where motion errors are defined just after the linear motion.
The workpiece positioning is defined by its orientation in the
workspace R f with the rotation matrix R f RRW whose direction
cosines are a, b, . . ., h, i ; while its position is defined by the
vector R f pw = [px py pz 1]T . The stylus centre point coordinate
in RT is RT pt = [0 0 0 1]T . Assuming the joint parameter vector
[X Y Z]T and the workpiece positioning parameters are known,
the vector Rw pw = [x y z 1]T can be expressed as the coordinate
of the probe centre point in the workpiece frame Rw which cor-
respond to RMFB.

5.3. Identification of the geometric errors using the MFB

The measurement of the patterns constituting the MFB was
performed by the measurement device (touch probe) integrated
in the Mikron MT. Afterwards, the points of interest Oi were
extracted using the validated robust algorithms. The next step
consists in the application of the developed model to identify
the geometric errors of the Mikron MT.
The targeted nominal values X, Y , Z are expressed in equation
9 and correspond to the equation 8 where all geometric errors
are considered equal to zero.


1 0 0 X
0 1 0 0
0 0 1 0
0 0 0 1

︸                 ︷︷                 ︸
R f TRnom X


1 0 0 0
0 1 0 Y
0 0 1 0
0 0 0 1

︸                ︷︷                ︸
Rnom X TRnom Y


1 0 0 0
0 1 0 0
0 0 1 Z
0 0 0 1

︸                ︷︷                ︸
Rnom Y TRnom Z


1 0 0 −JX
0 1 0 −JY
0 0 1 −JZ
0 0 0 1

︸                    ︷︷                    ︸
Rnom Z TRnom T


0
0
0
1

︸︷︷︸
RT pt

=


px

R f RRw py
pz

0 0 0 1

︸                       ︷︷                       ︸
R f TRw


x
y
z
1

︸︷︷︸
Rw pw

(9)

The true values Xtrue, Ytrue, Ztrue (equation 8) are slightly
different from the nominal ones due to geometric errors. From
the same workpiece positioning in the workspace (R f TRw ), and
the same tool offsets, the deviation between Xtrue, Ytrue, Ztrue and
X, Y , Z values can be evaluated by subtraction of two expres-
sions (equation 8 and 9) and neglecting the second and higher
order errors. The deviation can be stated by 3 explicit theo-
retical functions δX , δY and δZ (equations 10, 11, 12) includ-
ing several parameters such as the geometric errors, workpiece
positioning, workpiece coordinate (coordinate of probe centre
point expressed in RMFB) and tool offsets.

9



F. VIPREY et al. / Precision Engineering 00 (2016) 1–16 10

δX = Xtrue − X = − EXX(X) − EXY (Y) − EXZ(Z)
−(EB0Z + EBX(X) + EBY (Y)) ×G(x, y, z)
+(EC0Y + ECX(X)) × F(x, y, z)
+EBZ(Z) × JZ

−(ECY (Y) + ECZ(Z)) × JY

(10)

δY = Ytrue − Y = − EYX(X) − EYY (Y) − EYZ(Z)
+(EA0Z + EAX(X) + EAY (Y)) ×G(x, y, z)
−EAZ(Z) × JZ

+(EC0Y + ECX(X) + ECY (Y) + ECZ(Z)) × JX

(11)

δZ = Ztrue − Z = − EZX(X) − EZY (Y) − EZZ(Z)
−EAX(X) × F(x, y, z)
+(EA0Z + EAY (Y) + EAZ(Z)) × JY

−(EB0Z + EBX(X) + EBY (Y) + EBZ(Z)) × JX

(12)

where
{

F(x, y, z) = py + bx + ey + hz
G(x, y, z) = pz + cx + f y + iz

The equations are expressed in the MT coordinate system
and not in the tool centre point (TCP) in tool/probe coordinate
system [18]. Furthermore, they highlight the effect of geometric
errors and offsets (i.e. workpiece positioning offset and tool off-
set) on the measured deviation of each linear positioning-axis.
From the equations (10, 11, 12), we can deduce the whole ge-
ometric errors including the linear positioning errors, straight-
nesses, angular errors and squarnesses.
Several measurements were performed on the thermo-invariant
MFB located at wisely-selected positions such as to minimize
the Abbe errors that can influence the translational motion er-
rors (i.e. linear positioning errors and straightnesses). After-
wards, the measured data were evaluated in order to extract the
points of interest (Oi), leading to obtaining the measured devi-
ations δX, δY and δZ. The combination of numerous positions
of the MFB in the workspace allows us to identify the Mikron
UCP710 MT geometric errors (Figure 14). A video clip of mea-
surement can be watched in the Youtube page of Automated
Production Research Laboratory. The identification procedure
is sequenced as follows:

1. identification of angular motion errors using differential
straightness measurements or differential linear position-
ing measurements,

2. identification of translational motion errors,
3. identification of squareness errors by two crossed mea-

surements.

6. MT identification results and discussions

On 3-axis MT, 14 positions of the MFB are necessary for
the identification of the apparent geometric errors (E), while
only 6 positions are required for 5-axis MT. The number of
positions reduced to 6 for 5-axis MT is explained by the op-
portunity to rotate the MFB using both the swiveling axis (A’-
axis according to ISO 10791-6:2014 [39]) and rotary table (C’-
axis [39]), offering then several orientations of the MFB in the
MT workspace. Such operation becomes possible thanks to the
developed specific workholder combining several modular in-
spection equipment system.
Regardless of the type of selected MT and even if the number
of positions is reduced, the number of the MFB measurements
remains equal to 17. Each measurement spends about 14 min-
utes to probe 316 points covering the whole patterns. Thus,
the identification of the apparent geometric errors (E) can be
evaluated in 1 day, including adjustments, measurements, ac-
quisitions and data exploitation.
For the case of the Mikron UCP 710, the geometric errors of the
X- Y- and Z-axis were identified, but only the results obtained
with X-axis are presented in figures 15, 16 and 17. The identi-
fication of the apparent straightnesses (figure 16) is performed
from the end-point reference straight line. The straight line con-
nects the first and the last points of the measured straightness
deviations [4]. In all figures, the error bars represent the uncer-
tainty components evaluated when considering:

• measurement reproducibility including the resolution of
the measuring device, the repeatability of touch probe,
the random motion error of each MT-axis, vibration, ther-
mal drift,

• position and orientation errors of the MFB in the MT-
workspace,

• offset components errors of the touch probe,

• traceability chain of the MFB including the calibration
process, the application of the reversal technique, the clamp-
ing system and CMM traceability,

• metrology loop including all the components that can in-
fluence the measurement. For the case of the studied
Mikron MT, the metrology loop passes through the MFB
(w), the 5 axes (C’A’bXYZ), the spindle (C1), and the
touch probe (t), which can be considered as a long chain
[wC’A’bXYZ(C1)t].

The measurements of the defined points for the different po-
sitions of the MFB were performed under the environment con-
ditions (temperature between 19 and 22◦C in the manufacturing
shop-floor). The results for the X-axis are presented in figures
15, 16 and 17, where the markers represent the apparent error
motions (EXX , EYX , EZX , EAX , EBX and ECX) along the X-axis
identified on the points of interest Oi (1 ≤ i ≤ N).
The apparent linear positioning error EXX along the X-axis (fig-
ure 15) is rather linear and can reach a maximum value of 38 µm.

10
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(a) (b)

(c) (d)
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A'
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C'

C'
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Figure 14. Calibration of the Mikron UCP710 MT using the thermo-invariant MFB: (a) along the X-axis, (b) along the Y-axis, (c) along the Z-axis, (d) along the
XY plane diagonal.

Figure 15. Linear positioning error of X-axis: EXX

The horizontal and vertical apparent straightness errors are eval-
uated to less than fifth of the maximal linear positioning er-
ror value. Thus, the identified maximum horizontal and verti-
cal apparent straightness errors (EYX and EZX) are 3 µm and
2 µm respectively. The angular errors (EAX , EBX and ECX) were
also evaluated and the results obtained reveal that EBX reaches
a maximum value of 98 µm/m. Nevertheless, EAX and ECX

present smaller values inferior to 10 µm/m and 40 µm/m re-
spectively.
The combination of apparent linear positioning, apparent straight-
ness and angular errors together can significantly increase the
translational error motions in the workspace.
In addition, an error bar is associated to each point of interest.

Figure 16. Horizontal and vertical straightness of X-axis: EYX and EZX

The error bars are calculated when applying the propagation of
the aforementioned uncertainty components. Despite, the equa-
tions 10, 11, 12 are linear, the calculation of points of interests
is based on the least squares algorithms which are not linear.
As a consequence, the uncertainty propagation is computed us-
ing the Monte Carlo method [40], with 103 iterations. This
strategy is adopted here since the reproductibilty of measure-
ment is taken into account, in particular, using the Gaussian
(normal) distribution for each probed point along the patterns.
The selection of the Gaussian distribution was deduced when
analyzing the reproductibitlity of each measured point, based
on the calculated mean and standard deviation values. Fur-
thermore, due to the guideways are manufactured, grinded and

11
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Figure 17. Roll, pitch and yaw of X-axis: EAX , EBX and ECX

honed, the motion errors are continuous in tangency and in cur-
vature. Therefore the data illustrated in figures 15, 16 and 17 are
interpolated by a spline interpolation model of class C2, lead-
ing to provide potential accurate compensation models for EXX ,
EYX , EZX , EAX , EBX and ECX .
Thanks to the calibration of the MT using the developed trace-
able thermo-invariant MFB to the SI metre defined at BIPM
and realised at LNE (primary standard (Femtosecond laser)), its
metrology traceability becomes also linked to the international
traceability chain as illustrated in figure 18.

BIPM

Manufacturers 
&

Users

SI
Metre

definition

National
Metrology
Institutes
(e.g. LNE)

Multi-Feature Bar

Practical
realisation:

Frequency stabilised 
Femtosecond laser 

Calibration of frequency 
laser

Interferometers

CMM: Coordinate Measuring Machine

MT: 3 or 5-axis Machine Tools

Measurement of workpiece

~10-14

~10-11

~10-11

~10-8

~10-8

~10-7

~10-7

~10-6

~10-6

~10-5

~10-5

~10-4

m

Relative uncertainty

Figure 18. Integration of MFB in traceability chain to the SI metre definition

7. Conclusion

In this study, a Multi-Feature bar (MFB) made of thermo-
invariant material (Invar) was defined and developed to cali-
brate MTs. The design of the MFB involves several patterns,
including cylindrical and planar geometric entities, useful to
extract 12 points of interests and then providing 3 geometric
errors (linear positioning error and 2 straightnesses) for only
one position of the MFB. For each position or orientation of the
MFB, 316 measured points are necessary for the extraction of
the 12 points of interests. Afterwards, the developed MFB was

carefully calibrated on an accurate CMM traceable to the SI me-
ter definition at LNE. The calibration of the MFB was carried
out when applying the reversal technique in order to separate
the motion errors of the CMM and the true intrinsic parameters
of the MFB. This strategy provides a high accurate calibration
of the MFB. One main advantageof the MFB model developed
is that it can be used directly under aharsh environment. Once
the MFB was calibrated, it was used for the calibration of the
Mikron UCP710 MT to show the efficiency of the standard and
proposed method. The calibration of the 3 linear axes of the in-
vestigated MT enables the identification of the well known 21
geometric errors of the developed model. For this purpose, the
number of positions was optimized using both rotary axes to
decrease the required positions of the MFB from 14 to only 6.
Further works will be conducted in order to compare the ob-
tained results (Mikron geometric errors) with those obtained
with an accurate Laser Tracer. An additional inter-comparison
between several NMIs (National Metrology Institutes) will be
conducted on the MFB calibration within the EMRP IND62:
JRP-TIM project.
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Appendix A. Least squares algorithm for cylinder

Nominal geometric 
surface

Manufactured
surface

Tangent
plane

Mth i = (xi, yi, zi)

M i 

ξi

ni = (ai, bi, 0)

DMth i

ei

Figure A.19. General geometric identification method of surface [41]

The least squares method is applied on measured data in
order to extract the nominal Z-axis cylinder. The points Mth(i)

12

http://www.euramet.org/Media/docs/EMRP/JRP/JRP_Summaries_2012/Industry_JRPs/IND62_Publishable_JRP_Summary.pdf
http://www.euramet.org/Media/docs/EMRP/JRP/JRP_Summaries_2012/Industry_JRPs/IND62_Publishable_JRP_Summary.pdf


F. VIPREY et al. / Precision Engineering 00 (2016) 1–16 13

are obtained after translation and rotation of measured cloud of
points to define the nominal geometry of the cylinder directly
centered on the machine frame R f .
By applying the principle and the description of the small dis-
placement screw (SDS) method (Figure A.19) described in [35]
to evaluate the cylindricity, for the spatial coordinates of the
point Mth i = (xi, yi, zi), the normal vector ~ni, the variation in
measurement parameters ξi, the Plücker coordinates screw [Pi]A

and the SDS [TA] are respectively defined in equations A.1, A.2,
A.3 and A.4:

~ni =


cosθi = xi√

xi
2+yi

2

sinθi =
yi√

xi
2+yi

2

0

 (A.1)

with θi being the angular position step.

ξi =

√
xi

2 + yi
2 − R (A.2)

[Pi]A =


cosθi −zi × sinθi

sinθi zi × cosθi

0 0

 (A.3)

[TA] =


α u
β v
0 0

 (A.4)

To obtain the least squares cylinder fitting as close as pos-
sible to the measured cloud of points, the problem minimizing
the deviation ei presented in equation A.5 should be solved.

ei = ξi − (−zi sinθi α+ zi cosθi β+ cosθi u + sinθi v + r) (A.5)

where r is the radius increase along ~ni that minimizes the vari-
ation ei.

To minimize the sum of square deviations W in equation
A.6, it amounts to solve the system of equations A.7. This sys-
tem can be written using matrix formula A.8 and computation
enables the obtained values of parameters (α, β, u, v, r).

W =

n∑
i=1

ei
2 (A.6)

where n is the number of measured points

∂W
∂α

= 0;
∂W
∂β

= 0;
∂W
∂u

= 0;
∂W
∂v

= 0;
∂W
∂r

= 0 (A.7)


Σzi

2 sin2θi −Σzi
2 sinθicosθi −Σzi sinθicosθi −Σzi sin2θi −Σzi sinθi

−Σzi
2 sinθicosθi Σzi

2cos2θi Σzicos2θi Σzi sinθicosθi Σzicosθi

−Σzi sinθicosθi Σzicos2θi Σcos2θi Σsinθicosθi Σcosθi

Σzi sin2θi Σzi sinθicosθi Σsinθicosθi Σsin2θi Σsinθi
−Σzi sinθi Σzicosθi Σcosθi Σsinθi n

×
α
β
u
v
r

 =


−Σξizi sinθi

Σξizicosθi
Σξicosθi
Σξi sinθi
Σξ

 (A.8)

The flowchart of the least squares cylinder algorithm is shown
in figure A.20. The algorithm outputs are the sum of square de-
viations, and intrinsic parameters of cylinder: the normal vec-
tor, a point of the axis and the radius.

N points (Xi, Yi, Zi)

At least
5 points are 
differents?

N = 5 ?

Yes

Not enough points No

Yes
Points are 
aligned?

End Yes

No

No
Points are 
coplanar?Yes

No

Least Square 
cylinder

Figure A.20. Flowchart of least squares cylinder algorithm

Appendix B. Least squares algorithm for plane

X

Y

Z

O
xi

zi

yi

M i 

n = (a,b,c)

M i 

Mth i 

δi

d

Figure B.21. Description of deviation δi

The general form of the equation of plane is:

ax + by + cz + d = 0 (B.1)

where the normal vector of plane is ~n = (a, b, c) and d is the
distance to the frame origin and Mthi = (x, y, z) a point of the
plane. The following description does not explain particular
cases when the distance between the plane and frame origin
is equal to zero and when the plane is parallel to ~Z (i.e. c =
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0). However, the developed algorithm takes into account these
cases.

The least squares plane passes as close as possible to the mea-
sured cloud of points Mi = (Xi,Yi,Zi) by minimizing the sum of
square deviations. This square deviation presented in equation
B.2 and shown in figure B.21 is obtained from B.1 by applying
the variable change defined in equation B.3.

δi
2 = 1

A2+B2+1 (AXi + BYi + Zi − D)2 (B.2)

with

A = a/c; B = b/c; D = −d/c (B.3)

So, for a cloud of n points Mi = (Xi,Yi,Zi),the sum W of
square deviations δi is given by:

W =

n∑
i=1

δi
2 =

1
A2 + B2 + 1

n∑
i=1

(AXi + BYi + Zi − D)2 (B.4)

the minimum of this sum is obtained when the partial deriva-
tives with respect to A, B and D are equal to zero. The partial
derivative with respect to D is particularly simple:

∂W
∂D

=
2

A2 + B2 + 1

n∑
i=1

(AXi + BYi + Zi − D) = 0 (B.5)

So the best estimate of D is equal to:

D =
1
n

A n∑
i=1

Xi + B
n∑

i=1

Yi +

n∑
i=1

Zi

 (B.6)

By using the following change of variables:

xi = Xi −
1
n

n∑
i=1

Xi; yi = Yi −
1
n

n∑
i=1

Yi; zi = Zi −
1
n

n∑
i=1

Zi

the sum W of square deviations δi (equation B.4) can be written
as follows:

W =

n∑
i=1

δi
2 =

1
A2 + B2 + 1

n∑
i=1

(Axi + Bxi + zi)2 (B.7)

The aim of this method is to perform least squares plane by
non iterative method. The mathematical problem is based on
the minimization of the sum of square deviations presented in
equation B.7. The system of two equations with two unknowns
(A, B) is obtained by the partial derivations. This system can be
analitycally simplified by a polynomial function with degree 3
in A and an expression of B which depends of A. For a polyno-
mial with degree 3 (equation B.8), the coefficient c0, c1, c2 and
c3 can be formulated as follows:

c3A3 + c2A2 + c1A + c0 = 0 (B.8)

where,



c3 =S xy(S 2
yz − S 2

xz) + S xzS yz(S xx − S yy)

c2 =S 3
yz + S yz(S 2

xz − 2S 2
xy − S 2

xx)

+ S yz(S xxS zz + S xxS yy − S yyS zz)
+ S xyS xz(S xx + S yy − 2S zz)

c1 =S 3
xy + S xy(S 2

xz − 2 ∗ S 2
yz − S 2

zz)

+ S xy(S xxS zz + S yyS zz − S xxS yy)
+ S xzS yz(S yy + S zz − 2S xx)

c0 =S yz(S 2
xy − S 2

xz) + S xyS xz(S zz − S yy)

with,

S xx =

n∑
i=1

xi
2 S yy =

n∑
i=1

yi
2 S zz =

n∑
i=1

zi
2

S xy =

n∑
i=1

xiyi S xz =

n∑
i=1

xizi S yz =

n∑
i=1

yizi

The expression of B is defined by:

B =
S xyS yzA2 + (S 2

yz − S 2
xy)A − S xyS yz

(S yz(S xx − S yy) − S xyS xz)A + S xy(S yy − S zz) + S xzS yz
(B.9)

Among the applicable solutions, the logical choice is the
ordered pair (A, B) which minimizes W in equation B.4.

The global flowchart of the mathematical algorithm is de-
picted in figure B.22. The algorithm outputs are intrinsic pa-
rameters of plane (i.e. the normal vector, a distance from origin
of frame and the plane), and the sum of square deviations. Af-
terwards, the intrinsic parameters of the least squares plane are
deduced by:

a =
A

√
A2 + B2 + 1

; b =
B

√
A2 + B2 + 1

; c =
1

√
A2 + B2 + 1

d = −
1

n
√

A2 + B2 + 1
(A

n∑
i=1

Xi + B
n∑

i=1

Yi +

n∑
i=1

Zi)
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