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Abstract –It is extremely uncommon to be able to predict the velocity profile of a turbulent
flow. In two-dimensional flows, atmosphere dynamics, and plasma physics, large scale coherent
jets are created through inverse energy transfers from small scales to the largest scales of the
flow. We prove that in the limits of vanishing energy injection, vanishing friction, and small scale
forcing, the velocity profile of a jet obeys an equation independent of the details of the forcing.
We find another general relation for the maximal curvature of a jet and we give strong arguments
to support the existence of an hydrodynamic instability at the point with minimal jet velocity.
Those results are the first computations of Reynolds stresses and self consistent velocity profiles
from the turbulent dynamics, and the first consistent analytic theory of zonal jets in barotropic
turbulence.

Theoretical prediction of velocity profiles of inhomoge-1

neous turbulent flows is a long standing challenge, since2

the nineteenth century. It involves closing hierarchy for3

the velocity moments, and for instance obtaining a rela-4

tion between the Reynolds stress and the velocity profile.5

Since Boussinesq in the nineteenth century, most of the ap-6

proaches so far have been either empirical or phenomeno-7

logical. Even for the simple case of a three dimensional8

turbulent boundary layer, plausible but so far unjustified9

similarity arguments may be used to derive von Kármán10

logarithmic law for the turbulent boundary layer (see for11

instance [1]), but the related von Kármán constant [2] has12

never been computed theoretically. Still this problem is a13

crucial one and has some implications in most of scientific14

fields, in physics, astrophysics, climate dynamics, and en-15

gineering. Equations (6-7), (9), and (11) are probably the16

first prediction of the velocity profile for turbulent flows,17

and relevant for barotropic flows.18

In this paper we find a way to close the hierarchy of the19

velocity moments, for the equation of barotropic flows with20

or without effect of the Coriolis force. This two dimen-21

sional model is relevant for laboratory experiments of fluid22

turbulence [3], liquid metals [4], plasma [5], and is a key23

toy model for understanding planetary jet formation [6]24

and basics aspects of plasma dynamics on Tokamaks in25

relation with drift waves and zonal flow formation [7]. It 26

is also a relevant model for Jupiter troposphere organi- 27

zation [8]. Moreover, our approach should have future 28

implications for more complex turbulent boundary layers, 29

which are crucial in climate dynamics in order to quantify 30

momentum and energy transfers between the atmosphere 31

and the ocean. 32

It has been realized since the sixties and seventies in 33

the atmosphere dynamics and plasma communities that in 34

some regimes two dimensional turbulent flows are strongly 35

dominated by large scale coherent structures. Jets and 36

large vortices are often observed in numerical simulations 37

or in experiments, but the general mechanism leading to 38

such an organization of the flow at large scales is subtle 39

and far from being understood. For simplicity, we con- 40

sider in this paper the case of parallel jets favored by 41

the β effect, however without β effect both jets and vor- 42

tices can be observed [4, 9, 10]. When a large scale struc- 43

ture is created by the flow, a quasilinear approach may 44

be relevant. Such a quasilinear approach requires solving 45

a coupled equation for the mean flow and the Lyapunov 46

equation that describes the fluctuations with a Gaussian 47

approximation, just like the Lenard–Balescu equation in 48

plasma kinetic theory. Numerical approaches and theo- 49

retical analysis have been systematically developed for fif- 50
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teen years in order to solve and study such quasilinear or51

related approximations [6, 11]. In a recent theoretical pa-52

per, the range of validity of such an approach has been53

established by proving the self consistency of the approxi-54

mations of weak forcing and dissipation limit [12]. While55

this work gave theoretical ground to the approach, explicit56

formula for the Reynolds stress cannot be expected in gen-57

eral. However, in a recent work [13], an expression for the58

Reynolds stress has been derived from the momentum and59

energy balance equations by neglecting the perturbation60

cubic terms in the energy balance (this follows from the61

quasilinear approach justification [12]), but also neglect-62

ing pressure terms (not justified so far, see [14]). This ap-63

proach surprisingly predicts a constant velocity profile for64

the outer region of a large scale vortex in two dimensions65

that does not depend on the detailed characteristics of the66

stochastic forcing but only on the total energy injection67

rate ε expressed in m2s−3. Another analytic expression68

for the Reynolds stress has also been derived in the par-69

ticular case of a linear velocity profile U in [15]. For the70

case of dipoles for the 2D Navier–Stokes equations, the pa-71

pers [16,17] following a computation analogous to the one72

given in [15], shows that if the vorticity is passively ad-73

vected (the third term in equation (5) below is neglected),74

then the expression for the Reynolds stress discussed in75

[10] is recovered ( [17] also discusses other interesting as-76

pects related to parts of the flow for which this relation77

is not correct). What are the criteria for the validity of78

these results? Can we reconcile the different results giving79

a full theoretical justification and extend these for more80

general cases?81

We start from the equations for a barotropic flow on a
periodic beta plane with stochastic forcing

∂tV + V.∇V = −rV − 1

ρ
∇P + βdy

(
Vy

−Vx

)
+
√

2εf (1)

where V :=

(
Vx
Vy

)
is the two dimensional velocity field

with∇V = 0. r models a linear friction, and f is a stochas-
tic force white in time, with energy injection rate ε, βd is
the Coriolis parameter, y the north-south coordinate. Fol-
lowing [12] we choose time and space units such that the
mean kinetic energy is 1, and Lx = 1. The non dimen-
sional equations for the vorticity Ω = ∇∧V are

∂tΩ + V.∇Ω = −αΩ− βVy +
√

2αη (2)

where η = ∇∧ f , and V denotes from now on the nondi-82

mensional velocity. Now α = L
√

r3

ε is a nondimensional83

parameter although we will often refer to it as the “fric-84

tion”. β =
√

r
εL

2βd is the nondimensional Coriolis param-85

eter. Eq. (2) still has three nondimensional parameters,86

α, β and K, the typical Fourier wavenumber where energy87

is injected.88

Neglecting the pressure and cubic terms in the energy
balance and enstrophy balance, it is straightforward to
obtain the Reynolds stress expression

〈uv〉 =
ε

U ′
(3)

where U ′ = dU/dy. This generalizes the result obtained 89

for a vortex [13] to the case of a jet with mean velocity 90

U . Is it possible to justify those hypothesis on theoretical 91

ground, uncover the validity range of (3), and to generalize 92

it? We note that detailed numerical studies of the energy 93

balanced has been discussed in several papers [10,18,19]. 94

In order to derive eq. (3), the key idea is to use the al- 95

ready justified [12] quasilinear approximation in the limit 96

of small forces and friction (inertial regime, α� 1), and to 97

further consider the limit of small scale forcing (K � 1), 98

with fixed β. In these limits, energy is injected at small 99

scale and is dissipated at the largest scale of the flow. 100

α� 1 is the proper regime for most geophysical turbulent 101

flows, for instance for giant gaseous planets like Jupiter 102

[20,21], and many two dimensional or rotating turbulence 103

experiments. The small scale forcing limit K � 1 is the 104

most common framework for turbulence studies (see for 105

ex. [14]) and relevant for Jupiter troposphere. Also, com- 106

puting the pressure from the Navier-Stokes equations in- 107

volves inverting a Laplacian. It is thus natural to expect 108

the pressure term to have a power expansion in the pa- 109

rameter 1
K , and thus vanish in the limit of large K. The 110

main idea is then to separate the flow V in two parts, 111

V(r, t) = U(y, t)ex +

(
u(r, t)
v(r, t)

)
. The mean velocity 112

U(y)ex = 1
Lx

∫
dxE[V(x, y)] called the mean flow or zonal 113

flow, is defined as both the zonal and stochastic average of 114

the velocity field. In the following, the bracket 〈〉 will be 115

used for this zonal and stochastic average. We are left with 116

two coupled equations, one governing the dynamics of the 117

mean flow, the other one describing the evolution of ed- 118

dies. In the limit where α is small, it has been proven that 119

fluctuations are of order
√
α and thus it is self-consistent 120

to neglect nonlinear terms in the equation for fluctuations 121

[12]. Then one can justify [12] that, at leading order in α, 122

the full velocity field statistics are described by a quasi- 123

Gaussian field (the velocity field is not Gaussian, but the 124

marginals when the zonal flow is fixed are Gaussian, jus- 125

tifying a posteriori a second order closure corresponding 126

to the quasilinear approximation). Using also the incom- 127

pressibility condition, we obtain the quasilinear model 128

∂tU = −α [∂y 〈uv〉+ U ] (4)

∂tω + U∂xω + (β − U ′′)v = −αω + η (5)

where we have introduced ω = ∂xv − ∂yu = 4ψ, the 129

vorticity of the fluctuations. Eq. (4) shows that the typical 130

time scale for the evolution of the mean flow U is 1
α which 131

is, following our assumption α� 1, much larger than the 132

time scale for the evolution of eddies. Using this time scale 133

separation, we will consider that U is a constant field in 134

the second Eq. (5), and we will always solve ω(t) for a 135

given U . We follow the strategy: 136

• First we solve the linear Eq. (5) and compute the 137

stationary distribution
〈
ω2
〉

as a functional of U . 138

• The enstrophy balance for the fluctuations allows us 139
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to relate
〈
ω2
〉

to the divergence of the Reynolds stress140

tensor (see the Supplementary Material [22]).141

• Last we can use this expression to close the first Eq.142

(4), and discuss possible stationary profiles U .143

To reach the first objective, we take advantage of the144

asymptotic regimes α → 0 and K → ∞. When we take145

those two limits, it is natural to ask whether they com-146

mute or not, and which nondimensional parameter will147

govern the difference between α→ 0 first or K →∞ first.148

Our asymptotic calculations show that the key parameter149

is the ratio between U ′′

K and α. Taking the limit α → 0150

first amounts to saying that U ′′

αK is very large.151

We first take the limit K → ∞ while keeping α small
but finite. The idea is to write Eq. (5) in an integral
form using the Green function of the Laplacian, and use
the fact that the Green function decreases very fast when
K is large, which implies that the evolution of the flow is
local in space. At this stage of the calculation, α is small
but finite, and the expression for the Reynolds stress de-
pends both on α and on the properties of the stochastic
forcing. The complete calculation is reported in the Sup-
plementary Material [22]. We emphasize that as long as α
is kept finite, the Reynolds stress depends on the Fourier
spectrum of the stochastic forcing η. The result shows
that the Reynolds stress can be expressed analytically as

〈uv〉 =
1

2α
χ

(
U ′

2α

)
, (6)

where the explicit expression of χ is a parametric in-
tegral, see [22]. The stationary profile U thus verifies
U ′′

2α
1
2αχ

′
(
U ′

2α

)
= −U , which can be integrated using a

primitive X of the function x→ xχ′(x) in

X

(
U ′

2α

)
+

1

2
U2 = C, (7)

where C is the integration constant. It is in itself re-152

markable that for some range of the parameters, the flow153

of the barotropic quasilinear model can be computed from154

a Newtonian equation like (7).155

In Eq. (7), X plays the role of a potential as if the equa-156

tion would describe a particle moving in a one-dimensional157

potential. The constant in the right-hand side is set by158

U ′(0) and depending on the value of this constant, there159

can be one, two or three solutions as shown in Fig. (1).160

If C > Xmax, there is one solution for which U never161

vanishes. As the total flow momentum is zero, such so-162

lutions with either U > 0 or U < 0 are not physical. If163

X0 < C < Xmax, there are three possible solutions, one is164

periodic, the other two diverge. The periodic solution cor-165

responds to U ′

2α confined in the well of X. In that case the166

flow is periodic and the solution exchanges kinetic energy167

in the term 1
2U

2 with potential energy X
(
U ′

2α

)
. Outside168

the well, the solutions are diverging, one corresponds to169

an increasing U and the other to a decreasing U . A linear170

stability analysis of the periodic solution of (7) shows that171

U'/2,
-3 -2 -1 0 1 2 3

X(
U
'/2
,
)

1.98

2

2.02

2.04

2.06

2.08

2.1
Xmax

Cte

diverging
solution

X0 periodic
solution

1/2*U2

Fig. 1: In the limit of small scale forcing, the mean flow can

be computed analytically from the Newtonian Eq. (7). We

show here that the situation is analogous to a particle moving

in a one-dimensional potential. The blue curve displays the

potential X appearing in Eq.(7). If the constant of motion is

less than Xmax, there are two classes of solutions: the solution

can be confined in the central well and is thus regular and

periodic in space, or it is outside the well, and in this latter

case it diverges.

this solution is unstable whereas the diverging solution is172

stable. Thus, the periodic regular solution is not a suitable 173

candidate for the stationary mean velocity profile U(y). If 174

we now take the limit of vanishing α in expression (6), 175

a straightforward calculation using the explicit expression 176

of χ (given in [22]) allows us to recover expression (3) for 177

the Reynolds stress because U ′ 〈uv〉 −→
α→0

1 which is Eq. 178

(3) with dimensional units. The physical interpretation of 179

the limiting case (3) is very enlightening. The term U ′ 〈uv〉 180

can be interpreted as the rate of energy transferred from 181

small scale to large scale, therefore expression (3) is con- 182

sistent: with the limit of large K, the evolution of eddies 183

becomes local as if the perturbation only sees a region of 184

width 1
K around itself, and thus the different parts of the 185

flow are decoupled. The other limit of small α forces the 186

energy to go to the largest scale to be dissipated because 187

the dissipation at small scales becomes negligible. 188

Let us study the other limit where α goes to zero first.
The techniques used in this second case are very different
than the previous one. We assume in this section that the
linearized dynamics has no unstable modes. The calcu-
lation involves Laplace transform tools that were used in
[23] to study the asymptotic stability of the linearized Eu-
ler equations. In the limit α� 1, using [12], we derive in
the Supplementary Material [22] the relation between the
Reynolds stress divergence and the long time behavior of
a disturbance ω(y, 0) carried by a mean flow U(y). This
is an old problem in hydrodynamics, one has to solve the
celebrated Rayleigh equation(

d2

dy2
− k2

)
ϕδ(y, c)+

β − U ′′(y)

U(y)− c− iδ
ϕδ(y, c) =

ω(y, 0)

ik(U(y)− c− iδ)
, (8)

where ϕδ(y, c) :=
∫∞
0

dtψ(y, t)e−ik(c+iδ)t is the Laplace 189

transform of the stream function, and k is the x- 190

component of the wavevector. The Laplace transform ϕδ 191

is well defined for any non zero value of the real variable 192
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δ with a strictly negative product kδ. c has to be un- 193

derstood as the phase speed of the wave, and kδ is the194

(negative) exponential growth rate of the wave. Involved195

computations are then required to give the explicit expres-196

sion of the Reynolds stress. Let us just mention that the197

difficulty comes from the fact that we have to take the198

limit δ → 0 first in Eq. (8) before K → ∞. Then we can199

relate ω(y,∞) to the Laplace transform ϕδ taken at δ = 0.200

The expression for the Reynolds stress in the inertial limit201

involves an integral with the profile U in the denominator202

of the integrand. The integral is defined only in regions203

of the flow where U ′ does not vanish, or to state it more204

precisely, where the parameter KU ′

U ′′ is large. Therefore,205

there exists a small region of size 1
K around the maximum206

where the asymptotic expansion breaks down. In the outer207

region away from the extrema, we recover the expression208

(3) in the inertial limit α→ 0 first. For strictly monotonic209

velocity profiles U , we conclude that the inertial limit and210

the small scale forcing limit commute and that expression211

(3) is expected to be valid.212

Using expression (3) for the Reynolds stress, we can
solve Eq. (4) for the stationary profile. It writes

d

dy

( ε

U ′

)
+ U = 0. (9)

Whatever the value of the free parameter U ′(0), all pro-213

files U are diverging in finite length. An example of such214

a profile U is given in Fig. (2a). In red, we have plotted215

different solutions of Eq. (9) together such that the mean216

velocity profile U is composed of many diverging jets. In217

blue, we have drawn at hand what we expect qualitatively218

from a real velocity profile. An example of a real profile219

obtained by numerical simulations in [24] is displayed in220

Fig.(2b). The fact that Eq. (9) predicts diverging pro-221

files U shows that the expression for the Reynolds stress222

(3) is not valid everywhere in the flow, but it holds only223

in the spatial subdomains where the flow is monotonic,224

not at the extrema. We observe that both divergences225

are regularized, by a cusp at the eastward jet maximum,226

and by a parabolic profile at the westward jet minimum.227

The second aim of this paper is to explain the asymmetric228

regularization of the eastward and westward jets.229

Numerical simulations like the one performed in Fig.
(2b) show that the mean velocity profile is regularized
at a very small scale at its maximum. As we explained
previously, there exists a region of typical size 1

K around
the maximum where the asymptotic expansion for the
Reynolds stress breaks down. It is thus natural to choose

the ansatz Ũ(y) := U
(
y
K

)
. The scaling in 1

K implies that

the ratio U ′′

Kα is very large at the cusp because U ′′ ∝ K2.
The cusp is then described by the inhomogeneous Rayleigh

Eq. (8). If we put the ansatz Ũ in (8) and consider the
limit of large K, we get

(
d2

dy2
− tan

2
θ

)
ϕδ(y, c)−

Ũ”(y)

Ũ(y)− c− iδ
ϕδ(y, c) =

ei sin θy

Ũ(y)− c− iδ
,

(10)

(a)

U(y)

β-U''

(b)

Fig. 2: (a) Jet profiles obtained as an analytic solution of

(9) (red curve) together with a qualitative real velocity profile

(blue curve). (b) Real velocity profile obtained in numerical

simulations [24]. The analytic solution for U has divergences

at the extrema that are regularized by a cusp at the eastward

jet and a parabola at the westward jet.

where cos θ = k
K . The solution of this equation with230

δ → 0 gives us the Laplace transform of the stream func- 231

tion with which we can express the Reynolds stress. The 232

β-effect disappears completely from the equation of the 233

cusp because in the region of the cusp, the curvature is 234

so large that it overcomes completely the β-effect, as can 235

be seen on the green curve of Fig. (2b). Eq. (10) to- 236

gether with the equations linking the Reynolds stress with 237

ϕ have a numerical solution, which proves that our scaling 238

Ũ(y) := U
(
y
K

)
is self-consistent. This solution can not be 239

expressed analytically and depends on the Fourier spec- 240

trum of the stochastic forcing. An example of a numerical 241

integration of the Reynolds stress divergence −∂y 〈uv〉 for 242

the cusp is displayed in Fig. (3) for Ũ(y) = −y
2

2 and a 243

stochastic forcing with a semi annular Fourier spectrum 244

where θ ranges between −π3 and π
3 . In Fig. (3), the red 245

curve is the asymptote Ũ ′′

Ũ ′2 obtained from formula (3) with 246

ε = 1. When a jet is in a stationary state, the cusp profile 247

joins smoothly the outer region of the jet where the result 248

(3) is valid. 249

Another physical phenomenon at the maximum of the
jet is called “depletion at the stationary streamlines” and
has first been observed in [23]. It means that at critical
latitudes where U ′ = 0, any vorticity perturbation of the
flow ω0 has to asymptotically vanish with time. One main
consequence of this phenomenon is the relation

U(ycr) = − εK2

rU ′′(ycr)
, (11)

where ycr is the latitude of the extremum. From (11) we 250

learn that, even if the velocity profile of the cusp depends 251

on the details of the forcing, the maximal curvature of 252

the profile satisfies a more general relation, and it would 253

therefore be very interesting to check it in full numerical 254
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Fig. 3: The Reynolds stress divergence −∂y 〈uv〉 (blue curve)

computed for a parabolic profile Ũ(y) = − y2

2
around its max-

imum y = 0. It is satisfying to observe that the red curve Ũ′′

Ũ′2

matches the blue curve for large y according to expression (3).

simulations with different types of forcing spectra. 255

The previous discussion successfully explained the jet256

regularization of the eastward jet cusp. As clearly ob-257

served in Fig. (2b), and from Jupiter data, westward jets258

do not produce cusps. At first sight, it may seem that all259

the theoretical arguments used so far, the energy balance,260

the asymptotic expansions, and the results (3) and (11),261

do not break the symmetry between eastward and west-262

ward jets, as β disappears from all these computations.263

However, as clearly stressed in [12], the whole theoretical264

approach relies on an assumption of hydrodynamic stabil-265

ity for U . The asymmetry is clearly visible in the Rayleigh-266

Kuo criterion, that states that when β−U ′′ change sign, an267

instability may develop. We will now argue that the tur-268

bulent flow is constantly oscillating between a stable and269

unstable solution, in order to control the westward jet be-270

havior. This means that the flow is not linearly stable, but271

only marginally stable. As shown in the following, the in-272

stability is localized at the extremum of the westward jet,273

and the unstable mode has a very small spatial extension.274

That’s why the flow can be considered as stable away from275

the westward extremum of the jet and the assumptions of276

expression (3) are satisfied.277

To check this marginal stability hypothesis, we solved
numerically the homogeneous PDE for a perturbation car-
ried by a mean flow

∂tω + ikUω + ik(β − U ′′)ψ = 0. (12)

We chose a parabolic mean velocity with a small pertur-278

bation at its minimum U(y) = γ y
2

2 − ηe−
y2

σ2 . The main279

curvature γ is chosen to be slightly smaller than β, and280

we performed simulations using different values of η and281

σ. The result of one of those simulations is displayed in282

figure (4). The red curve shows the Rayleigh-Kuo criterion283

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

0

2

4

6

8

10

12

2=0.01
T=30000
c=-3.5+2.1*10-3i

Fig. 4: Amplitude of the perturbation |ω2(y, t)| − 1 (blue
curve) carried by a mean flow U . The Rayleigh-Kuo cri-
terion β − U ′′ is displayed in red. The simulation shows
that the perturbation grows exponentially with the com-
plex rate c.

β − U ′′ which is locally violated around y = 0. The blue284

curve shows the amplitude of the perturbation |ω2(y, t)|−1 285

from which we can then express the Reynolds stress diver- 286

gence. We check that the growth rate of the perturbation 287

is indeed exponential with time with a complex rate c. 288

In this paper we gave a global consistent picture of how 289

a zonal jet is sustained in a steady state through con- 290

tinuous energy transfer from small scale to large scale. 291

Eq. (7) and (9) are probably the most striking results of 292

this work, showing for the first time that it is possible to 293

find closed equations for the velocity profile of turbulent 294

flows. It illustrates that, although far from equilibrium, 295

turbulent flow velocity profiles may be described by self 296

consistent equations, as density of other macroscopic pro- 297

files can be described in condensed matter physics. This 298

is a fundamental property which existence is far from ob- 299

vious, and that no other approach was able to establish 300

so far. In this paper, we have considered the case of a 301

Rayleigh friction as the mechanism for removing energy 302

that is transferred to the largest scale. Rayleigh friction 303

is a rather ad-hoc type of damping (although it can be 304

justified in certain cases involving, e.g., Ekman pumping). 305

If one would consider other kinds of friction, for instance 306

scale-selective damping, provided that this damping actu- 307

ally acts on the largest scales of the flow, in a correspond- 308

ing inertial limit we expect most of our results to easily 309

generalize (the proper dissipation operator should then re- 310

place Rayleigh friction in equation (4)). Indeed the pro- 311

cesses that explain the computation of the Reynolds stress 312

are inertial in nature and independent from the dissipation 313

mechanisms. As an example, the case of viscous dissipa- 314
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tion has been discussed in section 5.1.2 of [12], showing 315

that while the regularization by viscosity is very different316

from the regularization by linear friction, the inertial re-317

sults for the Reynolds stresses do coincide. This is true as318

far as the shear is non zero and equation (3) is concerned;319

by contrast the regularization of the cusp is dissipation320

dependent. In some specific cases, changing the dissipa-321

tion mechanism may induce specific instability modes, like322

boundary layer modes due to viscous dissipation, however323

such effects are expected to be non generic. Extension and324

generalizations of our approach can be foreseen for other325

geometries (on the sphere), for more comprehensive quasi-326

geostrophic models of atmosphere jets, and for classes of327

flows dominated by a strong mean jet, for instance in some328

instances of boundary layer theory.329
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