
HAL Id: hal-01357502
https://hal.science/hal-01357502

Submitted on 29 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Serious Game to Help Students Learn
Computer Programming

Mathieu Muratet, Patrice Torguet, Jean Pierre Jessel, Fabienne Viallet

To cite this version:
Mathieu Muratet, Patrice Torguet, Jean Pierre Jessel, Fabienne Viallet. Towards a Serious Game to
Help Students Learn Computer Programming. International Journal of Computer Games Technology,
2009, 2009, pp.470590. �10.1155/2009/470590�. �hal-01357502�

https://hal.science/hal-01357502
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2009, Article ID 470590, 12 pages
doi:10.1155/2009/470590

Research Article

Towards a Serious Game to Help Students Learn
Computer Programming

Mathieu Muratet,1 Patrice Torguet,1 Jean-Pierre Jessel,1 and Fabienne Viallet2

1 VORTEX Group, IRIT, Paul Sabatier University, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
2 DiDiST CREFI-T, Paul Sabatier University, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

Correspondence should be addressed to Mathieu Muratet, muratet@irit.fr

Received 30 August 2008; Revised 17 December 2008; Accepted 24 February 2009

Recommended by Xiaopeng Zhang

Video games are part of our culture like TV, movies, and books. We believe that this kind of software can be used to increase
students’ interest in computer science. Video games with other goals than entertainment, serious games, are present, today, in
several fields such as education, government, health, defence, industry, civil security, and science. This paper presents a study
around a serious game dedicated to strengthening programming skills. Real-Time Strategy, which is a popular game genre, seems
to be the most suitable kind of game to support such a serious game. From programming teaching features to video game
characteristics, we define a teaching organisation to experiment if a serious game can be adapted to learn programming.

Copyright © 2009 Mathieu Muratet et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Since the first boom of video games in the 80s, the gaming
industry has held an important place in the world market.
According to the Entertainment Software Association fig-
ures (http://www.theesa.com/facts/pdfs/ESA EF 2008.pdf)
accessed 26 August 2008, in 2007 the market of
U.S. computer and video games amounts to $9.5
billion. This is almost equal to the U.S. movie market
(http://www.the-numbers.com/market/2007.php) accessed
26 August 2008 ($9.6 billion in 2007). Students currently in
university were born with video games, which are as much a
part of their culture as TV, movies, or books.

However, to progress in video games, the player must at
the same time play and learn. Serious games use this feature
to interest players in specific topics, teach some specific
educational content, or train workers to specific tasks. The
idea is that entertainment can lead to learning if some specific
constraints are respected.

On the other hand, all over the world, students are
becoming less interested in science. In computer science, for
example, according to Crenshaw et al. [1] and Kelleher [2],
the number of students is shrinking. Moreover, “colleges and
universities routinely report that 50% or more of those students

who initially choose computer science study soon decide to
abandon it” [3, page 39]. Our university experiences the same
phenomenon with a decrease of 16.6% over the last four
years in students studying computer science.

Therefore, in the computer science education research
field, there is an important area directed to the recruitment
and retention of students [4]. A promising way explored
by this specific research is using games to teach and learn
programming [5]. It allows students to better learn in a
familiar and playful environment. Moreover, it promotes
collaborative learning and spurs student to learn.

We propose to study if serious games, which can be
collaborative learning games, could be of value in order to
teach programming and to attract and keep computer science
students. The question is: Is it interesting to use a serious
game for teaching programming?

To achieve this goal, we propose the methodology of
design experiments [6]: “prototypically, design experiments
entail both “engineering” particular forms of learning and
systematically studying those forms of learning within the
context defined by the means of supporting them. This designed
context is subject to test and revision, and the successive
iterations that result play a role similar to that of systematic
variation in experiment.” The intent of this methodology

2 International Journal of Computer Games Technology

in educational research is to investigate the possibilities for
educational improvement by bringing about new forms of
learning in order to study them. Because designs are typically
test-beds for innovation, the nature of the methodology
is highly interventionist, involving a research team, one or
more teachers, at least one student, and eventually school
administrators. Design contexts are conceptualized as inter-
acting systems and are implemented with a hypothesized
learning process and the means of supporting it. Although
design experiments are conducted in a limited number of
settings, they aim to develop a relatively humble theory
that targets a domain specific learning process. To prepare
a design experiment, the research team has to define a
theoretical intent and specify disciplinary ideas and forms of
teaching that constitute the prospective goals or endpoints to
student learning. The challenge is to formulate a design that
embodies testable conjectures about both significant shifts in
student learning and the specific means of supporting those
shifts. In our experiment, the theory we attempt to develop is
the process of learning programming through serious games.
In this paper, we discuss how to build a design context that
will allow us to construct several conjectures to test our
theory about an original form of programming teaching.

In the rest of this paper, we define briefly what a serious
game is and what its learning aims are. After presenting
programming teaching features and associated environment,
we analyse some of them in reference to learning objectives
and serious games features. Because there is currently no
serious game dedicated to this field and suitable to design
experiments, the rest of the paper presents the serious
game we built. Section 4 presents how we chose the video
game that supports our serious game. Section 5 details the
implementation of our serious game. Section 6 describes
how learning objectives are mapped into the game from the
student, teacher, and knowledge points of view. Section 7
explains how we will conduct our first experiment.

2. Serious Games

2.1. Definitions. For Zyda [7], a serious game is “a mental
contest, played with a computer in accordance with specific
rules, that uses entertainment to further government or cor-
porate training, education, health, public policy, and strategic
communication objectives.” Thus, any video game built to
differ from pure entertainment can be considered as a serious
game. Serious games represent, therefore, a wide range of
digital games. Blackman [8] gives a synopsis of the gaming
industry and its applications. Sophisticated video game
graphic engines are nowadays used for nongame applications
because they offer real-time rendering and physical models.
Applications such as simulators can use such video game
technologies. Serious games are not restricted to video
games; they can also be based on simulators. Figure 1
illustrates the relationship between video games, simulators,
and serious games.

2.2. Example of Serious Games. To highlight the relationship
between the target public and serious game objectives

Serious games
Video games

Simulators

Figure 1: Relation between video games, simulators, and serious
games.

we present three examples of serious games following
different aims: “Darfur is Dying” (http://www.darfurisdying
.com/) accessed 30 November 2008, “Tactical Language
& Culture” (http://www.tacticallanguage.com/) accessed
30 November 2008, and “America’s Army” (http://www
.americasarmy.com/) accessed 30 November 2008; “Darfur
is Dying” is a game developed in partnership with the
Reebok Human Rights Foundation and the International
Crisis Group. The purpose of this game is to increase public
awareness of the crisis in Darfur. The player controls a
Darfurian who forages for water and develops his/her camp.
Because the objective was to reach a maximum of people,
“Darfur is Dying” is a minigame based on a platform game
genre easy to play even for nongamers. It is free and accessible
by everyone.

“Tactical Language & Culture” is a game started in 2003
as a research project at the University of Southern California’s
Information Sciences Institute under funding from the
Defence Advanced Research Projects Agency (DARPA). Its
purpose is to teach foreign languages and cultural knowledge
needed to conduct tasks effectively and safely during both
daily life and military missions. Currently, it offers courses
in Iraqi Arabic language and culture (Tactical Iraqi), Pashto
language and culture for the Pashtun regions of Afghanistan
(Tactical Pashto), and French as spoken in the countries
of Sahel Africa (Tactical French). “Tactical Language &
Culture” is a complex game targeted for servicemen. It is
based on a role-playing game genre to enable an immersive
communication with virtual avatars in the game. It is played
in interaction with a virtual tutor who evaluates the learner’s
speech and gives feedback on errors.

“America’s Army” is a game launched in July 2002
designed by the Modelling, Virtual Environments, and
Simulation (MOVES) Institute at the Naval Postgraduate
School in Monterey, Calif, USA. It was initially built as
a recruiting tool for the United States of America’s army.
However it became the first really successful serious game
and is currently one of the ten most popular PC action games
played online. “America’s Army” is a complex game based on
a shooter game genre to immerse the player in action. It is a
free multiplayer game requiring a team effort.

These serious games use entertainment to pursue dif-
ferent learning objectives: “Darfur is dying” tries to raise
public awareness; “Tactical Language & Culture” aims to
learn foreign languages and cultures; “America’s Army” tries
to attract young people to join the US Army.

2.3. Video Games. Serious games are mainly based on video
games that define their usability. According to the aims

International Journal of Computer Games Technology 3

of the serious game, the video games characteristics of
game genre, game mode, and game complexity define the
target audience. The game genre is used to classify video
games. Some examples are “shooters” like “Doom” series
or “Counter Strike” (players combat several characters with
projectile weapons, such as guns or missiles), “sports” like
“Pro Evolution Soccer” or “Virtual Tennis” series (emulates
the playing of traditional physical sports), “strategy” like
“Age of Empires” or “Civilization” series (players control
an army and command it to achieve objectives), or “role-
playing” like “Final Fantasy” series or “World of Warcraft”
(players are cast in the role of one or more “adventurers” to
progress through a predetermined storyline).

We define the game mode as the networked nature of
the game. Single player refers to a game, where only one
player can interact with the game. The player plays against
preprogrammed challenges and/or opponents controlled by
Artificial Intelligences (AI). A multiplayer mode allows play-
ers to interact with each other. Partnerships, cooperation,
competitions, or rivalries emerge to provide a form of social
communication.

The Game complexity refers as in [9] to the duration
of the game. Minigames or trivial games take less than one
hour to complete, treat only one subject, puzzle, or game
play type in a small way. Complex games take more than
ten hours to complete, provide a sophisticated mixture of
difficult challenges that typically intertwine and support
each other. Main features of complex games are levelling-
up, adaptability, clear and worthwhile goals, interaction with
other players, and shared experiences.

The choice of a game genre, a game mode, and the
complexity of the video game is a crucial point to be in
agreement with the target audience and the serious game
objectives.

2.4. Serious Games and Learning. The critical point of
serious games is the relationship between the game and the
educational content: Zyda [7] wrote that “Pedagogy must
be subordinate to story—the entertainment component comes
first.” A hypothesis is that if the game is attractive, fun,
and stimulating, and encourages the player to progress, then
she/he will automatically learn skills from the game and
will absorb a lot of information. What about serious games
devoted to teaching how to program? Is there a need for such
tools?

3. Programming Fundamentals Learning

In order to determine if serious games can be useful for
teaching programming, we present educational features,
bring to light problems encountered by students, and
expose different solutions proposed by teachers. Among the
developed tools devoted to this field, we chose to analyse
some of them in reference to learning objectives and serious
games features.

3.1. Features. An ACM/IEEE report [3] provides an overview
of the different kinds of undergraduate degree curricula in

computing. This report divides computing in five major
disciplines: Computer Engineering (CE), Computer Science
(CS), Information Systems (IS), Information Technology
(IT), and Software Engineering (SE). It shows that the
most important requirement for all these disciplines is the
“Programming Fundamentals” topic, and the ability to “Do
small-scale programming” is the most expected performance
capability. The requirements of “Programming fundamen-
tals” (PFs) are detailed in another report [10], which defines
precisely the features of programming courses and outlines
a set of recommendations for undergraduate curricula.
It is divided in 5 core units: fundamental programming
constructs (PF1), algorithms and problem solving (PF2),
fundamental data structures (PF3), recursion (PF4), and
event-driven programming (PF5). There are no recommen-
dations on the programming language used for teaching. The
main topics taught in PF are variables, types, expressions,
assignments, simple Input/Output, conditional and iterative
control structures, functions, parameter passing, arrays, and
records.

3.2. Problems. Programming fundamentals are hard skills
to learn, especially for novices, for several reasons. First,
students encounter some unexpected epistemological obsta-
cles, like learning looping constructs [11, 12], conditionals,
or assembling programs out of base components: “Data
structure and algorithms [. . .] are often difficult issues, since
capturing the dynamic nature of abstract algorithms is not
a straightforward task” [13]. Thus, “the lack of student
programming skill even after a year of undergraduate studies
in computer science was noted and measured in the early 80’s
[14] and again in this decade [15]” [4, page 127].

Second, the computer environment they use daily, to
play or chat for example, is very different from the one
they use for learning and they do not immediately see
the connection between the two universes: “People studying
pedagogical techniques agree that students who are new to
computer science typically find the field full of theoretical,
technical, or even tedious concepts” [16].

Third, learning how to program assumes lectures, classes,
and practice sessions. To be able to program, students need
to know programming skills and concepts, but to learn
those skills and concepts they have to practice programming.
Dealing with this paradox, Greitzer et al. [9] explain in
particular that “an effective approach is to encourage learners
to work immediately on meaningful, realistic tasks.”

3.3. Some Solutions. To the question as to what makes
programming easier for novices and what helps students to
acquire programming fundamentals, a great many answers
are proposed in the literature. For example, Stevenson
and Wagner [17] analyse assignments from textbooks and
historical usage to look for student’s problems and propose a
set of characteristics and assignments that should be a “good
programming assignment” in CS1: (1) be based on a real-
world problem; (2) allow the students to generate a realistic
solution to that problem; (3) allow them to focus on current
topic(s) from class within the context of larger programs;

4 International Journal of Computer Games Technology

(4) be challenging; (5) be interesting; (6) make use of one
or more existing application programming interfaces (APIs);
(7) have multiple levels of challenge and achievement, thus
supporting possible refactoring; (8) allow some creativity
and innovation. To implement this assignment, the authors
propose a CS1 project based on a web crawler and a spam
evaluator.

Another trend, studying how students relate to computer
science and why they quit, has shown that a lack of meaning
and relevance is key issues that create distaste for the
discipline [4, page 150]. One answer is to develop specific
interesting and relevant computational artefacts that have
meaning for students. In this direction, three approaches
exist: (1) building novice-programming environments, using
(2) programming contests or (3) video games.

Many novice-programming environments have been
built. Most of them use block-based graphical languages.
This programming metaphor allows students to forget syntax
and directly experiment with programming. Here are a few
examples.

(i) StarLogo The Next Generation [18] uses computer
game design as the motivation and theme to intro-
duce programming to middle or high school stu-
dents. It is a modelling and simulation software.
Students and teachers use agents-based program-
ming and 3D graphics to create and understand
simulations and complex systems.

(ii) Scratch [19] is a programming language that makes it
easy to create interactive stories, animations, games,
music, and art and share them through the web.
It is designed to help young people (ages 8 and
up) develop learning skills from several disciplines.
As they create Scratch projects, young people learn
important mathematical and computational ideas,
while also gaining a deeper understanding of the
process of design.

(iii) Alice2 [20] is a programming environment designed
for teaching programming while building 3D virtual
worlds. This drag and drop programming system
allows users to experiment with the logic and pro-
gramming structures taught in introductory pro-
gramming classes without making syntax errors. It
allows users to experiment with conditionals, loops,
variables, parameters, and procedures.

(iv) Cleogo [21] is a groupware environment that allows
several users to simultaneously develop programs
through any mixture of three alternative program-
ming metaphors: a direct manipulation language for
programming by demonstration an iconic language
and a standard text-based language. Cleogo is moti-
vated by the pedagogical values of peer learning and
of collaborative problem solving, at home and at
work.

The second approach consists in using competition to
motivate students. Robocode (http://robocode.sourceforge
.net/) accessed 17 April 2007, is a Java programming game,

where the goal is to develop a robot battle tank to battle
against other tanks programmed by other players. It is
designed to help people learn Java programming. The robot
battles are running in real-time and on-screen. It is suitable
to all kind of programmers from beginners (a simple robot
can be written in just a few minutes) to experts (perfecting
an AI can take months).

The last approach uses video games in order to hook
the player and bring him/her to programming. Two uses
have been experimented: implementing new video games
and playing video games. For example, in [22], students
are required to implement in C++, through a collaborative
project, a small-to-medium scale interactive computer game
in one semester, making use of a game framework. In [23],
a case study based on EEClone is proposed. EEClone is an
arcade-style computer game implemented in Java: students
analysed various design patterns within EEClone, and from
this experience, learned how to apply design patterns in their
own game software. In [5], a “Game First” approach is used
to teach introductory programming. These authors believe
that game programming motivates most new programmers.
They use 2D game development as a unifying theme.

Another solution is to let students learn when they play a
game. Two games use this approach: the Wireless Intelligent
agent Simulation Environment (WISE) [24] and Colobot
(http://www.ceebot.com/colobot/index-e.php) accessed 21
September 2007. WISE combines activities from virtual and
physical versions of the Wumpus World game. It allows
physically distributed agents to play an interactive game and
provides a dynamic learning environment that can enhance
a number of computer science courses: it can be used as
a medium for demonstrating techniques in lectures; in the
classes students can work on laboratory exercises that test,
expand, or modify the simulator. The Wumpus World game
can be played cooperatively or competitively. But WISE
requires a great number of resources (e.g., space, robots, and
so on) for the physical version.

Colobot is the only example that we know, of a complete
video game, which mixes interactivity, storytelling, and
programming. In this game, the user must colonize a planet
using some robots that she/he is able to program in a
specific object oriented programming language similar to
C++. The only drawback in our opinion is that Colobot has
no multiplayer mode.

3.4. Conclusion. “Although there is a weak theoretical basis
and few techniques for measuring learning in computer
science” [21, page 151], several environments for teaching
programming have been developed. Stevenson and Wagner
[17] define a set of characteristics for a “good assignment.”
All the studied environments agree with the criteria number
two (generate a realistic solution), three (focus on current
topics from class), four (be challenging), five (be interesting),
seven (offers multiple levels of challenge), and eight (allow
creativity and innovation). However none is based on real-
world problems. But when students use Robocode, EEClone,
and Colobot, they use complex APIs.

Novice programming environments (StarLogo, Scratch,
Alice2, and Cleogo) are not games and cannot be considered

International Journal of Computer Games Technology 5

57 · · · 44 · · · 31 · · · 28 · · · 25 24 23 22 21 20 19 18
0

10

20

30

40

50

60

St
u

de
n

ts
n

u
m

be
r

Figure 2: Age of students.

as serious games. In [5, 22, 23], since students have to
build a game and not to play, these approaches cannot be
considered as games. Among the others, only Robocode,
WISE, and Colobot use a gaming activity to stimulate
the player. However, only Colobot allows the player to
interactively program in game. But it is not free and cannot
be adapted to different teaching context. Indeed, it is devoted
to a specific programming language and cannot be adapted
to specific pedagogical choices. Since in [10] there is no
recommendation about the programming language, there
is no consensus about the choice of a language. Indeed
for pedagogical reasons, some teachers develop their own
programming languages. Moreover, it is not easy for a
teacher to introduce new exercises into the game. Since our
experiment lies on design experiments, we need to test a
serious game dedicated to teaching programming in several
contexts with different teachers and students. The existing
games do not allow that, and thus we decided to build our
own serious game.

4. What Kind of Video Game for Our
Serious Game?

The usability of a serious game is based on the compatibility
between the learning objectives and the target public. Since
we want to build a serious game for students in computer
science, we have to base it on one of their most played video
games. Our first step was thus to ask what kind of video
games our students practice, and to find the most suitable
one to motivate students to program.

4.1. Students and Video Games. To check the interest of our
students in the kind of game they practice, we submitted
a survey: 181 students were questioned (154 males and
27 females) in three different curricula (two on computer
science and one on civil engineering). The average age is 21
years old (see Figure 2 for distribution).

The first analysis verifies ESA’s results about the student
interest in games at our university. Figure 3 shows the
percentage of students who play (males and females). More
players are males but a small majority of females also play
video games. We infer from these figures that video games are
widely played by our students, even for females. These results
corroborate the potential of serious games for these students.

14%

86%

Player
Not player

(a)

9%

91%

Player
Not player

(b)

48% 52%

Player
Not player

(c)

Figure 3: (a) Players’ percentage for all participants, (b) males, and
(c) females.

The second analysis identifies the most used game genre
played by our students. Figure 4 shows the percentage of
players who play each game genre. The most played game
genre is strategy games. We notice that this game genre is also
appreciated by females (57% of female players play strategy
games).

6 International Journal of Computer Games Technology

Fi
gh

ti
n

g

Sh
oo

te
r

Sp
or

t

V
eh

ic
le

si
m

u
la

ti
on

St
ra

te
gy

R
ol

e-
pl

ay
in

g

P
la

tf
or

m

R
efl

ec
ti

on

A
dv

en
tu

re

0

10

20

30

40

50

60

70

80

90

100

(%
)

Figure 4: Percentage of players who play each game genre.

27%

73%

Play
Do not play

Figure 5: Percentage of players who play multiplayer games.

Figure 5 shows the percentage of students who used
multiplayer games. As we can see, most of them use this type
of game.

Thus, to be adapted to our target audience, our serious
game should be based on a multiplayer strategy game.

4.2. What is a Strategy Game? Strategy games are, by and
large, represented by Real-Time Strategy (RTS) games. In
this game genre players evolve in a virtual environment,
where resources are scattered on a map. RTS is traditionally
structured around three main phases closely linked: harvest-
ing resources, building structures and units, and fighting
opponents. To win a game, the player has to destroy all
structures and units of opponents or achieve a specific goal.
To build a strong army, a good economy is required and
protection of strategic areas is essential.

A strong player should show abilities in planning and
know how to anticipate and react. She/he has to command
hundreds of units, which leads to a large cognitive load.
Moreover, RTSs have an important feature: the “fog of
war.” This hides the movements and actions of opponents

until they come into the line of sight of one of the player
troops. The player evolves in a virtual world with incomplete
information, which increases the game interest.

Traditionally, RTSs provide two types of game: Campaign
and Skirmish. Campaigns attract the player and teach
him/her how to play, and skirmishes extend the life of the
game. A campaign is divided in missions that gradually
introduce game contents and complexity. Skirmishes require
a better control of the game. The player fights against
computer AIs or other players. Moreover, to increase the
game challenge, it is always possible to find better or
equivalent players on the Internet.

In RTS games, a player gives orders to his/her units to
carry out operations (i.e., moving, building, etc.). Typically,
these instructions are given by clicking on a map with the
mouse. An RTS game, where such instructions can be given
through programs, might be the answer to our serious game.
The idea is to stimulate the player to give orders through
programs. These programs will assist the student/player
during the game and should increase his/her probability of
winning, if they are efficient, relevant, and suitable to the
game. Moreover, when they test their programs, students will
still use the same environment (the game).

4.3. Are Strategy Games Compatible with Teaching Program-
ming? As we have seen before, serious games for teaching
programming already exist and are used. In particular,
Colobot is based on a sort of RTS. In Colobot, teaching
is provided through an interactive library available for
consultation but a teacher using Colobot cannot modify or
adapt it to his/her courses. And there is only one course level
for novice programmers (PF).

Learning how to program requires writing programs. A
priori, RTS and programming activities are incompatible:
real-time games are dynamics and have a strong interac-
tivity with the player, and programming tasks require time
for design and implementation of programs. Integrating
programming activities in an RTS should then modify
foundations of the game. Colobot and Robocode found two
different solutions to solve this problem.

(i) Colobot is based on a modified RTS to enable in-
game programming. The common rules of the game
are modified by this fact, and it demands a specific
skill from the player. For example, the player cannot
control several entities in the game at the same time.

(ii) Robocode distinguishes between programming and
playing activities. First, the player writes an AI, and
then she/he runs them. Thus the player is inactive
during the simulation and is merely a spectator of
his/her AI.

5. Implementation

RTSs are very complex programs, with more than tens of
thousands of code lines. Because our goal was not to develop
a new RTS, we decided to use an existing engine. This engine
had to be open sourced to allow us to develop the specific
features of the serious game.

International Journal of Computer Games Technology 7

Figure 6: Kernel Panic.

5.1. Game Engine Choice. We found two open source
multiplayer 3D RTS engines: the Spring project
(http://spring.clan-sy.com/) accessed 2 February 2007,
and Open Real-Time Strategy (ORTS). ORTS [25, 26] has
been developed to provide a programming environment for
discussing problems related to AI. This game is designed to
allow the user to easily program and integrate his/her AIs. It
is aimed at users who already know how to program. Spring
is a project aiming to create a new and versatile RTS Engine
which was built to reuse some game data from a commercial
game called Total Annihilation. Currently, Spring is more
successful than ORTS. A gamer community plays Spring
everyday on the Internet. This community helps to discover
bugs, which are fixed by a development group. This process
is not present in ORTS which is experimental. We chose the
Spring engine instead of ORTS because of this community.

5.2. Characteristics of Spring. Along with the Spring engine,
several “mods” exist (http://spring.clan-sy .com/wiki/Mods)
accessed 26 August 2008, (mods constitute additions to
a game that change the way it works). For our experi-
ment, we chose to use “Kernel Panic” (http://spring.clan-sy
.com/wiki/Kernel Panic) accessed 26 August 2008; Figure 6
presents a screenshot of Kernel Panic, where three players
(red, green, and pink) fight on a map. Kernel Panic uses
computer science metaphors, like bits and pointers, which
is an asset for our training purposes. Moreover, Kernel Panic
is a simplified RTS with the following features: there is no
resource management except for time and space; all units are
free to create; it has a small technology improvement tree
with less than ten units; it uses low-end vectorial graphics,
which match the universe. These characteristics emphasize
strategy and tactics in an action-oriented game while always
remaining user friendly.

5.3. Serious Game Implementation. To adapt the Spring
engine to the serious game we wanted to build, we had to take
into account some constraints: (i) allow players to write code

Table 1

GEI Init Create the shared memory

GEI Quit Close the shared memory

GEI Update Make an update if it is required

GEI ExecPendingActions Execute pending actions

Table 2

openGame Connect the program to the shared memory

closeGame Disconnect the program from the shared memory

refreshGame Ask the game engine to update its data

getMapSize Get the map size

numberEnemies Get the number of enemies visible by the player

numberUnits Get the number of units controlled by the player

getUnit Get the nth unit of the player

giveOrder Set an action to the unit on a target

unitStop Command a unit to stop its current action

plugged dynamically into the game; (ii) protect the game
engine against player’s code bugs; (iii) hide the complexity
of the game engine; (iv) support different programming
languages. The integration of the player’s code in the engine
must be interactive (without stopping the game) in order to
maintain the progress and coherence of the game.

In some previous works [27] we used an implementation
based on a dynamic library. Use of dynamic libraries turned
out to be inadaptable to interpreted languages. Indeed,
dynamic libraries solve problems in a single process: the
game engine. This process controls student’s computer pro-
grams. But interpreted languages also require an interpreter
which is carried out in its own process. Thus, we discovered
limits of the use of a dynamic library containing the player’s
code.

Considering this drawback, we designed a new sys-
tem. Students’ programs are not included in a dynamic
library loaded and performed by the game but are running
in an independent process and communicate with the
game. This enables the use of compiled or interpreted
languages. A set of techniques exist for exchanging data
among processes. We needed a portable and fast solution
designed for process communication and not just threads
communication. We chose to use the Boost interpro-
cess library (http://www.boost.org/doc/libs/1 37 0/doc/html
/interprocess.html) accessed 26 November 2008, that pro-
vides shared memory functionality. Moreover, this library
offers the possibility to use complex data, like vectors or
maps, in the shared memory.

The UML component diagram in Figure 7 expresses the
dependencies between the player’s program and the game
engine. These two components interact through the Game
Engine Interface (GEI). The “Supplier GEI” is used by the
game engine. We have integrated into the game engine some
modifications. When the game starts, it creates the “Supplier
GEI,” and then the supplier interface can be used through the
subroutines in Table 1.

8 International Journal of Computer Games Technology

Supplier interface

+GEI_Init()
+GEI_Quit()
+GEI_Update()
+GEI_ExecPendingActions()

Supplier GEI

Boost/interprocess

Shared memory

Client GEI

Client interface

+openGame()
+closeGame()
+refreshGame()
+getMapSize(): position
+numberEnemies(): integer
+numberUnits(): integer
+getUnit(): unit
+giveOrder(u: unit, a: action, t: target)
+unitStop(u: unit)

Player's program Game engine

<<library>>

<<import>> <<import>>

<<artifact>> <<artifact>>

<<artifact>>

<<access>><<access>>

Figure 7: Architecture.

Table 3: Teaching organization schedule.

Session 1 Session 2 Two weeks Session 3 Session 4

Presentation of the
initial version of
the RTS followed
by a multiplayer
playing session

Presentation of the
API and carrying
out the five
missions of the
campaign

Students develop
their own
programs by
themselves with
teachers remote
tutoring and if they
want with peers

Multiplayer
playing using
student’s programs

Institutionalization

The “Client GEI” is used by the player’s program. After
creating the “Client GEI,” it can use the client interface to
interact with the game engine through the subroutines in
Table 2.

GEIs use the Boost interprocess library to interact
with the shared memory. GEIs hide the synchronization
complexity of the shared memory and make communication
with the game easier. At the request of the student program,
pertinent data is copied into the shared memory. To avoid
incoherent situations, students’ programs work on this copy.
In this way, at any time, the player can change his/her
code and carry it out to use the shared memory and to
communicate with the game.

All languages that are able to use a C library can use
the “Client GEI” and communicate with the game engine.
Currently, we propose interfaces for the “Client GEI” in
C, C++, Java, Visual Basic for Application (VBA), and an
interpreted language called “Compaglo” (used in a specific
course at our university).

6. Mapping Learning Objectives into the Game

Is the built serious game compatible with learning objectives?
Different viewpoints can be envisaged: the student view, the
teacher view, and the knowledge view.

6.1. The Student Point of View. The first step for a student
is to learn how to use the serious game. Especially at
the beginning, students have to understand what they can
program and how they can do it through the “client GEI.” A
campaign seems to be very suitable for game appropriation
where motivation is maintained by a story.

When players are over with all the missions, they should
be able to control the serious game and develop their own
AIs for skirmishes. To build these AIs, players need to call
upon their skills learned during the campaign. They have to
design and implement each AI. The developed AIs span from
simpler ones for novices, to very complex ones for experts.

In skirmishes, a student can play against the computer or
against his/her friends. Multiplayer sessions encourage them
to carry out new challenges. The motivation is maintained by
competition between players.

The player defines a strategy, composed by a set of tasks,
to win. She/he can choose to carry out some of them through
AI. If the developed AIs improve the game, students will be
better when they play. They will then perhaps find interest in
programming, spend time to perform it and so increase their
abilities in programming practice.

6.2. The Teacher Point of View. The serious game we built
can be adapted to the programming language chosen by

International Journal of Computer Games Technology 9

program mission1
glossary

Unit u
Position p

begin
openGame()
p.x← 1056
p.y← 1792
u← getUnit(1)
giveOrder(u, MOVE, p)
closeGame()

end

Algorithm 1: Mission one algorithm.

the teacher. According to the language characteristics, she/he
can build activities for different course levels from PF to
complex AI algorithms. Moreover, if s/he chooses to use the
multiplayer mode, she/he can use individual, competitive,
and collaborative pedagogical methods.

6.3. The Knowledge Point of View. Because unlike Colobot,
the tool has not an interactive library of programming skills,
it cannot be used without an appropriate teaching environ-
ment: students need to be assisted by teachers and peers
to write their AIs and, after playing, an institutionalization
[28] stage is necessary to carry out collaborative learning.
Simon [29] defines institutionalization as a phase where ideas
“constructed or modified during problem solving attain the
status of knowledge in the classroom community.” PF skills
are gradually introduced through the missions, which initial
aims are to progress in the story.

GEI is a fairly complex Application Programming Inter-
face (API) which is not simple for novices to use. Teachers
can develop an overlay adapted to their own subroutines
specifications.

7. First Experiment

Before conducting design experiments with different teach-
ers and students, we decided to test our serious game on
some of our students and first define a simplified design
experiment. To comply with the traditional game mode of
an RTS, we first propose to carry out a campaign and then to
develop additional programs usable in multiplayer sessions.
We first present an example of a campaign, then we show
how to organise a skirmish to ensure learning.

7.1. Our Campaign. “Kernel Panic” is only a multiplayer
game and does not provide campaigns. Therefore, we built a
campaign to gradually introduce learning topics and enable
students to learn how to play and to program AIs. We take
advantage of the Kernel Panic universe and offer students the
following scenario: “For a certain number of years, a secret
war is rife inside computers. Steady attacks are led against
innocent victims. Today is your turn. Your aggressor captured

your mouse controller. You must recover it. Your only solution:
programming.”

To achieve this objective, five missions are created.

(i) Mission 1. “You lost a lot of units in the last attack.
Units currently alive are dispersed on the map. You
have only one BIT under control. You must go to the
rally point at position (1056, 1792) to find other units.”
To succeed, the player has to make a small program
where she/he uses variables, types, assignments, func-
tions, parameter passing, and records. Algorithm 1
shows a solution.

(ii) Mission 2. “You just found a BYTE unit. It tells you
that other units are reassembled not far. It gives you
the position (479, 1825) of a BYTE group that it
tries to rally. Moreover, it warns you that a group of
BITS is forming at position (1400, 1371). To retrieve
these units, command your two units to meet up
with their respective groups.” In this mission the
conditional control structure is introduced to give a
target position to each unit according to their type
(BYTE or BIT).

(iii) Mission 3. “All units you control are weakened. You
must repair them before starting a counter attack.
A report indicates that an ASSEMBLER is posted at
the position (256, 1024). Find it and it will help
you.” In this mission the iterative control structure
is introduced to iterate through each unit and move
them on the right position. Algorithm 2 shows a
solution.

(iv) Mission 4. “You found an ASSEMBLER. Use it to
repair your weakened units.” This mission is the
most complicated and requires overlapping iterative
and conditional control structures. The player has
to iterate through each units and commands the
ASSEMBLER to repair a unit if this unit is weakened
and if the ASSEMBLER is inactive.

(v) Mission 5. “All units are repaired. Now it is time to
fight back. The mouse device is positioned at (1056,
256). Good luck commander”. This mission goal is to
reward students with a simple fight.

7.2. Skirmishes. When students finish the campaign, they can
write their own AIs and use them during skirmishes. Here
are some examples of strategic AIs which could be written by
students and give an “in-game” asset to the player: “Search
for opponent” to quickly find the enemy in order to adapt
one’s strategy to the adversary’s; “Create a mine field” which
may slow down opponents’ expansion in order to give more
time to develop our own strategy; “Repair” using specific
units to keep strategic units in good health; “Withdraw” to
protect units when facing a stronger opponent. All these
examples support a part of a player strategy and let him/her
take charge of the rest, and therefore play the game at the
same time.

Algorithm 3 shows the algorithm of “search for oppo-
nent” where units search for the enemy. Random target areas

10 International Journal of Computer Games Technology

program mission3
glossary

Unit u
Position p
Counter c

begin
openGame()
p.x← 256
p.y← 1024
for c← 1 to numberUnits() do

u← getUnit(c)
giveOrder(u, MOVE, p)

endFor
closeGame()

end

Algorithm 2: Mission three algorithm.

are computed to move each unit until an enemy is found. It
uses library subroutines, like “giveOrder(u, MOVE, pos)” to
move the unit “u” to the position “pos.” Usually, the player
does this with the mouse and has to select each unit one by
one, a long and tedious process. The loop allows the player
to perform this operation automatically. Moreover, while the
player is selecting the enemy units with the mouse, she/he
cannot carry out other tasks. With this program she/he can,
for example, develop his/her base while the program explores
the map.

7.3. Organization of the Course. Table 3 shows the schedule
of our teaching organization for our first experiment. Two
instructors supervise each session: one game specialist and
one computer science teacher. During the first session,
students play the game to familiarize themselves with it.
A discussion about what could be done to improve the
game and which are the most efficient strategies for winning
is initiated. The second session is a presentation of GEI.
The computer science teacher proposes that all students
carry out missions. The programming obstacles are dealt in
concert with the teacher. During the two next weeks, students
work autonomously but can call upon their instructors.
They have to develop their own AIs. If they have no idea
of what to program, a database of efficient algorithms is
proposed such as the “Search for opponent” algorithm. The
game specialist guides the students through different game
strategies to improve the playing sessions. The computer
science instructor deals with installations and programming
problems. The students are allowed to communicate with
each other. They can then elaborate alliances or cooperation
strategies, or simply help each other with programming.
When all the programs are completed and operational, the
third session occurs: students play using their own programs.
The game specialist teacher turns his attention to decipher
what really happened during the game: the role of the
programs, the activities of the students, and the strategies
used. This observation is the base of the last session: students
and teachers analyse games and try to find the reasons behind

program search-for-opponents
glossary

Position pos, map
Unit u
Boolean found
Counter c

begin
found← FALSE
openGame()
map← getMapSize()
while not found do

refreshGame()
// Check if an enemy is visible
if numberEnemies() > 0 then

// stop all units
for c← 1 to numberUnits() do

unitStop(getUnit(c))
endFor
found← TRUE

else
// give random target area to move for each unit
for c← 1 to numberUnits() do

// choose a random target area
u← getUnit(c)
if u.inactive then

// choose a random value between 0 and map.x
pos.x← randomValue(map.x)
// choose a random value between 0 and map.y
pos.y← randomValue(map.y)
giveOrder(u, MOVE, pos)

endIf
endFor

endIf
endWhile
closeGame()

end

Algorithm 3: “Search for opponent” algorithm.

victories and defeats. A discussion about the importance
of the programs is held. The learning objective is that our
students continue to use by themselves this serious game and
improve their programming skills.

This experiment will be conducted in our university this
year with novice students. To evaluate the process we will
use several indicators such as student investment, number,
quality and pertinence of the written programs, student
retention, gained skills and exam results. We also want to
evaluate the “feelgood” factor as defined in [30].

8. Conclusion

This paper deals with the compatibility between a serious
game and teaching programming. Serious games are more
and more popular and can meet learning objectives. On the
other hand, computer science students encounter a lot of
difficulties while learning programming. Some researchers
in computer science education develop programming envi-
ronments to encourage and retain students. Some of these

International Journal of Computer Games Technology 11

environments can be considered as serious games but they
are not adaptable enough to validate our hypothesis in
regards to design experiments, which is why we decided to
build an adaptable serious game dedicated to programming.

As a basis for our serious game we chose to use an RTS,
because it is the most played game genre for our target
audience. Because it was not possible to develop our own
RTS engine, we decided to use the Spring game engine and
the Kernel Panic game. The implementation of the serious
game led to modifying the engine to enable an interactive and
secure programming activity through an API. The students
can command game entities with their own AIs and have
contests with their friends in the multiplayer mode. The
game can be adapted to specific programming languages,
and teachers can adapt the API to their own specification
subroutines. PF skills are mapped on the game through
missions. In order to validate the game, we designed a first
design experiment with our students.

The next step is to conduct this experimentation and to
adapt it to several contexts with different instructors and
students in order to apply the iterative process of design
experiments. The possible evolution of the serious game is
the introduction of teaching facilities, like Colobot, and in
order to keep pace with the rapid evolution of video game
standards, the use of another mod, or the integration of other
RTS game engines.

We hope that these experiments will show us the breadth
of teaching applications supported by our system as well as
the range of potential audiences and teaching methodologies.
Analysis of our experimentation will explore and resolve
potential issues concerning usability and effectiveness of
learning with serious games. At the same time, it will be
important to determine which skills are learned by students
when the campaign is finished and how users switch between
game play and coding elements. It would also be interesting
to evaluate this approach with another video game genre and
to compare it with our RTS-based serious game.

References

[1] T. L. Crenshaw, E. W. Chambers, and H. Metcalf, “A case
study of retention practices at the University of Illinois at
Urbana-Champaign,” in Proceedings of the 39th ACM Technical
Symposium on Computer Science Education (SIGCSE ’08), pp.
412–416, Portland, Ore, USA, March 2008.

[2] C. Kelleher, “Alice and The Sims: the story from the Alice side
of the fence,” in The Annual Serious Games Summit (DC ’06),
Washington, DC, USA, October 2006.

[3] ACM/IEEE-Curriculum 2005 Task Force, Computing Curric-
ula 2005, The Overview Report, IEEE Computer Society Press
and ACM Press, New York, NY, USA, September 2005.

[4] S. Fincher and M. Petre, “Mapping the territory,” in Computer
Science Education Research, RoutledgeFalmer, pp. 1–8, Taylor
& Francis, Boca Raton, Fla, USA, 2004.

[5] S. Leutenegger and J. Edgington, “A games first approach
to teaching introductory programming,” in Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’07), pp. 115–118, Covington, Ky, USA,
March 2007.

[6] P. Cobb, J. Confrey, A. DiSessa, R. Lehrer, and L. Schauble,
“Design experiments in educational research,” Educational
Researcher, vol. 32, no. 1, pp. 9–13, 2003.

[7] M. Zyda, “From visual simulation to virtual reality to games,”
Computer, vol. 38, no. 9, pp. 25–32, 2005.

[8] S. Blackman, “Serious games...and less!,” Computer Graphics,
vol. 39, no. 1, pp. 12–16, 2005.

[9] F. L. Greitzer, O. A. Kuchar, and K. Huston, “Cognitive science
implications for enhancing training effectiveness in a serious
gaming context,” ACM Journal on Educational Resources in
Computing, vol. 7, no. 3, article no. 2, 2007.

[10] ACM/IEEE-Curriculum 2001 Task Force, Computing Curric-
ula 2001, Computer Science, IEEE Computer Society Press and
ACM Press, New York, NY, USA, December 2001.

[11] D. Ginat, “On novice loop boundaries and range conceptions,”
Computer Science Education, vol. 14, no. 3, pp. 165–181, 2004.

[12] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and
looping constructs: an empirical study,” Communications of
the ACM, vol. 26, no. 11, pp. 853–860, 1983.

[13] O. Seppälä, L. Malmi, and A. Korhonen, “Observations on
student misconceptions—a case study of the Build Heap
Algorithm,” Computer Science Education, vol. 16, no. 3, pp.
241–255, 2006.

[14] E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, “What do
novices know about programming?” in Directions in Human-
Computer Interaction, pp. 87–122, Ablex, New York, NY, USA,
1982.

[15] M. McCracken, V. Almstrum, D. Diaz, et al., “A multi-
national, multi-institutional study of assessment of program-
ming skills of first-year CS students,” in Working Group Reports
from ITiCSE on Innovation and Technology in Computer Science
Education (ITiCSE-WGR ’01), pp. 125–180, Canterbury, UK,
June 2001.

[16] S. Stamm, “Mixed nuts: atypical classroom techniques for
computer science courses,” Crossroads, vol. 10, no. 4, p. 3,
2004.

[17] D. E. Stevenson and P. J. Wagner, “Developing real-world
programming assignments for CS1,” in Proceedings of the
11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’06), pp. 158–162,
Bologna, Italy, June 2006.

[18] E. Klopfer and S. Yoon, “Developing games and simulations
for today and tomorrow’s tech savvy youth,” TechTrends, vol.
49, no. 3, pp. 33–41, 2005.

[19] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick, “Scratch: a sneak preview,” in Proceedings of
the 2nd International Conference on Creating, Connecting and
Collaborating through Computing, pp. 104–109, Kyoto, Japan,
January 2004.

[20] C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, and
R. Pausch, “Alice2: programming without syntax errors,” in
Proceedings of the 15th Annual Symposium on the User Interface
Software and Technology, Paris, France, October 2002.

[21] A. Cockburn and A. Bryant, “Cleogo: collaborative and multi-
metaphor programming for kids,” in Proceedings of the 3rd
Asian Pacific Computer and Human Interaction, pp. 189–194,
Shonan Village Center, Japan, July 1998.

[22] W.-K. Chen and Y. C. Cheng, “Teaching object-oriented pro-
gramming laboratory with computer game programming,”
IEEE Transactions on Education, vol. 50, no. 3, pp. 197–203,
2007.

12 International Journal of Computer Games Technology

[23] P. Gestwicki and F.-S. Sun, “Teaching design patterns through
computer game development,” ACM Journal on Educational
Resources in Computing, vol. 8, no. 1, article no. 2, pp. 1–22,
2008.

[24] D. J. Cook, M. Huber, R. Yerraballi, and L. B. Holder,
“Enhancing computer science education with a wireless
intelligent simulation environment,” Journal of Computing in
Higher Education, vol. 16, no. 1, pp. 106–127, 2004.

[25] M. Buro, “ORTS: a hack-free RTS game environment,” in
Proceedings of the 3rd International Conference Computers and
Games (CG ’02), vol. 2883 of Lecture Notes in Computer
Science, pp. 280–291, Edmonton, Canada, July 2002.

[26] M. Buro and T. Furtak, “On the development of a free RTS
game engine,” in Proceedings of the 1st Annual North American
Game-On Conference (GameOn’NA ’05), pp. 1–5, Montreal,
Canada, August 2005.

[27] M. Muratet, P. Torguet, and J.-P. Jessel, “Learning program-
ming with an RTS based Serious Game,” in Serious Games on
the Move International Conference, Cambridge, UK, June 2008.

[28] G. Brousseau, Theory of Didactical Situations in Mathematics,
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1997.

[29] M. A. Simon, “Learning mathematics and learning to teach:
learning cycles in mathematics teacher education,” Educa-
tional Studies in Mathematics, vol. 26, no. 1, pp. 71–94, 1994.

[30] M. M. Muller and F. Padberg, “An empirical study about
the feelgood factor in pair programming,” in Proceedings of
the 10th International Software Metrics Symposium (MET-
RICS ’04), pp. 151–158, Chicago, Ill, USA, September 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

