
HAL Id: hal-01357509
https://hal.science/hal-01357509

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal Representation for the Control of Parallel
Robots via Leg Observation Considering a Hidden

Robot Model
Sébastien Briot, Victor Rosenzveig, Philippe Martinet, Erol Ozgür, Nicolas

Bouton

To cite this version:
Sébastien Briot, Victor Rosenzveig, Philippe Martinet, Erol Ozgür, Nicolas Bouton. Minimal Repre-
sentation for the Control of Parallel Robots via Leg Observation Considering a Hidden Robot Model.
Mechanism and Machine Theory, 2016, 106. �hal-01357509�

https://hal.science/hal-01357509
https://hal.archives-ouvertes.fr


Minimal Representation for the Control of Parallel Robots via Leg Observation
Considering a Hidden Robot Model
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Abstract

Previous works on the visual servoing of parallel robots using the observation of their leg directions
validated the feasibility of the approach but they have enlighten two main surprising results for which no
answer was given: (i) the observed robot which is composed of n legs could be controlled in most cases using
the observation of only m leg directions (m < n), and that (ii) in some cases, the robot did not converge to the
desired end-effector pose, even if the observed leg directions did (i.e. there was not a global diffeomorphism
between the observation space and the robot space).

Recently, it was shown that the visual servoing of the leg directions of the Gough-Stewart platform and the
Adept Quattro with 3 translational degrees of freedom was equivalent to controlling other virtual robots that
have assembly modes and singular configurations different from those of the real ones. These hidden robot
models are tangible visualizations of the mapping between the observation space and the real robots Cartesian
space. Thanks to this concept, all the aforementioned points were answered for the mentioned robots.

In this paper, the concept of hidden robot model is generalized for any type of parallel robots controlled
using visual servos based on the observation of the leg directions. It is shown that the concept of hidden robot
model is a powerful tool that gives useful insights about the visual servoing of robots using leg direction ob-
servation. With the concept of hidden robot model, the singularity problem of the controller can be addressed
and the convergence issues of the controller can be explained, understood and solved.

All these results are validated in simulations and through experiments on a Quattro robot.

Keywords: Parallel robots, visual servoing, controllability, kinematics, singularity.

1. Introduction1

Parallel robots are mechanical architectures whose end-effector is linked to the fixed base by means of at2

least two kinematic chains [1]. Compared to serial robots, such robots are stiffer and can reach higher speeds3

and accelerations [2]. However, their control is troublesome because of the complex mechanical structure,4

highly coupled joint motions and many other factors (e.g. clearances, assembly errors, etc.) which degrade5

stability and accuracy.6

Many research papers focus on the control of parallel mechanisms [2]. Cartesian control is naturally7

achieved through the use of the inverse differential kinematic model which transforms Cartesian velocities8

into joint velocities. It is noticeable that, in a general manner, the inverse differential kinematic model of9

parallel mechanisms does not only depend on the joint configuration (as for serial mechanisms) but also on10

the end-effector pose. Consequently, one needs to be able to estimate or measure the latter.11

Past research works have proven that the robot end-effector pose can be effectively estimated by vi-12

sion [3, 4, 5]. The most common approach consists of the direct observation of the end-effector pose [6,13
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7, 8]. However, some applications prevent the observation of the end-effector of a parallel mechanism by14

vision [9, 10, 11, 12]. For instance, it is not wise to imagine observing the end-effector of a machine-tool15

while it is generally not a problem to observe its legs that are most often designed with slim and rectilinear16

rods [2].17

A first step in this direction was made in [13] where vision was used to derive a visual servoing scheme18

based on the observation of a Gough-Stewart (GS) parallel robot [14]. In that method, the leg directions were19

chosen as visual primitives and control was derived based on their reconstruction from the image. By stacking20

the observation matrices corresponding to the observation of several legs, a control scheme was derived and21

it was then shown that such an approach allowed the control of the observed robot. After these preliminary22

works, the approach was extended to the control of the robot directly in the image space by the observation of23

the leg edges (from which the leg direction can be extracted), which has proven to exhibit better performances24

in terms of accuracy than the previous approach [15]. The approach was applied to several types of robots,25

such as the Adept Quattro and other robots of the same family [16, 17].26

The proposed control scheme was not usual in visual servoing techniques, in the sense that in the con-27

troller, both robot kinematics and observation models linking the Cartesian space to the leg direction space28

are involved. As a result, some surprising results were obtained:29

1. the observed robot which is composed of n legs could be controlled in most cases using the observation30

of only m leg directions (m < n), knowing the fact that the minimal number of observed legs should be,31

for 3D unit vectors characterizing the leg directions, an integer greater than n/232

2. in some cases, the robot does not converge to the desired end-effector pose (even if the observed leg33

directions did)34

without finding some concrete explanations to these points. Especially, the last point showed that it may be35

possible that a global diffeomorphism between the Cartesian space and the leg direction space does not exist,36

but no formal proof was given.37

In parallel, some important questions were never answered, such as:38

3. How can we be sure that the stacking of the observation matrices cannot lead to local minima (for39

which the error in the observation space is non zero while the robot platform cannot move [18]) in the40

Cartesian space?41

4. Are we sure that there is no singularity in the mapping between the leg direction space and the Cartesian42

space?43

All these points were never answered because of the lack of existing tools able to analyze the intrinsic44

properties of the controller. Additionally, we would like to point out that the understanding of the singularity45

cases of the mapping used in the controller is of the utmost because these singularities leads to the loss46

of controllability of the robot [19], and thus the define the boundaries of the reachable workspace for the47

controller. As a result, the accessible workspace for the robot controlled by leg observation is the intersection48

of two workspaces: (1) the singularity-free workspace of the robot and (2) the workspace free of singularities49

linked to the mapping between the leg direction space and the Cartesian space.50

Recently, two of the authors of the present paper have demonstrated in [20] that these points could be51

explained by considering that the visual servoing of the leg directions of the GS platform was equivalent to52

controlling another robot “hidden” within the controller, the 3–UPS1 that has assembly modes and singular53

configurations different from those of the GS platform.54

In both cases, considering this hidden robot model allowed the finding of a minimal representation for the55

leg-observation-based control of the studied robots that is linked to a virtual hidden robot which is a tangible56

visualization of the mapping between the observation space and the real robot Cartesian space. The hidden57

robot model:58

1. can be used to explain why the observed robot which is composed of n legs can be controlled using the59

observation of only m leg directions (m < n),60

1In the following of the paper, R, P, U, S, Π will stand for passive revolute, prismatic, universal, spherical and planar parallelogram
joint [21], respectively. If the letter is underlined, the joint is considered active.
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2. can be used to prove that there does not always exist a global diffeomorphism between the Cartesian61

space and the leg direction space, but can also bring solutions for avoiding to converge to a non desired62

pose,63

3. simplifies the singularity analysis of the mapping between the leg direction space and the Cartesian64

space by reducing the problem to the singularity analysis of a new robot.65

4. can be used to certify that the robot will not converge to local minima, through the application of tools66

developed for the singularity analysis of robots.67

Thus, the concept of hidden robot model, associated with mathematical tools developed by the mechanical68

design community, is a powerful tool able to analyze the intrinsic properties of some controllers developed69

by the visual servoing community. Moreover, this concept shows that in some visual servoing approaches,70

stacking several interaction matrices to derive a control scheme without doing a deep analysis of the intrinsic71

properties of the controller is clearly not enough. Further investigations are required.72

Therefore, in this paper, the generalization of the concept of hidden robot model is presented and a general73

way to find the hidden robots corresponding to any kind of robot architecture is explained. It will be shown74

that the concept of hidden robot model is a powerful tool that gives useful insights about the visual servoing75

of robots using leg direction observation. With the concept of hidden robot model, the singularity problem76

of the mapping between the space of the observed robot links and the Cartesian space can be addressed, and77

above all, it is possible to give and certify information about the controllability of the observed robots using78

the proposed controller. Therefore, with the hidden robot concept, we are able to understand and find the79

minimal representation for the control of parallel robots via leg observation, i.e. to find what are the necessary80

(minimal) information to use in the controller in order to allow the full control of the robot.81

The paper is decomposed as follows. Section 2 makes some brief recalls on the visual servoing of parallel82

robots using leg observations. Then, Section 3 presents the concept of hidden robot model and generalizes83

the approach for any type of parallel robots. In Section 4, some examples of typical classes of parallel robots84

are studied: the planar parallel robots, the n-Pod family (i.e. GS platform-like robots), and the Delta-like85

robots. Simulations and experimental validations on the Adept Quattro are presented in Section 5. Finally,86

our conclusions are written in Section 6.87

2. Background on visual servoing of parallel robots using leg observations88

2.1. Line modeling89

A lineL in space, expressed in the camera frame, is defined by its Bi-normalized Plücker coordinates [22]:90

91

L ≡
(
cu, cn, cn

)
(1)92

where cu is the unit vector giving the spatial orientation of the line2, cn is the unit vector defining the so-called93

interpretation plane of line L and cn is a non-negative scalar. The latter are defined by cncn = cP × cu where94

cP is the position of any point P on the line, expressed in the camera frame. Notice that, using this notation,95

the well-known (normalized) Plücker coordinates [23, 2] are the couple
(
cu, cncn

)
.96

The projection of such a line in the image plane, expressed in the camera frame, has for characteristic97

equation [22]:98

cnT cp = 0 (2)99

where cp are the coordinates in the camera frame of a point P in the image plane, lying on the line.100

2In the following of the paper, the superscript before the vector denotes the frame in which the vector is expressed (“b” for the
base frame, “c” for the camera frame and “p” for the pixel frame). If there is no superscript, the vector can be written in any frame.
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Figure 1: Projection of a cylinder in the image

2.2. Cylindrical leg observation101

The legs of parallel robots have usually cylindrical cross-sections [2]. The edges of the i-th cylindrical leg102

are given, in the camera frame, by [15] (Fig 1):103

cn1
i = − cos θi

chi − sin θi
cui ×

chi (3)104

cn2
i = + cos θi

chi − sin θi
cui ×

chi (4)105

where cos θi =

√
ch2

i − R2
i

/
chi, sin θi = Ri/

chi and
(
cui,

chi,
chi

)
are the Bi-normalized Plücker coordinates of106

the cylinder axis and Ri is the cylinder radius.107

It was also shown in [15] that the leg orientation, expressed in the camera frame, is given by108

cui =

cn1
i ×

cn2
i∥∥∥cn1

i ×
cn2

i

∥∥∥ (5)109

Let us remark now that each cylinder edge is a line in space, with Bi-normalized Plücker expressed in the110

camera frame (cui,
cn j

i ,
cn j

i ) (Fig 1).111

2.3. Leg direction based visual servoing112

The proposed control approach was to servo the leg directions cui [13]. Some brief recalls on this type of113

controller are done below.114

2.3.1. Interaction matrix115

Visual servoing is based on the so-called interaction matrix LT [24] which relates the instantaneous relative116

motion Tc = cτc −
cτs between the camera and the scene, to the time derivative of the vector s of all the visual117

primitives that are used through:118

ṡ = LT
(s)Tc (6)119

where cτc and cτs are respectively the kinematic screw of the camera and the scene, both expressed in Rc, i.e.120

the camera frame.121

In the case where we want to directly control the leg directions cui, and if the camera is fixed, (6) becomes:122

123

cu̇i = MT
i

cτc (7)124

where MT
i is the interaction matrix for the leg i.125
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2.3.2. Control126

For the visual servoing of a robot, one achieves exponential decay of an error e(s, sd) between the current127

primitive vector s and the desired one sd using a proportional linearizing and decoupling control scheme of128

the form:129

Tc = λL̂T+
(s) e(s, sd) (8)130

where Tc is used as a pseudo-control variable and the superscript “+” corresponds to the matrix pseudo-131

inverse.132

The visual primitives being unit vectors, it is theoretically more elegant to use the geodesic error rather133

than the standard vector difference. Consequently, the error grounding the proposed control law will be:134

ei = cui ×
cudi (9)135

where cudi is the desired value of cui.136

It can be proven that, for spatial parallel robots, matrices Mi are in general of rank 2 [13] (for planar137

parallel robots, they are of rank 1). As a result, for spatial robots with more than 2 dof, the observation of138

several independent legs is necessary to control the end-effector pose. An interaction matrix MT can then139

obtained by stacking k matrices MT
i of k legs.140

Finally, a control is chosen such that e, the vector stacking the errors ei associated to of k legs (k = 3...6),141

decreases exponentially, i.e. such that142

ė = −λe (10)143

Then, introducing LT
i = −

[
cudi

]
×

MT
i , where

[
cudi

]
×

is the cross product matrix associated with the vector144

cudi, the combination of (9), (7) and (10) gives145

cτc = −λLT+e (11)146

where LT can be obtained by stacking the matrices LT
i of k legs. The conditions for the rank deficiency of147

matrix LT , as well as the conditions that lead to local minima [18] of the Eq. (11) are discussed in Section 3.148

This expression can be transformed into the control joint velocities:149

q̇ = −λcJinvLT+e (12)150

where cJinv is the inverse Jacobian matrix of the robot relating the end-effector twist to the actuator velocities,151

i.e. cJinvcτc = q̇.152

In the next Section, it is shown that the equations used in the controller, characterizing the mapping153

between the observation (leg-direction) space and the Cartesian space, can indeed be related to a virtual154

architecture hidden within the controller. Understanding and using the models of these hidden robots is155

mandatory for being able to analyze the controllability of parallel robots using the proposed visual servoing156

approach.157

3. The concept of hidden robot model158

The concept of hidden robot model has been first introduced in [20] for the visual servoing of the GS159

platform. In this paper, it has been demonstrated that the leg direction based visual servoing of such robots160

intrinsically involves the appearance of a hidden robot model, which has assembly modes and singularities161

different from the real robot. It was shown that the concept of hidden robot model fully explains the possible162

non convergence of the observed robot to the desired final pose and that it considerably simplifies the singu-163

larity analysis of the mapping involved in the controller. The aim of this Section is to generalize and extend164

the concept to any class of robots.165
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Figure 2: A general robot leg and its corresponding hidden robot leg when the vector ui is observed

3.1. Statement of the problem166

The concept of hidden robot model comes from the following observation: in the classical control ap-167

proach, the encoders measure the motion of the actuator; in the previously described control approach (Sec-168

tion 2), the leg directions or leg edges are observed. So, in a reciprocal manner, one could wonder to what169

kind of virtual actuators such observations correspond, and as a result, what could be the virtual architecture170

hidden inside the controller of a given robot. The main objective of this Section is to give a general answer to171

these questions.172

However, we want to claim that our objective is not to prove the unicity of the virtual robot hidden in173

the controller. Indeed, several robot architectures could be found for the same controller, but all of them174

will be equivalent in terms of geometry and kinematics (same input-output relationships, same singularities).175

So, it is not necessary to find an architecture solution of an optimal problem, but it is sufficient to find one176

architecture having the desired geometric and kinematic properties in order to solve the singularity problem177

of the controller. This is what is shown below with a rather simple and intuitive approach.178

3.2. How to define the legs of the hidden robots179

Let us consider a general leg for a parallel robot in which the direction ui of a segment is observed180

(Fig. 2(a) – in this figure, the last segment is considered observed, but the following explanations can be181

generalized to any segment located in the leg chain). In what follows, we only consider that we observe the182

leg direction ui, and not the leg edges in the image space, as the leg edges are only used as a measure of ui.183

So the problem is the same, except in the fact that we must consider the singularity of the mapping between184

the edges and ui, but this problem is well handled: these singularities appear when n1
i and n2

i are collinear, i.e.185

the cylinders are at infinity [15].186

In the general case, the unit vector ui can obviously be parameterized by two independent coordinates,187

that can be two angles, for example the angles α and β of Fig. 3 defined such that cosα = x · v = y ·w (where188

v and w are defined such that z · v = z ·w = 0) and cos β = u · x. Thus α is the angle of the first rotation of the189

link direction ui around z and β is the angle of the second rotation around v.190

It is well known that a U joint is able to orientate a link around two orthogonal axes of rotation, such as z191

and v. Thus U joints can be the virtual actuators with generalized coordinates α and β we are looking for. Of192

course, other solutions can exist, but U joints are the simplest ones.193

If a U joint is the virtual actuator that makes the vector ui move, it is obvious that:194

• if the value of ui is fixed, the U joint coordinates α and β must be constant, i.e. the actuator must be195

blocked,196

• if the value of ui is changing, the U joint coordinates α and β must also vary.197
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As a result, to ensure the aforementioned properties for α and β if ui is expressed in the base or camera198

frame (but the problem is identical as the camera is considered fixed on the ground), vectors x, y and z of199

Fig. 3 must be the vectors defining the base or camera frame. Thus, in terms of properties for the virtual200

actuator, this implies that the first U joint axis must be constant w.r.t. the base frame, i.e. the U joint must be201

attached to a link performing a translation w.r.t. the base frame3.202

However, in most of the cases, the real leg architecture is not composed of U joints attached on links203

performing a translation w.r.t. the base frame. Thus, the architecture of the hidden robot leg must be modified204

w.r.t. the real leg such as depicted in Fig. 2(b). The U joint must be mounted on a passive kinematic chain205

composed of at most 3 orthogonal passive P joints that ensures that the link on which is it attached performs206

a translation w.r.t. the base frame. This passive chain is also linked to the segments before the observed links207

so that they do not change their kinematic properties in terms of motion. Note that:208

• it is necessary to fix the PPP chain on the preceding leg links because the information given by the209

vectors ui is not enough for rebuilding the full platform position and orientation: it is also necessary to210

get information on the location of the anchor point An−1 of the observed segment [15]. This information211

is kept through the use of the PPP chain fixed on the first segments;212

• 3 P joints are only necessary if and only if the point An−1 describes a motion in the 3D space; if not, the213

number of P joints can be decreased: for example, in the case of the GS platform presented in [20], the214

U joint of the leg to control was located on the base, i.e. there was no need to add passive P joints to215

keep the orientation of its first axis constant;216

• when the vector ui is constrained to move in a plane such as for planar legs, the virtual actuator be-217

comes an R joint which must be mounted on the passive PPP chain (for the same reasons as mentioned218

previously).219

For example, let us have a look at the RU leg with one actuated R joint followed by a U joint of Fig. 4(a).220

Using the previous approach, its virtual equivalent leg should be an {R–PP}–U leg (Fig. 4(b)), i.e. the U joint221

able to orientate the vector ui is mounted on the top of a R–PP chain that can guarantee that:222

1. the link on which the U joint is attached performs a translation w.r.t. the base frame,223

2. the point C (i.e. the centre of the U joint) evolves on a circle of radius lAB, like the real leg.224

It should be noticed that, in several cases for robots with a lower mobility (i.e. spatial robots with a number225

of dof less than 6, or planar robots with a number of dof less than 3), the last joint that links the leg to the226

platform should be changed so that, if the number of observed legs is inferior to the number of real legs, the227

hidden robot keeps the same number of controlled dof (see Section 4.2.2).228

3In the case where the camera is not mounted on the frame but on a moving link, the virtual U joint must be attached on a link
performing a translation w.r.t. the considered moving link.
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It should also be mentioned that we have presented above the most general methodology that is possible229

to propose, but it is not the most elegant way to proceed. In many cases, a hidden robot leg architecture can230

be obtained such that less modifications w.r.t the real leg are achieved. For example, the R–PP chain of the231

hidden robot leg {R–PP}–U (Fig. 4(b)) could be equivalently replaced by a planar parallelogram (Π) joint232

without changing the aforementioned properties of the U virtual actuator (Fig. 4(c)), i.e. only one additional233

joint is added for obtaining the hidden robot leg (note that we consider that a Π joint, even if composed of234

several pairs, can be seen as one single joint, as in [21]).235

Anyway, as mentioned above, the objective of this part is not to find an architecture solution of an optimal236

problem (optimal with respect to design complexity [21], for instance) but it was to find one architecture hav-237

ing the desired geometric and kinematic properties in order to solve the singularity problem of the controller.238

This is what was done below with a rather simple and intuitive approach.239

It should be noted that the same results could be also demonstrated with more rigorous Type synthesis240

approaches [25, 26, 27]. However, adding such methodologies in the present paper would have not provided241

any further explanations of the problem and would have make it longer and more unclear.242
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3.3. How to use the hidden robot models for analyzing the controllability of the servoed robots243

The aim of this Section is to show how to use the hidden robots for answering points 1 to 4 enumerated in244

the introduction of the paper.245

246

Point 1: the hidden robot model can be used to explain why the observed robot which is composed of n legs247

could be controlled in most cases using the observation of only m leg directions (m < n), knowing the fact that248

the minimal number of observed legs should be, for 3D unit vectors, an integer greater than n/2.249

To answer this point, let us consider a general parallel robot composed of 6 legs (one actuator per leg) and250

having six dof. Using the approach proposed in Section 3.2, each observed leg will lead to a modified virtual251

leg with at least one actuated U joint that has two degrees of actuation. For controlling 6 dof, only 6 degrees252

of actuation are necessary, i.e. three actuated U are enough (as long as the motions of the U joints are not253

correlated, i.e. the robot is fully actuated). Thus, in a general case, only three legs have to be observed to fully254

control the platform dof.255

256

Point 2: the hidden robot model can be used to prove that there does not always exist a global diffeomorphism257

between the Cartesian space and the leg direction space, but can also bring solutions for avoiding to converge258

to a non desired pose.259

Here, the answer comes directly from the fact that the real controlled robot may have a hidden robot260

model with different geometric and kinematics properties. This means that the hidden robot may have as-261

sembly modes and singular configurations different from those of the real robot. If the initial and final robot262

configurations are not included in the same aspect (i.e. a workspace area that is singularity-free and bounded263

by singularities [2]), the robot won’t be able to converge to the desired pose, but to a pose that corresponds to264

another assembly mode that has the same leg directions as the desired final pose (see Fig. 5).265

Solutions for avoiding to converge to a non-desired pose are given in Appendix Appendix A.266

267

Point 3: the hidden robot model simplifies the singularity analysis of the mapping between the leg direction268

space and the Cartesian space by reducing the problem to the singularity analysis of a new robot.269

The interaction matrix MT involved in the controller gives the value of cu̇ as a function of cτc. Thus,270

MT is the inverse Jacobian matrix of the hidden robot (and, consequently, MT+ is the hidden robot Jacobian271

matrix). Except in the case of decoupled robots [28, 29, 30], the Jacobian matrices of parallel robots are not272

free of singularities.273
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Considering the input/output relations of a robot, three different kinds of singularity can be observed [31]4:274

• the Type 1 singularities that appear when the robot Jacobian matrix is rank-deficient; in such configura-275

tions, any motion of the actuator that belongs to the kernel of the Jacobian matrix is not able to produce276

a motion of the platform,277

• the Type 2 singularities that occur when the robot inverse Jacobian matrix is rank-deficient; in such278

configurations, any motion of the platform that belongs to the kernel of the inverse Jacobian matrix279

is not able to produce a motion of the actuator. And, reciprocally, near these configurations, a small280

motion of the actuators lead to large platform displacements, i.e. the accuracy of the robot becomes281

very poor,282

• the Type 3 singularities that appear when both the robot Jacobian and inverse Jacobian matrices are283

rank-deficient.284

Thus,285

• finding the condition for the rank-deficiency of MT is equivalent to find the Type 2 singularities of the286

hidden robot,287

• finding the condition for the rank-deficiency of MT+ is equivalent to find the Type 1 singularities of the288

hidden robot.289

Since a couple of decades ago, many tools have been developed by the mechanical design community for290

finding the singular configurations of robots. The interested reader could refer to [33, 2, 34, 35] and many291

other works on the Grassmann Geometry and Grassmann-Cayley Algebra for studying the singular configu-292

rations problem. In what follows in the paper, these tools are used but only the final results concerning the293

singular configuration conditions are given.294

295

Point 4: the hidden robot model can be used to certify that the robot will not converge to local minima.296

The robot could converge to local minima if the matrix LT+ of (11) is rank deficient. A necessary and297

sufficient condition for the rank deficiency of this matrix is that the MT+ is rank deficient, i.e. the hidden298

robot model encounters a Type 1 singularity. As mentioned above, many tools have been developed by the299

mechanical design community for finding the singular configurations of robots and solutions can be provided300

to ensure that the hidden robot model does not meet any Type 1 singularity (see also the Appendix Appendix301

A).302

4. Hidden robot models of some known parallel robot families303

Let us now present the hidden robot models of some well known families of parallel robots and deal with304

their forward kinematics and singular configurations.305

It should be noted that, in the singularity analysis of the considered robots, only the Type 2 singular306

configurations are detailed as Type 1 singularity always appear when at least one leg is fully stretched or307

folded (workspace boundary). Therefore, these conditions are not recalled.308

4.1. Application to planar parallel robots309

4.1.1. The hidden robot legs of planar parallel robots310

The usual planar parallel manipulators (ppm) are composed of planar serial chains with at most three311

1-dof joints, respectively, among which one is actuated. As mentioned in [2], using the different possible312

combinations of R and P joints, only 10 different serial chains, that lead to robots that can be actuated, can313

4There exist other types of singularities, such as the constraint singularities [32], but they are due to passive constraint degeneracy
only, and are not involved in the mapping between the leg directions space and the robot controlled Cartesian coordinate space.
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be obtained. These chains are represented in Table 1 (in this table and the following pictures, the gray pairs314

denote the actuated joints).315

Now, using the approach presented in Section 3.2, and considering that the direction ui of the last segment316

of each leg is observed, one can find the hidden robot leg corresponding to this observation (Table 1).317
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Table 1: The 10 possible architectures for the legs of ppm and
their equivalent hidden robot leg for the visual servoing using leg
directions

Real leg architecture Hidden robot leg architecture
for RRR and RRR legs =⇒ a ΠRR leg
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Table 1: The 10 possible architectures for the legs of ppm and
their equivalent hidden robot leg for the visual servoing using leg
directions

Real leg architecture Hidden robot leg architecture
for RRP legs =⇒ a ΠRP leg
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u
i

C
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A
i

From Table 1, the following information can be extracted:318

• for RPR and PRR legs, the hidden robot legs are the same as the real ones;319

• PRP legs lead to PRP hidden robot legs; and robots made of PRP legs are well known not to be con-320

trollable [2]. A similar result appears for RRP legs that lead to ΠRP hidden robot legs.321

• the last element of PPR and PPR having a constant direction ui, robots made of such legs cannot be322

controlled using leg direction observation. As a result, they don’t have an equivalent hidden robot323

model.324

Thus, using the concept of hidden robot leg and hidden robot model, the problem of the robot controlla-325

bility can be directly addressed without any mathematical derivations.326

The next Section presents the hidden robot models of the 2 and 3-dof controllable robot with a symmetric327

leg arrangement and made of the legs presented in Table 1.328

4.1.2. The hidden robot models of planar parallel robots329

Using the results of the previous Section, 12 ppm with symmetric leg arrangement (i.e. with identical leg330

architectures) and that can be controlled using the leg direction observation can be found:331

• for manipulators with 2 dof : RRRRR, RRRRR, RPRPR, RPRPR, PRRRP, PRRRP robots;332

• for manipulators with 3 dof : 3–RRR, 3–RRR, 3–RPR, 3–RPR, 3–PRR, 3–PRR robots.333

Their architectures are well-known and, as they can also be easily deduced from the leg arrangement given334

in Tab. 1, their schematics are not depicted again.335

However, for illustrating this Section, let us present the forward kinematic problem (fkp) and singular-336

ity analysis of the hidden robot model of the 3–RRR robot, when controlled using leg direction observation337

(Fig. 6(a)). Using the results of Table 1, it can be found that its equivalent hidden robot model is a 3–ΠRR338

robot (Fig. 6(b)). Each of its legs is composed of a passive planar parallelogram (Π joint) which is able to339

maintain constant the orientation of the links BiDi w.r.t. the base and of an RR chain which is mounted on the340

link BiDi.341

342

Forward kinematics and assembly modes. Using the usual methodology [2], all the solutions to the fkp are343

at the intersections of the coupler curve (which represents the displacement loci of one platform extremity344

when one of the leg is disassembled, the actuators of the two other being fixed (see Fig. 7(a))) with the vertex345

space of the disassembled leg (that represents the passive displacement of the leg tip when the actuator is fixed346

(see Table 1)). For the studied 3–ΠRR robot, as the leg vertex spaces are circles (Table 1), the coupler curve347

is a sextic curve [2], i.e. an algebraic curve of degree 6 (in the case where the vertex spaces had been lines,348
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Figure 6: The 3–RRR robot and its hidden robot model
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Figure 7: Solutions of the fkp for a 3–ΠRR robot

the coupler curve would have been an ellipse [36]). Thus, the solutions of the fkp are at the intersection points349

between the aforementioned circle and sextic curve. And it is shown in [2] that if a circle intersects a sextic350

curve, there are at most 6 intersection points. An example of possible assembly modes for the 3–ΠRR robot351

are presented in Fig. 7(b).352

It should be mentioned that, even if for the 3–RRR (and as a consequence, for the 3–RRR), the hidden robot353

has 6 assembly modes, for the other 10 robots cited at the beginning of Section 4.1.2, the maximal number of354

assembly modes is 2 (see Appendix Appendix A), i.e. the control approach based on the observation of the355

leg direction allows most of the time the decrease of complexity for the fkp.356

357

Singular configurations. The Type 2 singular configurations of ppm have been deeply studied in the past and358

are well-known. For 3 dof ppm (moving in the xOy plane), the singularities appear when s1 ·
(
s2 × s3

)
= 0,359

where sT
i =

[
wx

j wy
j mz

j

]
in which wx

j and wy
j are the x and y components of w j (w j corresponds to the direction360

of the effort applied by the actuated leg on the platform [33] – see Table 1 and Fig. 6) and mz
j is the moment361
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Figure 8: Example of Type 2 singularities for the 3–ΠRR robot

of
[
wx

j wy
j

]T
(note that w j is always applied at point C j) [33]. Such a condition means that the lines of Plücker362

coordinates si intersect in one single point I that corresponds to the instantaneous centre of rotation of the363

platform in the uncontrolled dof (Fig. 8). This point can be at infinity: in this case, all vectors w j are parallel364

and the robot gets one uncontrolled translational motion in the direction orthogonal to w j.365

Obtained results show that singular configurations of the 3–ΠRR robot are different from those singular366

configurations of the real 3–RRR robot, for which they appear when all lines passing through Ci of direction367

ui intersects in one point [33].368

Note that, near the hidden robot singular configurations, the real robot accuracy will be lower. Insights369

about this item are given in Appendix Appendix A.370

Let us now apply the concept of hidden robot models to some particular classes of spatial parallel robots.371

4.2. Application to spatial parallel robots372

For spatial parallel robots, due to the existence of hundreds of possible different architectures and due to373

the difficulty of classifying the robots by families, it is not possible to present all the hidden robot models.374

Thus, it is decided in this Section to show the hidden robot models of two of the best known families of parallel375

robots:376

• the n-Pod family (i.e. robots such as Hexapods (or GS platforms) [14], the Tsai mechanism [37], etc.)377

• the Delta-like robot family (i.e. robots such as the Delta [38], the Quattro [39], the Orthoglide [40], etc.)378

For other types of robot architectures, the interested reader is referred to Section 3.2 for finding a possible379

hidden robot model and to [2, 34, 35] and many other works on the Grassmann Geometry and Grassmann-380

Cayley Algebra for studying the singular configuration problem.381

4.2.1. The n-Pod robot family382

The n-Pod robot family regroups the robots made of n UPS legs (Fig. 9(a)), or some of their variations383

such as UPU [37] or even RPS legs [41], i.e. the legs are composed of one passive U or R joint located on the384

ground, followed by an active P joint and then by one passive S or U joint.385

Probably the most known robots of this family are the GS platform [14] (Fig. 9(b)), the 3–UPU robots386

(e.g. see [37, 42]) and the 3–RPS robot [41].387

For such types of legs, the prismatic joint direction can be observed [15, 20]. From Section 3.2 and also388

from [20], it can be shown that the virtual equivalent legs are:389

• for UPS legs: a UPS leg;390

• for UPU legs: a UPU leg;391
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(b) Example of a Type 2 singularity for a 3–UPS robot: the
platform gets an uncontrollable rotation around B1B2

Figure 10: Hidden robot model of the GS platform when 3 legs are observed

• for RPS legs: a RPS leg;392

i.e. the joint fixed on the ground becomes actuated, while the prismatic joint becomes passive. Then, using393

the usual methodology, the fkp and singularity analysis can be carried out.394

For illustrating this Section, let us present the fkp and singularity analysis for the hidden robot model of395

the GS platform, when controlled using leg direction observation. This analysis was already made in [20] but396

the present section provides additional results.397

The GS platform is made of six UPS legs, thus its equivalent hidden robot will be made of UPS legs. UPS398

legs have 2 degree of actuation (the U joint is fully actuated), and this is the reason with only three legs have to399

be observed for fully controlling the GS platform using leg direction observation [20]: in this case, the hidden400

robot is a 3–UPS robot which is well known to be fully actuated (Fig. 10(a)).401

402

Forward kinematics and assembly modes. Without loss of generality, let us consider that we analyze the403

3–UPS robot depicted at Fig. 10(a). If leg 3 is disassembled at point B3, as there are only four actuators for404

controlling the six robot mobilities, the platform gains two dof. The gained motion is called a spatial Cardanic405

motion [43]. This motion is defined by the fact that points B1 and B2 are constrained to move on the lines406
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Figure 11: Solutions of the fkp for a 3–UPS robot

whose directions are given by u1 and u2, respectively (these lines represent the vertex spaces of point Bi of407

the legs when the U joints are fixed and the P joints are passive), and the platform is free to rotate around the408

line B1B2. As demonstrated in [43], the surface described by point B3 is an octic surface (Fig 11(a)), i.e. an409

algebraic surface of degree eight.410

As B3 also belongs to leg 3, this point is constrained to move on a line defined by the direction u3 of the411

passive prismatic joint. As shown in [43], a line and an octic surface can have up to eight real intersection412

points. As a result, the 3–UPS robot can have up to eight assembly modes. An example of possible assembly413

modes of the 3–UPS robot is depicted in Fig. 11. Let us recall here that, in the general case, the GS platform414

can have up to 40 assembly modes [2] that are different from those of the 3–UPS robot.415

416

Singular configurations. The singular configurations of 3–UPS-like robots have been deeply studied in the417

past [34, 35]. Type 2 singularities appear when the planes P1, P2, P3 (whose normal directions are defined by418

the vectors u1, u2 and u3, respectively) and the plane P4 (passing through the points B1, B2 and B3) intersect419

in one point (that can be at infinity) (Fig. 10(b)).420

4.2.2. The Delta-like robot family421

The Delta-like robot family regroups the robots made of n A–{2–US} legs (where A can be either an active422

R or P joint – see Fig. 12(a) for an example of R–{2–US} leg) [38, 44], or some of their variations such as423

AUU [45], or even AUS legs [46, 47], i.e. the leg is composed of one active R or P joint located on the ground,424

followed by either two passive U joints, a spatial parallelogram (2–US loops) or even passive U and S joints.425

Probably the most known robots of this family are the Delta [38], the Quattro [39] (Fig. 12(b)), the Or-426

thoglide [40], but many other types of architectures exist (see for example [44, 48]). For such types of legs,427

the distal links direction can be observed (Fig. 12(a)). From Section 3.2, it can be shown that the virtual428

equivalent legs are:429

• for R–{2–US} legs: a Π–{2–US} or a Π–{2–UU} leg (Fig. 13(a));430
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Figure 12: Example of leg and of robot of the Delta-like family

• for RUU legs: a ΠUU leg;431

• for RUS legs: a ΠUS leg;432

• for P–{2–US} legs: a P–{2–US} or a P–{2–UU} leg;433

• for PUU legs: a PUU leg;434

• for PUS legs: a PUS leg;435

i.e. the active R joints fixed on the ground are replaced by a passive planar parallelogram joint, while the active436

P joints becomes passive and the passive U or RΠ joints become active. Then, using the usual methodology,437

the fkp and singularity analysis can be carried out.438

For illustrating this Section, let us present the fkp and singularity analysis of the hidden robot model of the439

Quattro with 4 dof (that can perform Schoenflies motions), when controlled using leg direction observation.440

The Quattro is made of 4 R–{2–US} legs, thus its equivalent hidden robot will be made of Π–{2–US} or441

Π–{2–UU} legs. As such hidden robot legs have 2 degrees of actuation (the U joint is fully actuated), only442

two legs have to be observed for fully controlling the Quattro using leg direction observation. However in this443

case, if the hidden robot has a 2–Π–{2–US} architecture, the platform will have two uncontrolled dof. This444

phenomenon disappear if Π–{2–UU} legs are used in the hidden robot model (Fig. 13 – in this picture, the445

articulated platform is simplified for a clearer drawing, but has indeed the kinematic architecture presented in446

Fig. 14).447

448

Forward kinematics and assembly modes. Without loss of generality, let us consider that we analyze the449

2–Π–{2–UU} robot depicted at Fig. 13(a). Looking at the vertex space of each leg when the active U joints450

are fixed, the points Ci and Di are carrying out a circle Ci of radius lAiBi centred in S i (Fig. 13(c)).451

The Quattro with 4 dof, and consequently its hidden robot model, has a particularity: its platform is452

passively articulated (Fig. 14) so that its orientation with respect to the horizontal plan xOy stays constant,453

while it can have one degree of rotation around the z axis, i.e. point D2 can describe a circle Cl located in454

the horizontal plane, centred in D1 and with a radius lD1D2 . For solving the forward kinematics, it is thus455

necessary to virtually cut the platform at point D2 and to compute the coupler surface of point D2 when it456

belongs to leg 1. This coupler surface is the surface generated by Cl when it performs a circular translation457

along C1. Such a surface is depicted in Fig. 15(a) and is called a Bohemian Dome [49].458

A Bohemian Dome is a quartic surface, i.e. an algebraic surface of degree 4. When it intersects the459

vertical plane Pl containing the circle C2 (i.e. vertex space of the second leg), the obtained curve is a quartic460
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Figure 14: The platform of the Quattro

curve (denoted at S1 – Fig.15(a)). And using the Bézout theorem [50], it can be proven that, when the circle461

corresponding to the vertex space of leg 2 intersects this quartic curve, there can exist at most 8 intersection462

points, i.e. 8 assembly modes. Some examples of assembly modes for the 2–Π–{2–UU} robot are depicted in463

Figs. 15(b) and 15(c).464

It should be noted that, when circles C1 and C2 are located in parallel planes, S1 degenerates into 1 or 2465

circles. In this case, the maximal number of assembly modes decreases to 4. It must be mentioned here that,466

in usual controllers when only the encoder data is used, the number of assembly modes of the Quattro is equal467

to 8.468
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469

Singular configurations. For the 2–Π–{2–UU} robot, Type 2 singularities appear when the planes Pi and P j470

(whose normal vectors are equal to v⊥i and v⊥j , resp.) are parallel. In such cases, the circle C2 is tangent to471

the Bohemian Dome at their intersection point and the robot gains one uncontrollable dof along this tangent472

(Fig. 16).473

4.3. Discussion474

Thus, the concept of hidden robot model, via the use of tools for the geometric and kinematic analysis475

of parallel robots developed by the mechanical design community, can really help the control community to476

simplify the verification of the controllability (and above all, to certify the results) of parallel robots controlled477

using leg-direction-based visual servos. With such an approach,478
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• the problem of the correct convergence of the robot to the desired pose can be analyzed (i.e. it was479

possible to analyze if a global diffeomorphism between the Cartesian space and the leg direction space480

exists),481

• as well as the problem of the singularity analysis of the mapping between the leg direction space and482

the Cartesian space (including the problem of finding local minima to which the robot could converge),483

by reducing the problem to the kinematic analysis of another robot (in all the studied cases, it was possi-484

ble to find simple geometric conditions without any mathematical derivations for the fkp and the singular485

configurations).486

It is interesting to notice that, for most of the studied robots, the hidden robots models have less assembly487

modes, i.e the proposed control approach based on the observation of the leg directions allows the simplifica-488

tion of the fkp for the studied architectures. This is obvious not a general assertion, but this appears for most489

of robots we studied.490

Considering the singularity analysis of the mapping between the leg direction space and the Cartesian491

space, typical examples for which the verification of the controllability is easy to carry out without any mathe-492

matical derivations using the concept of hidden robot model are the cases of PRRRP robots with all P parallel493

(Fig. 17(a)) and of Delta-like robots actuated via P joints for which all P are parallel (such as the UraneSX or494

the I4L [44, 48]). It was shown in [17] through the analysis of the rank deficiency of the interaction matrix that495

it was not possible to control such types of robots using leg direction observation. Considering this problem496

with the hidden robot concept is very easy. For example, in the case of the PRRRP robot with parallel P joints,497

the hidden robot has a PRRRP architecture (Fig. 17(b)), where the parallel P joints are passive. This robot498

is well-known to be architecturally singular as there is no way to control the translation along the axis of the499

parallel P joints. This result can be easily extended to the cases of the hidden robots of the UraneSX and the500

I4L. More developments on the controllability analysis of parallel robots controlled using leg-direction-based501

visual servos can be found in [51].502

It should finally be mentioned that in order to avoid the loss of controllability of such robot architectures,503

a way to proceed is to modify the controller so that the second component hi of the Bi-normalised Plücker504
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coordinates of the lines is considered. In such a case, other hidden robots should be found, but this is part of505

our future work.506

5. Case Study507

In this Section, simulations and experiments are performed on the Adept Quattro presented in Sec-508

tion 4.2.2.509

5.1. Simulation results510

The geometric parameters of the Quattro are given in Appendix Appendix B, as well as the equations511

necessary to perform the following simulations.512

5.1.1. Description of the simulator513

In this section, simulations are performed on an ADAMS mockup of the Adept Quattro (Fig. 18) with the514

same kinematic properties as the real robot by Adept. This virtual mockup is connected to Matlab/Simulink515

via the module ADAMS/Controls. The controller presented in Section 2.3 is applied (with λ = 0.8 – Fig. 18)516

in which:517

• the observation of the leg is simulated by extracting in the ADAMS model the positions of the anchor518

points of each parallelograms,519

• the actuated joint velocities are given as inputs of the ADAMS mockup.520

On the used control scheme, we can also switch on or off simulated measurement noise (whose amplitude521

can be parameterized) on the observation of the leg directions.522

5.1.2. Accuracy analysis of the Quattro using leg observation523

First, let us make the analysis of the accuracy of the Quattro using leg observation based on the accuracy524

model depicted in Appendix Appendix A.1. For this mechanism, in the case of a leg direction based visual525

servoing and for an error bδui defined such that the vector bui is contained in a cone of axis bui0 and of half526

angle ψi (bui0 is the nominal value of bui and, in what follows, ψi is taken equal to 0.1 deg for each leg527

direction), let us first compute the maximal positioning and orientation error when only two of its four legs528

are observed. Six different combinations are possible. However, the value of the error for only two of them529

(when legs {2, 3} and {2, 4} are observed) is plotted at Figs. 19 and 20.530

In Figs. 19(a) and 20(a), it is possible to note that the maximal error varies very quickly, especially near531

singularities of the hidden robot. In Figs. 19(b) and 20(b), things are different. The variation of the accuracy532

is smoother for the orientation error, and the position accuracy decrease in the middle of the workspace only.533

Thus, it can be concluded that the selection of the legs to observe is crucial for the final pose accuracy.534

Let us now compute the maximal positioning error when the four legs are observed. It can be observed535

that the position error is larger near {x = 0m, y = 0m, z = −0.61m, φ = 0deg}. This can be explained by the536
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Figure 19: Maximal position error (in mm) for z = −0.7 m and φ = 0 deg. Singularity loci are singularity cases of the hidden robot
associated with the leg-direction-based visual servoing of the Quattro.
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associated with the leg-direction-based visual servoing of the Quattro.

fact that this configuration is a singularity of the model for which all the planes Pi (i = 1, 2, 3, 4) are parallel.537

Thus, even if all the legs are observed, singular configurations may appear near which the accuracy is poor.538

Such a phenomenon shows the importance of the study of the intrinsic properties of the controller via the539

hidden robot concept.540

These results will be compared with the results obtained in the following numerical simulations.541

5.1.3. Numerical validations542

Testing the convergence of the robot to the desired pose543

In the first simulation, no noise is added on the simulated values of the leg directions. The initial platform544

pose is equal to {x = 0m, y = 0m, z = −0.75m, φ = 0deg} and the final desired platform pose is set to545

{x = −0.2m, y = 0m, z = −0.56m, φ = 0deg}. For going from the initial point to the final ones, two sets of546

observed leg directions are tested: {1, 4} and {2, 3}. For those two set of legs, solving the fkp of the hidden robot547

model of the Quattro presented in Section 4.2.2 at the desired final configuration of the robot, the following548

assembly modes can be obtained:549

• for legs {1, 4}:550

– solution 1: {x = −0.2m, y = 0m, z = −0.56m, φ = 0deg}551
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– solution 2: {x = −0.2m, y = 0m, z = −0.909m, φ = 0deg}552

– solution 3: {x = −0.138m, y = 0.062m, z = −1.019m, φ = 0deg}553

– solution 4: {x = −0.138m, y = 0.062m, z = −0.45m, φ = 0deg}554

• for legs {2, 3}:555

– solution 1: {x = −0.2m, y = 0m, z = −0.56m, φ = 0deg}556

– solution 2: {x = −0.2m, y = 0m, z = −0.296m, φ = 0deg}557

– solution 3: {x = −0.262m, y = 0.062m, z = −0.694m, φ = 0deg}558

– solution 4: {x = −0.262m, y = 0.062m, z = −0.161m, φ = 0deg}559

The results for the convergence of the leg directions are presented in Fig. 22. It can be shown that when560

the legs {2, 3} are observed, all leg directions converge to 0. This is not true for the second case. Looking at the561

platform pose computed by ADAMS, the robot reach the configuration {x = −0.2m, y = m, z = −0.909m, φ =562

0deg}, i.e. the second solution for the fkp of the hidden robot model of the Quattro (Fig. 23).563
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Figure 22: Error norm on each leg ‖ei‖.

A second simulation is performed in which all legs are observed. The initial platform pose is equal to564

{x = 0.05m, y = 0.05m, z = −0.8m, φ = 0deg} and the final desired platform pose is set to {x = 0.03m, y =565
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0.03m, z = −0.59m, φ = 0deg}. Solving the fkp of the hidden robot model of the Quattro when all legs are566

observed at the desired final configuration of the robot, it can be proven that there still exist two assembly567

modes, separated by singularities (Fig. 21) which are:568

• solution 1: {x = 0.03m, y = 0.03m, z = −0.59m, φ = 0deg}569

• solution 2: {x = 0.03m, y = 0.03m, z = −0.65m, φ = 0deg}570

Looking at the platform pose computed by ADAMS, even if all errors on the legs vanish (Fig. 24), the571

robot reaches the configuration {x = 0.03m, y = 0.03m, z = −0.65m, φ = 0deg}, i.e. the second solution for572

the fkp (Fig. 25).573
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Figure 24: Error norm on each leg ‖ei‖ when all the legs are observed.

All these numerical results confirm the presence of the virtual robot hidden within the controller that must574

be studied in order to avoid convergence problems due to inadequate stacking of interaction matrices.575

576

Testing the presence of local minima577

For that simulations, all legs are observed. The initial platform pose is equal to {x = 0.028m, y = 0m, z =578

−0.617m, φ = 0deg} and the final desired platform pose is set to {x = −0.6m, y = 0m, z = −0.8m, φ = 0deg}.579

No noise is added on the simulated values of the leg directions. After about 0.3 s of simulations, the robot580

stops in the configuration {x = −0.588m, y = 0m, z = −0.847m, φ = 0deg} while the error on the leg direction581

is far from zero (Fig. 26). Thus we are in the presence of a local minimum.582
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Looking at the configuration in which the robot is blocked, it appears that, as forecasted, it is a Type 1583

singularity (boundary of the workspace (Fig. 27)). This confirms the fact that the local minima appear in the584

Type 1 singularities of the hidden robot model, as mentioned in Section 3.3.585

586
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Testing the importance of the selection of the observed legs on the robot accuracy587

In the first simulation, the initial platform pose is equal to {x = 0.02m, y = 0.1m, z = −0.7m, φ = 0deg} and588

the final desired platform pose is set to {x = −0.2m, y = 0.01m, z = −0.7m, φ = 0deg}. A random noise of 0.1589

deg is added to the simulated measure of the leg directions. To show the importance of the leg selection on the590

robot accuracy, it is decided to control the robot displacement using two different sets of legs: (i) legs {2, 3}591

and (ii) legs {2, 4}. The results (Fig. 28) show that, as presented in Fig. 19, the final platform pose accuracy is592

better when legs {2, 3} are observed (around 3 mm and 0.05 rad) than with legs {2, 4} (around 7 mm and 0.07593

rad).594
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Figure 28: Orientation and position error when legs {2, 3} and legs {2, 4} are observed.

In the second simulation, the initial platform pose is equal to {x = 0.05m, y = 0.05m, z = −0.8m, φ = 0deg}595

and the final desired platform pose is set to {x = 0.03m, y = 0.03m, z = −0.65m, φ = 0deg}. It is decided to596

control the robot displacement using three different sets of legs: (i) legs {1, 4}, (i) legs {1, 3, 4} and (iii) all legs.597

The results (Fig. 29) show that the final platform pose accuracy is better when all legs are observed, while598

the accuracy is quite the same when two or three legs are observed. However, this result must not hide the599

fact that, even if four legs can lead to better accuracy, some convergence problems can still appear, as shown600

previously.601
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Figure 29: Orientation and position error when legs {1, 4}, {1, 3, 4} and all legs are observed.

All these simulations validate the theory presented in Section 3.602
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5.2. Experimental results603

5.2.1. Description of the benchmark604

In this section, experiments are now performed on a real Adept Quattro. The benchmark is composed of605

(Fig. 30):606

• an Adept Quattro robot bought by the Institut Pascal of Clermont-Ferrand (France),607

• a camera AVT Marlin F131B firewire IEEE1394 (lens: 3.6mm 1:1.6 1/2 inch for CCD camera), which608

is mounted at the centre of the robot base so that all the legs can be observed without any problems of609

occlusion and whose intrinsic and extrinsic parameters have been calibrated,610

• a lighting system that provides an homogenous lighting to the scene,611

• a computer that extracts the data coming from the camera, computes the value of the leg directions u,612

then calculates the robot actuator velocity q̇ using the controller of Section 2.3.2 and send the infor-613

mation to the robot controller. Note that, in experiments, the value of λ in the controller is fixed to614

0.2.615

Moreover, the robot is covered by a cloth that prevents the lighting variations and guarantees the contrast616

quality required for observing the black legs of the robot (Fig. 31).617

Finally, it must be mentioned we have deliberately decided to use the minimal camera resolution and to618

not undistort the image captured. The measurement noise on the leg direction is thus of about 0.1 rad, but:619

• such a high noise is interesting to show the controller robustness to leg direction prediction errors,620

• the noise is so high that, for analyzing the robot accuracy and measuring the distance between the621

real and nominal robot configurations, we can directly record and use the value of the platform pose622

predicted by the Adept Quattro controller instead of using one external measurement device (such as a623

lasertracker).624

5.2.2. Experimental validations625

Testing the convergence of the robot to the desired pose626

We replay now experimentally the convergence tests presented in Section 5.1.3. The starting and desired final627

points are the same as previously. The results are presented in the Tables 2 to 4 and illustrated by the Figs. 32628

to 34. It should be mentioned that, for cross-validating the results on those pictures, the plotted values of the629

error norms are computed using the values of the leg directions given by the Quattro controller.630

Due to the presence of high measurement noise, the robot can of course not converge to the final desired631

pose. Therefore, in these Tables, information on the tolerable maximal error on the pose attained attained in632

simulations is given. Please note that, due to the large value of the error on the measured angle, the model633

defined in Section Appendix A.1 is no longer valuable and we have preferred to use a more refined non634

linearized model proposed in [52].635

Table 2: Results on the experiments carried out for testing the convergence of the robot when legs 1 and 4 are observed (the positions
are in meter, the angles in radians).

Desired final pose {x = −0.2, y = 0, z = −0.56, φ = 0}
Final pose in simulation {x = −0.2, y = 0, z = −0.91, φ = 0}
Tolerable position error 0.11 m
Tolerable orientation error 2.00 rad
Final pose in experiments {x = −0.11, y = 0.01, z = −0.86, φ = −2.15}
Distance to the final pose in simulation 0.10 m
Orient. err. w.r.t. the final pose in simulation 2.15 rad
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Figure 31: The Quattro recovered by the cloth

All these experimental results match with the simulation results presented above and confirm the presence636

of the virtual robot hidden within the controller that must be studied in order to avoid the convergence prob-637

lems due to inadequate stacking of interaction matrices.638
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Figure 33: Convergence of the robot when legs 2 and 3 are observed (desired pose: {x = −0.2, y = 0, z = −0.56, φ = 0}).

Table 3: Results on the experiments carried out for testing the convergence of the robot when legs 2 and 3 are observed (the positions
are in meter, the angles in radians).

Desired final pose {x = −0.2, y = 0, z = −0.56, φ = 0}
Final pose in simulation {x = −0.2, y = 0, z = −0.56, φ = 0}
Tolerable position error 0.23 m
Tolerable orientation error 1.23 rad
Final pose in experiments {x = −0.12, y = 0.05, z = −0.55, φ = −0.90}
Distance to the final pose in simulation 0.10 m
Orient. err. w.r.t. the final pose in simulation 0.90 rad

639

Testing the presence of local minima640

Unfortunately, we were not able to do such experiments as the robot controller is designed with safeties that641

cannot be suppressed and that prevent going into singularities. However, as the presence of local minima that642

are located in the Type 1 singularities was demonstrated in simulations, we think that this numerical proof643

brings enough strength to our demonstration concerning this point.644

645
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Figure 34: Convergence of the robot when all legs are observed (desired pose: {x = 0.03, y = 0.03, z = −0.59, φ = 0}).

Table 4: Results on the experiments carried out for testing the convergence of the robot all legs are observed (the positions are in
meter, the angles in radians).

Desired final pose {x = 0.03, y = 0.03, z = −0.59, φ = 0}
Final pose in simulation {x = 0.03, y = 0.03, z = −0.65, φ = 0}
Tolerable position error 0.08 m
Tolerable orientation error 1.54 rad
Final pose in experiments {x = 0.05, y = 0.03, z = −0.72, φ = 0.05}
Distance to the final pose in simulation 0.07 m
Orient. err. w.r.t. the final pose in simulation 0.05 rad

Testing the importance of the selection of the observed legs on the robot accuracy646

We replay now experimentally the accuracy tests presented in Section 5.1.3. The starting and desired final647

points are the same as previously, as well as the observed legs. Each experiment is run five times and we648

present here the maximal values obtained on the position and orientation error. The results are shown in the649

Tables 5 to 6.650

Table 5: Results on the experiments carried out for testing the accuracy of the robot when legs {2, 3} or {2, 4} are observed.

Desired final pose {x = −0.2m, y = 0.01m, z = −0.7m, φ = 0deg}
Legs {2, 3} {2, 4}
Position error 0.11 m 0.23 m
Orientation error 0.06 rad 0.68 rad

Table 6: Results on the experiments carried out for testing the accuracy of the robot when legs {1, 4}, {1, 3, 4} or {1, 2, 3, 4} are
observed.

Desired final pose {x = 0.03m, y = 0.03m, z = −0.65m, φ = 0deg}
Legs {1, 4} {1, 3, 4} {1, 2, 3, 4}
Position error 0.11 m 0.09 m 0.07 m
Orientation error 0.39 rad 0.31 rad 0.05 rad

Once again, all these experimental results match with the simulation results presented above and confirm651

the necessity to carefully select the set of legs to observe in order to obtain the best accuracy possible. How-652

ever, it must be recalled that, even if observing all the legs lead to a better accuracy, this result must not hide653

31



the fact that some convergence problems can still appear, as shown previously.654

655

All these experiments validate the theory presented in Section 3.656

5.3. Discussions and future works657

All the results presented above show the validity of the approach and also its importance: stacking several658

interaction matrices to derive a control scheme without doing a deep analysis of the intrinsic properties of659

the controller is clearly not enough. For avoiding the singularity problem due to the mapping between the660

robot space and leg space, whatever the number of observed legs (as, even if all legs are observed, there may661

be singularities of the mapping), the hidden robot kinematics must be analyzed to avoid the convergence and662

inaccuracy problems.663

We would also like to add that, in this paper, we have deliberately chosen not to define the controller in664

the image space. There exist several reasons which justify that choice:665

• the proof that the robot can be controlled using only the observation of the leg edges has been given666

in [15] and gives similar results as for the control with the leg directions, except that the robot accuracy667

was better. This can be explained by the fact that, as mentioned previously, the leg edges are only used668

as a measure of ui. So the problem is the same, except in the fact that we must consider the singularity669

of the mapping between the edges and the leg directions, but this problem is well handled [15].670

• in our benchmark, it can be shown that the variations of the vectors cn j
i is very small in the whole671

workspace. The difference on vectors cn j
i for two distinct robot configurations – whatever they are – is672

about 0.01 rad. So we must be sure that the measurement noise is much lower than this value by refining673

the data extraction from the image (e.g. by using some subpixellic approach) and this is not currently674

our main goal. Moreover, this small variation on the values of cn j
i make us think that:675

– we should modify the controller so that the second component of the Bi-normalised Plücker co-676

ordinates of the lines corresponding to the edges is considered in order to get all the information677

contained in the image (direction and position of the lines). In such a case, other hidden robots678

should be found,679

– as the Quattro was not designed to be controlled using such a visual servoing approach, it may be680

unrealistic to try to obtain good results in terms of accuracy using vision. However, an interesting681

point would be, before the robot is designed, to take into account the control approach that will682

be used so that the leg positions (and as a result the robot architecture) can be optimized w.r.t. the683

desired visual servoing approach.684

These two points are parts of our future work.685

It should also be mentioned that, in the present paper, we have deliberately focused on the study of the686

hidden robot models of several classes of parallel robots. This work is crucial in order to simplify the use of687

this tool by control engineers willing to develop of leg-observation-based controller. Others challenges are to688

use the hidden robot model tool:689

• in order to propose a classification of the robots which cannot or can be controlled with leg-observation-690

based controllers and also.691

• in order to help the control engineer to understand what types of information are missing in order to692

ensure the controllability of their robots.693

Insights on these two last points can be found in [51].694
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6. Conclusions695

This paper has presented a tool named the “Hidden robot concept” that is well addressed for analyzing696

the controllability of parallel robots in leg-observation-based visual servoing techniques. It has been shown697

that the mentioned visual servoing techniques involves the existence of a virtual robot model, hidden into the698

controller, that is different from the real controlled robot. Considering this hidden robot model allowed the699

finding of a minimal representation for the leg-observation-based control of the studied robots that is linked700

to a virtual hidden robot which is a tangible visualization of the mapping between the observation space and701

the real robot Cartesian space. It has been shown that the hidden robot model can be used to:702

1. explain why the observed robot which is composed of n legs could be controlled in most cases using703

the observation of only m leg directions (m < n), knowing the fact that the minimal number of observed704

legs should be, for 3D unit vectors, an integer greater than n/2,705

2. prove that there does not always exist a global diffeomorphism between the Cartesian space and the leg706

direction space,707

3. simplify the singularity analysis of the mapping between the leg direction space and the Cartesian space708

by reducing the problem to the singularity analysis of a new robot,709

4. certify that the robot will not converge to local minima, through the application of tools developed for710

the singularity analysis of robots.711

A general way to find the find the hidden robot models corresponding to the real robot controlled via712

leg-observation-based visual servoing techniques has been shown and the hidden robot models of some well713

known classes of parallel robots have been studied. It has been proven that, using this concept, it is possible714

to demonstrate, using tools developed by the mechanical design community, that the robot can be controlled715

or not with the aforementioned visual servoing techniques.716

Finally, numerical simulations and experimental validations made on an Adept Quattro robot have demon-717

strated the validity of the theoretical developments.718

Thus, the concept of hidden robot model, associated with mathematical tools developed by the mechanical719

design community, is a powerful tool able to analyze the intrinsic properties of some controllers developed720

by the visual servoing community. Moreover, this concept showed that in some visual servoing approaches,721

stacking several interaction matrices to derive a control scheme without doing a deep analysis of the intrinsic722

properties of the controller is clearly not enough. Further investigations are required.723

Appendix A. Selection of the controlled legs724

Depending on the chosen interaction matrices, i.e. on the choice of the observed legs, the geometry of725

the hidden robot models will vary, as well as its singularities and assembly modes. As singularities divide726

the workspace into distinct aspects [2], it is necessary to study the motion feasibility by selecting a set of legs727

that can allow the robot displacement. Moreover, even if the motion is feasible, if the robot goes close to a728

singularity, the positioning error can considerably grow.729

Therefore, it is necessary to find the best set of legs to observe in order to get the best performances of the730

robot w.r.t. a desired task. This is the main goal of this appendix.731

Appendix A.1. Definition of criteria for selecting the legs to observe732

Several indices can be used for characterizing the neighborhood of singularities as well as the robot perfor-733

mances (e.g. the condition number, the dexterity [53], etc.). Here, as generally the visual servoing is used for734

improving the robot accuracy, it is proposed to use accuracy as an index for the characterization of singularity735

proximity. Obviously, other criteria could be chosen, but the global approach for selecting the legs will remain736

the same.737

For characterizing the performances of the robot in terms of accuracy, the following model can be used.738

From (7), and using the first order approximation of the forward geometric model [53], it is possible to write739

cδp = MT+ cδu (A.1)740
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where cδp is the platform positioning error (expressed in the camera frame), cδu is the error on the observation741

of the leg direction (expressed in the camera frame), and MT+ is the pseudo-inverse of the matrix MT that can742

be obtained by stacking the matrices MT
i of the observed legs. Obviously, when using the leg direction based743

visual servoing, this matrix is the Jacobian matrix of the hidden robot and, as a result, will degenerate near the744

singular configurations presented in Section 3.745

The error on the platform can be expressed in the robot frame using:746

bδp = bRc
cδp = bRc MT+ cδu (A.2)747

where748

bRc =

[bRc 0
0 bRc

]
(A.3)749

in which bRc is the 3 × 3 rotation matrix between the base and camera frames.750

It should be mentioned here that it is decided to develop a simple model for computing the robot accuracy,751

but any other more realistic models can be used (e.g. non linearized models [52], models that take into account752

flexibilities [54], clearances [55], etc.). However, this model is enough for giving a global idea the accuracy753

problems of the controlled robots, as was done in Section 5.754

Once the performance criteria are chosen, it is necessary to define a methodology that can help select the755

legs to observe. Such a methodology is developed below.756

Appendix A.2. Proposition of a methodology for selecting the legs to observe757

The Sections 4 and Appendix A.1 showed the importance of the legs chosen for the control scheme: the758

singularities of the hidden robots depend on the chosen observed legs and the accuracy will be poor near759

them. Several questions naturally arise here. The first one concerns the number of legs to observe. In terms of760

accuracy, it is obvious that observing more legs than the minimal requested number, i.e. adding measurement761

redundancy, will tend to improve the pose accuracy of the robot. However:762

• increasing the number of legs to observe leads to an increase of the computational time and may be763

applied with difficulty when high sampling periods are required. Thus, a compromise must be found764

between the sampling period and the computational time for any given application.765

• it will be shown in Section 5 that, even when all legs are observed, some singular configurations may766

still exist, with areas of poor robot accuracy around them.767

The second question is about the selection of the legs to observe. For example, in the case of the Quattro768

(Section 4.2.2), with only two legs among four to observe, six different 2–Π–{2–UU} robots can be defined.769

What is thus the best hidden robot model to use?770

If the control law proposed in Section 2 is applied, it is first necessary to guarantee that, for the used set771

of legs:772

• obviously, the legs must be observable during the whole robot displacement.773

• the initial and final robot configurations must be included in the same aspect. If not, the controller will774

not be able to converge to the desired end-effector pose, even if the observed leg directions do. In this775

last case, the problem can be solved by applying special trajectories that cross Type 2 singularities [56].776

One problem here is to check that two robot configurations belong to the same aspect. This problem is777

complex for most of robots, but can be solved using some advanced tools such as Interval Analysis (IA) [2] or778

Cylindrical Algebraic Decomposition (CAD) [57].779

Then, if accuracy is needed, the leg selection must guarantee the best final accuracy. To achieve this goal,780

the following procedure can be used:781

1. knowing the leg orientations at the initial and final robot configurations, compute the solutions of the782

fkp of the hidden robots,783
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2. find, using the advanced tools mentioned previously, the solutions of the fkp that belong to the same784

assembly mode; if, for one given hidden robot, initial and final platform configurations do not belong to785

the same aspect, discard it; if no hidden robot exists for which initial and final configurations belong to786

the same aspect, the displacement is not feasible, except if special trajectories are planned as mentioned787

previously,788

3. for all remaining virtual hidden robots, knowing the observation errors δu, compute the positioning789

error using (A.2); retain the set of legs that guarantee the best accuracy;790

4. test the controller (in simulation) with the retained set of legs; if there is no problem of convergence and791

that the legs are observable during the whole displacement, the problem is solved; if not, discard this792

set of leg and redo point 3; if no hidden robot exists for which initial and final configurations belong to793

the same aspect, the displacement is not feasible, except with special trajectories.794

Obviously, this methodology can be extended to any number of observed legs or modified by weighting795

the interaction matrices to obtain better robot properties. One should also be aware that instead of giving796

the initial and final robot configurations to the controller, it is better to define a trajectory between these two797

points in order to avoid crossing singularities inadvertently. In such a case, it is possible to check (numerically798

using any closeness-to-singularity criteria [53] or algebraically with CAD [57]) that the robot does not cross a799

singularity on the trajectory.800

Appendix B. Kinematics of the Quattro801

Appendix B.1. Usual inverse kinematics of the Quattro802

The following notations are used:803

• point Bi (Ci, resp.) is at the middle of segment Bi1Bi2 (Ci1Ci2, resp.) (Fig. 12(a)),804

• point P, the controlled point of the platform, is the barycenter of points Ci; its coordinates are denoted805

as xc and its velocity as τc,806

• the platform orientation is parameterized by the angle φ between the axis x of the robot base frame and807

the vector
−−−−→
D1D2,808

• Ai (Bi, Ci, resp.) is the vector of coordinates of point Ai (Bi, Ci, resp.),809

• qi is the angular coordinate of the actuator i, and is defined as the angle between the axis xi (the projec-810

tion of vector
−−−→
AiBi in the horizontal plane (Oxy)) and

−−−→
AiBi around yi (Fig. 12(a)),811

• l1 is the length of the proximal link, and l2 the length of one rod of the parallelogram,812

It is to be noticed that the Adept Quattro has the following geometric characteristics:813

• l1 = 0.380m, l2 = 0.825m,814

• bAi = 0.275 [cos θi sin θi 0]T (in meters), where θi = {−3π/4,−π/4, π/4, 3π/4} (in radians)815

• b−−−−→D1C1 = [−0.066 − 0.048 0]T , b−−−−→D1C2 = [0.066 − 0.048 0]T , b−−−−→D2C3 = [0.066 0.048 0]T and b−−−−→D2C4 =816

[−0.066 0.048 0]T (in meters),817

• b−−−−→E1D1 =
−−−−→
E4D2 = [0.057 0 0]T , b−−−−→E2D1 =

−−−−→
E3D2 = [−0.057 0 0]T (in meters),818

• b−−−→PE2 = 0.043
[
sin(φ + π/2) − cos(φ + π/2) 0

]T , b−−−→PE2 = 0.043
[
sin(φ + π/2) cos(φ + π/2) 0

]T (in me-819

ters).820
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Moreover, the superscript ‘i’ will be used before the vectors to indicate that the vector coordinates are ex-821

pressed in the leg local frame (Oxiyizi). If no superscript is used, the vector is expressed in the base frame.822

The usual inverse kinematics of the Quattro can be computed using the following loop-closure equations823

(Fig. 12(b)):824

iCi −
iBi = l2iui (B.1)825

where826

iBi = iAi + l1
[
cos qi 0 sin qi

]T
= iAi + l1ivi (B.2)827

and828

iCi = ixc + i−−→PCi (B.3)829

Squaring both sides of (B.1) and introducing (B.2) leads to830 (
xAiCi − l1 cos qi

)2
+ y2

AiCi
+

(
zAiCi − l1 sin qi

)2
− l22 = 0 (B.4)831

where iCi−
i Ai =

[
xAiCi , yAiCi , zAiCi

]T . (B.4) can be finally solved as a second order polynomial in tan(qi/2) by832

replacing cos qi by
(
1 − t2

i

)
/
(
1 + t2

i

)
and sin qi by 2ti/

(
1 + t2

i

)
, where ti = tan(qi/2). Skipping all mathematical833

derivations, it comes that:834

qi = 2 tan−1


−βi ±

√
α2

i + β2
i − γ

2
i

γi − αi

 (B.5)835

where836

αi = −2l1xAiCi , βi = −2l1zAiCi (B.6)837

γi = x2
AiCi

+ y2
AiCi

+ z2
AiCi

+ l21 − l22 (B.7)838

The first-order kinematics that relates the platform translational velocity τc to the actuator velocities can839

be obtained through the differentiation of (B.4) with respect to time and can be expressed as:840

Aτc + Bq̇ = 0 (B.8)841

where the i-th line of A can be written as842

ai = l2uT
i (B.9)843

and B is a diagonal matrix whose i-th diagonal term is844

bi = l1l2iuT
i

iv⊥i , iv⊥i =
[
− sin qi 0 cos qi

]T
(B.10)845

It should be mentioned that A is a (4 × 3) rectangular matrix. As a result,846

q̇ = −B−1Aτc = Jinvτc, or also τc = J+
invq̇ (B.11)847

where J+
inv is the pseudo-inverse of Jinv.848
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Appendix B.2. Kinematics of the Quattro using leg observation849

The servoing of the Adept Quattro robot using leg observation proposes to observe the parallelogram850

direction ui to control the robot displacements. ui can be obtained directly from (B.1)851

ui = (Ci − Bi) /l2 (B.12)852

Introducing (B.2) into (B.12) and differentiating (B.12) with respect to time leads to:853

u̇i =
(
τc − l1v⊥i q̇i

)
/l2 (B.13)854

Finally, from (B.11), it comes that:855

u̇i =
(
I3 + l1v⊥i ai/bi

)
/l2 τc = MT

i τc (B.14)856

where I3 is the (3 × 3) identity matrix and matrix MT
i is called the interaction matrix. These equations are857

valuable as long as bi , 0 (bi = 0 is a Type 1 singularity condition).858

Note that the equation (B.14) requires the computation of the input joint variables qi which can be esti-859

mated through the observation of the leg direction only (without any use of the encoder measurement).860

It can be proven that the matrix MT
i is of rank 2. As a result, a minimum of two independent legs is861

necessary to control the end-effector pose. An interaction matrix MT can then be obtained by stacking the862

matrices MT
i of k legs (k = 2...4). The conditions for the rank deficiency of the interaction matrix have been863

presented in Section 4.2.2.864

The previous equations characterize the inverse kinematics of the hidden robot models of the Quattro.865

It should be mentioned that the equations for the forward kinematics are not given here for reason of paper866

compactness as they are tedious. However, the fkp can be solved using the proposed geometric approach867

presented in Section 4.2.2.868
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et Emploi 2007–2013” (FEDER – Région Auvergne) and by the EU project Feder RobotEx.872

The authors would like to thank Michel Coste from the Institut de Recherche Mathématique de Rennes873
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the Bohemian Dome.875

References876

[1] T. Leinonen, Terminology for the theory of machines and mechanisms, Mechanism and Machine Theory877

26.878

[2] J. Merlet, Parallel Robots, 2nd Edition, Springer, 2006.879

[3] D. Dementhon, L. Davis, Model-based object pose in 25 lines of codes, International Journal of Com-880

puter Vision 15 (1995) 123–141.881
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de l’Académie Royale des Sciences, 1764.982

[51] S. Briot, P. Martinet, V. Rosenzveig, The hidden robot: an efficient concept contributing to the analysis983

of the controllability of parallel robots in advanced visual servoing techniques, IEEE Transactions on984

Robotics 31 (6) (2015) 1337–1352.985

[52] S. Briot, I. Bonev, Accuracy analysis of 3T1R fully-parallel robots, Mechanism and Machine Theory986

45 (5) (2010) 695–706.987

[53] J. Merlet, Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME Transac-988

tions Journal of Mechanical Design 128 (1) (2006) 199–206.989

[54] A. Pashkevich, D. Chablat, P. Wenger, Stiffness analysis of overconstrained parallel manipulators, Mech-990

anism and Machine Theory 44 (5) (2009) 966–982.991

[55] N. Binaud, P. Cardou, S. Caro, P. Wenger, The kinematic sensitivity of robotic manipulators to joint clear-992

ances, in: Proceedings of ASME Design Engineering Technical Conferences, Montreal, QC, Canada,993

2010.994

[56] S. Briot, V. Arakelian, Optimal force generation of parallel manipulators for passing through the singular995

positions, International Journal of Robotics Research 27 (8) (2008) 967–983.996

[57] D. Chablat, G. Moroz, P. Wenger, Uniqueness domains and non singular assembly mode changing trajec-997

tories, in: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA998

2011), Shanghai, China, 2011.999

40


	Introduction
	Background on visual servoing of parallel robots using leg observations
	Line modeling
	Cylindrical leg observation
	Leg direction based visual servoing
	Interaction matrix
	Control


	The concept of hidden robot model
	Statement of the problem
	How to define the legs of the hidden robots
	How to use the hidden robot models for analyzing the controllability of the servoed robots

	Hidden robot models of some known parallel robot families
	Application to planar parallel robots
	The hidden robot legs of planar parallel robots
	The hidden robot models of planar parallel robots

	Application to spatial parallel robots
	The n-Pod robot family
	The Delta-like robot family

	Discussion

	Case Study
	Simulation results
	Description of the simulator
	Accuracy analysis of the Quattro using leg observation
	Numerical validations

	Experimental results
	Description of the benchmark
	Experimental validations

	Discussions and future works

	Conclusions
	Selection of the controlled legs
	Definition of criteria for selecting the legs to observe
	Proposition of a methodology for selecting the legs to observe

	Kinematics of the Quattro
	Usual inverse kinematics of the Quattro
	Kinematics of the Quattro using leg observation


