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Dense visual mapping of large scale environments
for real-time localisation

Maxime Meilland, Andrew Ian Comport and Patrick Rives

Abstract— This paper presents a method and apparatus for
building dense visual maps of large scale 3D environments for
real-time localisation and navigation. A spherical ego-centric
representation of the environment is proposed that is able
to reproduce photo-realistic omnidirectional views of captured
environments. This representation is novel in that it is composed
of a graph of locally accurate augmented spherical panoramas
that allows to generate varying viewpoints through novel view
synthesis. The spheres are related by a graph of 6dof poses
which are estimated through multi-view spherical registration.
To acquire these models, a multi-baseline acquisition system has
been designed and built which is based on an outward facing
ring of cameras with diverging views. This configuration allows
to capture high resolution spherical images of the environment
and compute a dense depth map through a wide baseline dense
correspondence algorithm. A calibration procedure is developed
for an outward facing camera ring that imposes a loop closing
constraint, in order to obtain a consistent set of extrinsic
parameters. This spherical sensor is shown to acquire compact,
accurate and efficient representations of large environments and
is used for real-time model-based localisation.

I. I NTRODUCTION

Acquiring 3D models of large scale environments is cur-
rently a key issue for a wide range of applications ranging
from interactive personal guidance devices to autonomous
navigation of mobile robots. In these applications it is impor-
tant, not only for human operators but also for autonomous
robots, to maintain a world map that holds a rich set of data
including photometric, geometric and saliency information.
It will be shown in this paper why it is advantageous to define
an ego-centricrepresentation of this information that allows
fast model acquisition whilst maintaining optimal realism
and accuracy.

Clearly, an a-priori 3D model simplifies the localisation
and navigation task since it allows to decouple the structure
and motion estimation problems. Current state of the art
approaches mostly rely on global 3D CAD models [10] that
are based on tools and representations that been developed
mainly for texture mapped virtual reality environments. Un-
fortunately, these representations have difficulty in maintain-
ing true photo-realism and therefore introduce reconstruction
errors and photometric inconsistencies. Furthermore, these
models are complicated to acquire and often resort to heavy
off-line modelling procedures. Whilst efforts are being made
to use sensor acquisition systems that automatically acquire
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these classical virtual 3D models [10], it is suggested in this
paper that they are not sufficient to precisely represent real-
world data. Alternatively, it is proposed to use an ego-centric
model [18] that represents, as close as possible, real sensor
measurements.

A well known ego-centric representation model for camera
sensors is the spherical panorama. Multiple cameras systems
such as in [2] allow construction of high resolution spher-
ical views via image stitching algorithms such as reviewed
in [21]. However, contrary to virtual reality models, these
tools have been developed mainly for qualitative photo-
consistency but they rarely require 3D geometric consistency
of the scene. This is mainly due to the fact that, in most
cases, it is impossible to obtain 3D structure via triangula-
tion of points when there is no or little baseline between
images. Another approach is to use a central catadioptric
omnidirectional camera [20] and warp the image plane onto
a unit sphere using the model given in [9]. Unfortunately,
that kind of sensor has a poor and varying spatial resolution
and therefore is not well adapted to a visual memory of the
environment. Furthermore, these approaches assume a unique
center of projection, however, manufacturing such a system
is still a challenging problem [16].

In order to take advantage of both 3D model based
approaches and photometric panoramas it is possible to
augmentthe spherical image with a depth image containing
a range for each pixel. An augmented sphere then allows
to perform novel view synthesis [1], [7], [18] in a local
domain in all directions. There are many approaches for
obtaining depth information ranging from laser range finders
to structured light and stereo matching with triangulation.
Laser approaches [8], [6] are expensive and cumbersome and
structured light RGB-D systems [11] are short range and
only work indoors. In [17] a spherical camera is built by
combining two fish-eye lenses with a mirror to project both
images onto a unique sensor. Likewise, in [5], stereo vision
tracking is performed using four omnidirectional mirrors.
This type of sensor has a delicate calibration process and
again has uneven spatial resolution. A recent work, [14] uses
two rotating line scan cameras to acquire image spheres at
different heights. Stereo is then achieved via dense matching
between the spheres, however, this system is not adapted to
a vehicle in motion due to the slow acquisition frequency
of the rotating cameras. Multi-camera systems, however, can
perform dense stereo-matching [12], which can be performed
outdoor and indoor, which provides high spatial resolution,
corresponding depth and photometric data.

These ego-centric models are, however, local and do



not provide a global representation of the environment.
This problem can be solved by considering multiple aug-
mented spheres connected by agraph of poses that are
positioned optimally in the environment. Simple spherical
images positioned in the environment are already found
in commercial applications such as Google Street View,
and more recently [15]. The easiest method for positioning
spheres would be via a global positioning system (GPS),
however, in urban environments this system fails easily
due to satellite occlusion. Alternatively, the robot-centered
representation introduced in [18] positions augmented views
globally within a precise topological graph via accurate
stereo visual odometry [7] and does not require any external
sensor. The present paper extends this preliminary work.

A. Contribution

In this paper, a custom made multi-camera spherical imag-
ing system is presented that deviates from classic spherical
sensor in that there is a baseline between each camera. The
new system is designed to maximise the overlap among six
wide field of view cameras equally placed on an hexagon.
A technique is provided for calibrating this outward looking
ring of stereo cameras with a loop closing constraint. This
system is then shown to simultaneously extract a dense
depth-map between all stereo pairs using wide-baseline dense
matching [12]. This dense depth-map is then blended and
mapped onto a unit sphere with 3D geometric constraints.
Spheres are placed optimally within a global graph based on
a robust statistic criteria. The full collection of spheresis
stored in a GIS (Georeferenced Information System), which
is then used during the navigation phase. This ego-centric
visual memory is then shown to be used for real-time robust
localisation with respect to different online visual sensors
(webcam, monocular, stereo). The main advantages of this
spherical representation are :

• An ego-centric representation allows to maintain accurate
local sensor data (i.e. photometric consistency) and only
provides the necessary information (e.g. locally around
navigation path).

• Augmenting photometric spherical panorama’s with dense
depth allows to perform local novel view synthesis.

• A spherical representation provides all local view direc-
tions and therefore allows combination of different kinds
of sensors like perspective cameras, multi-view cameras or
omnidirectional cameras and laser range finders.

• Full-view sensors well condition the observability of 3D
motion [2] which greatly improves robustness.

• Can be made invariant to illumination variation as in [19]

II. REAL-TIME EGO-CENTRIC TRACKING

As mentioned in the introduction, the objective of this
work is to perform real-time tracking using a known envi-
ronment model (see Fig. 1). The essential part of this paper
is therefore divided into two distinct but inter-related aspects:

• Learning - This phase consists in acquiring a 3D model
of the environment and representing this information in
an optimal manner for ”on-line” localisation. It has been

chosen to develop a learning approach that is alsoefficient
so that, firstly, in a practical sense environments can be
acquired rapidly and secondly, so that the approach may be
used for online mapping in the near future. Essentially this
involves filming, tracking and mapping the 3D environment
(≈1Hz depending on the approach). See Section III for the
local ego-centric 3D model and its acquisition system along
with Section IV for the global graph learning.

• Online tracking - This real-time phase involves estimating
the 6 d.o.f. pose of one or several camera(s) at frame-rate
(here 45 Hz). This phase must take into account efficient
optimisation techniques that require a maximum amount of
computation to be performed ”off-line” during the learning
phase. See Section V-B.

III. SPHERICAL EGO-CENTERED MODEL

An ego-centric 3D model of the environment is defined by
a graphG = {S1, . . . ,Sn;x1, . . . ,xm} whereSi are aug-
mented spheresthat are connected by a minimal parametri-
sationx of each pose as:

T(x) = e[x]∧ =

[
R t

0 1

]
∈ SE(3), (1)

wherexab ∈ R
6 is the 6 d.o.f. twist between the spherea

andb (see Fig. 1) defined as:

x =

∫ 1

0

(ω, υ)dt ∈ se(3), (2)

which is the integral of a constant velocity twist which
produces a poseT. The operator[.]∧ is defined as follows:

[x]∧ =

[
[ω]× υ

0 0

]
, (3)

where[.]× represents the skew symmetric matrix operator.

A. Augmented visual sphere

Each sphere is defined by the setS = {Is, Ps,Zs,Ws}
where

- Is is the photometric spherical image. This image is
obtained from the custom camera system presented in
Section III-B by warping multiple images onto the sphere
as will be defined in Subsection III-C.

- Ps = {q1, . . . ,qn} is a set of evenly spaced points on the
unit sphere whereq ∈ S2. These points have been sampled
uniformly on the sphere as in [18].

- Zs are the depths associated with each pixel which have
been obtained from dense stereo matching as will be
detailed in Section III-E. The 3D point is subsequently
defined in the sphere asP = (q,Z).

- Ws is a saliency image which contains knowledge of good
pixels to use for tracking applications. It is obtained by
analysing the Jacobian of the warping function so that the
pixels are ordered from best to worst in terms of how they
condition the pose estimation problem (the interested reader
can see [18] for detail).
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Fig. 1. Ego-centric representation: graph of spheresG and augmented
spheres containing grey levels and their corresponding depths projected on
a unit sphereS2. A : an agent (robot or person) is shown connected to the
graph.

B. Spherical acquisition system

Following on from the introduction, no commercial cam-
era systems are yet available to acquire spherical panora-
mas with depth information that perform both outdoor and
indoor whilst providing a high spatial resolution map of
the environment. In that respect a new acquisition system
has been designed that purposely maintains a significant
baseline betweenmultiple divergent cameras. The idea being
to equally place the cameras in a ring configuration (see
Fig. 5(a)). The advantage of this design is that the baseline
between each pair of cameras allows to compute dense
correspondences and their corresponding depth maps. One
particularity that makes this system more original is the fact
that the cameras are in a divergent configuration. Indeed
most multi-baseline camera systems are configured so as
to observe the same point(s) in 3D space. This new con-
figuration therefore requires additional modelling to account
for diverging views and loop closing constraints around the
camera ring.

The particular implementation of the system constructed
for this purpose is composed of six high resolution cameras
(1292× 964), each mounted with a wide angle lens (125o)
and configured in a hexagon. The use of wide field-of-view
sensors ensures near-complete overlap between each pair of
cameras and almost covers the full 360 degrees of the sphere.

C. Image warping: Novel view synthesis

To create a spherical panorama from a multi-baseline
camera system it is necessary to warp and blend each
camera’s image onto the sphere (see Fig. 5(b)). For the
purpose of this subsection, suppose that both intrinsic and
extrinsic camera calibration has been achieved and that dense
depth information has been determined (for each pixel). With
this information, image warping (or novel view synthesis [1])
is achievable.

Whilst the warping function is presented here to warp
each camera’s image onto a spherical panorama, it will be
defined in a general manner since it is also a key component
for Section IV in defining the optimisation criteria for off-
line pose estimation along with Section V-B for real-time
tracking.
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Fig. 2. The spherical projection of a 3D pointP on a sphere.R, t is the
rigid transformation between the camera and the sphere.

The geometric part of the warping functionw(.), is defined
to represent the transfer of 3D points of an augmented sphere
wrt. a current generic sensor (see Fig. 2) such that:

IS(Ps) = I
(
w(T(x), ξ; Ps,Zs)

)
, (4)

whereI are the current sensor intensities measurement,ξ

is the intrinsic parameter vector (based on the sensor type,
e.g. perspective, catadioptric, spherical etc...) andT(x) is
the rigid pose transformation (1) between sensors (extrinsic
parameters). Since there is rarely a one-to-one pixel corre-
spondence inI(p), corresponding intensities are interpolated
at pixel locationp (i.e. by bilinear interpolation). Since
two cameras measure the same intensity (due to overlap)
their values are fused using Laplacian blending [4]. This
compensates exposure differences between cameras.

For a spherical camera the warping function is defined as:

q =
RP + t

‖RP + t‖
∈ S

2. (5)

D. Closed-loop Calibration of Diverging Cameras

As mentioned previously, a multi-baseline divergent cam-
era system presents certain particularities in terms of intrinsic
and extrinsic calibration as well as in terms of divergent
views. In Fig. 3 it can be seen that even if the system contains
multiple cameras, only pairs of cameras observe the same
parts of the scene which means that the camera system is
essentially composed of several stereo-pairs.

Since the calibration patterns are only viewed by two
cameras simultaneously, standard multi-camera calibration
techniques such as [22] are unfortunately not suitable. It
is, however, possible to successively compute the extrin-
sic parameters of each pair of cameras, but in this case
calibration parameters will not be completely consistent
when combining poses around the loop. Therefore, it is
proposed here to define the calibration problem with a global
loop closing constraint that allows to further constrain the
extrinsic parameters of the system so that the poses around
the loop remain consistent.

The new extrinsic calibration procedure is modelled so
as to simultaneously estimate pattern posesx

p
i and camera

posesxc
i with respect to a central coordinate system, where

the pose vectors are defined in equation (2). The unknown
state of the system is therefore defined as:

xΣ = (xc
1, ...,x

c
M ,xp

1, ...,x
p
N )

⊤ (6)
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Fig. 3. Spherical system calibration.xc are the camera pose parameters
andx

p
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are theN patterns pose parameters.

with N the number of calibration patterns observed over
multiple snapshots andM = 6 is the number of cameras.

The global optimisation criteria is then defined (with abuse
of notation) as the error between a vector of warped pattern’s
pointsw(Pp) and a vector of matching points in the image
Pm:

e(i, j) = Pm − w
(
T(xc

i )T(xp
j ), ξi; Pp,Zp

)
, (7)

wherei andj are the respective camera number and pattern
number (see Fig 3) andK(ξi) ∈ R

3×3 the intrinsic parame-
ters matrix of camerai. In this case, the warping function (4)
is defined to represent the projection of the points of the
patternj on camerai.

For a perspective camera the warping functionw(.) is
defined such that:

p = K
[

R t
]
P, (8)

where P is the 3D Euclidean point within the calibration
pattern.

Using this error function, it is possible to find an optimal
x̂Σ, by minimizing the re-projection error for each overlap
and each pattern using:

x̂Σ = argmin
xΣ

6∑

i=1




N∑

j=1

‖e(i, j)‖2.η(i, j)



 (9)

η(i, j) =

{
1 if pattern j is seen by camera i
0 otherwise

Iteratively minimizing the cost function (9) allows to esti-
mate each camera’s posexc

i while respecting the loop closing
constraint. In order to avoid local minima, the optimisation
problem is initialised with stereo calibration and the intrinsic
parametersξk are not recomputed since locally they are
already estimated accurately.

The calibration results of the system are shown on
Fig. 5(b). It can be seen that if the extrinsic parameters
are estimated independently, the error is accumulated (red
positions) from the camera 1 to camera 6. By estimating the
parameters in a global optimization, the loop is closed (blue
positions). As a practical note, due to the scale of the system

Fig. 4. Rectification of two divergent stereo images.Top: Un-rectified left
and right images.Bottom: Rectified left and right images.

it is complicated to construct a single rigid 3D calibration
pattern which surrounds all the cameras simultaneously such
as [17]. Here, only a classical checker-board pattern, which
was dimensioned to cover large parts of the image, has been
used so as to constrain different depths.

E. Dense correspondence

In order to construct high resolution spherical images
(approx. 4.5 million pixels) that are augmented with depth,
it is necessary to perform dense matching. Although dense
matching is not the aim of this paper, several difficulties were
encountered due to the divergent wide-baseline acquisition
system which has required a careful choice of algorithm
and has highlighted potential problems. Firstly, classic dense
matching across diverging views is a non-trivial problem
due to the significant difference in resolution of the scene
between two cameras. Secondly wide baseline stereo cameras
allow to well constrain far off objects, however, they also
require searching much larger intervals on the epipolar line.

In the system presented here, each camera’s image half
overlaps with neighbouring left and right cameras respec-
tively. The major difficulty in this configuration is due to
the hexagonal configuration, the angle between optical axes
of two adjacent cameras are clearly divergent (60o) and
the baselines are (65cm) wide. This creates a significant
difference in base image resolution of the scene and requires
a large disparity search range (See Fig. 4).

In order to perform dense matching, each stereo pair is
first rectified. The important advantage of rectification is
that computing stereo correspondences is reduced to a 1-
D search problem along the horizontal raster lines of the
rectified images. The disadvantage being that the difference
in resolution may produce approximation errors in the rec-
tified image. Even with rectified images, the differences in
resolution (due to perspective distortions) and illumination
(due to shading correction) between two images produce
erroneous dense matches with standard techniques. In this
paper Semi-Global Block Matching [12] was used.

IV. GLOBAL SPHERE POSITIONING

Now that the elementary augmented spheres have been de-
fined, this next section is dedicated to defining the complete



graph (defined in Section III) that makes up a 3D model. This
will involve introducing a model for accurately estimating
the edges (poses) that link the vertices together and also on
how to optimally place the vertices (spheres) within the 3D
environment.

A. Spherical visual odometry

To accurately recover the position of the spheres with
respect to one-another, a 6 d.o.f. multi-camera localisation
model is proposed based on accurate dense localisation [7],
[18]. ConsideringIS , an augmented sphere defined in Sec-
tion III-B, the objective is now to compute the pose between
a reference sphere and the next one. The localisation problem
(also known as visual odometry) is then to estimate the
incremental poseT(x̃). Since this is a local optimisation
approach it is assumed that the camera framerate is high
(30Hz) and that interframe displacements are small (≤ 2m),
meaning a maximum speed of∼ 200km/h.

It is noted here that dense visual odometry is computa-
tionally efficient and locally very accurate [7] so it has been
deemed unnecessary to perform costly bundle adjustment
on local visibility windows (although this slightly improves
the estimate it makes timely scene acquisition practically
unfeasible).

Using an iterative optimization scheme as given in the
Appendix VIII-A, the estimate is updated at each step by an
homogeneous transformation:

T̂← T̂T(x), (10)

whereT̂ is the current pose estimate with respect to the clos-
est reference sphere which is determined from the previous
iterations up to timet− 1.

The error measure between a reference sphere and a
spherical multi-view system is then defined as follows:

ei = ρ
(
Ii

(
w

(
T(xc

i )T̂T(x); Ps,Zs

))
− Is(Ps,Zs)

)
,

(11)
where i = 1 . . . 6 is the camera index,w(.) is the warping
function of eq. (4),xc

i are the corresponding extrinsic camera
parameters obtained in III-D and the intrinsic parameters are
assumed implicit, andρ is a robust M-estimator given in [13]
where the robust statistical weight is defined by the Huber
weighting function.

B. Spherical node placement

Indeed, the vertices should be carefully placed in the world
so as to represent the environment with little redundancy.
One preliminary technique to achieve this goal locally is to
observe criteria between an initially selected reference sphere
and surrounding spheres. In practice, the trajectory of the
acquisition system along a sequence is computed by inte-
grating elementary displacements estimated from successive
spherical registration. The strategy used here is to maintain
as long as possible the reference sphere to minimize the drift
introduced when a new reference sphere is taken. Therefore

(a)

C1 C2
C3

C4C5

C6

(b)

Fig. 5. (a): Spherical system mounted on a Cycab robot. (b): Warping
of images onto the sphere. For calibration, in red, the camera poses
successively estimated between each overlap, we can see thedrift when
loop closing is not performed. In blue the cameras poses estimated with the
loop closing constraint.

a new reference sphere is placed according to the Median
Absolute Deviation (MAD) and the norm of the error:

λ1 < Median(e−Median(e)), λ2 < |e| (12)

wheree is the error defined in (11). A new reference sphere
is therefore placed when the MAD measure of the error is
greater than a defined threshold, or when the weighted error
norm is too large. Since the registration technique is direct,
local precision on the topological graph is very good (around
1% drift), which is important for online navigation.

V. RESULTS

A. Map Building

A 7364 × 6 image sequence was acquired over a1500
meter long trajectory, using the custom spherical acquisition
system mounted on a mobile robot 5(a). The environment
contains corridors, near and far buildings, vegetation, parked
cars, straight sections, corners and several hills (demonstrat-
ing the 6 d.o.f. trajectory), which well represent most aspects
of an urban environment. Sphere construction and global
positioning was computed off-line at around 1Hz.

Since the positioning method is based on visual odometry,
small errors may be integrated leading to inconsistency in
the global map. A Loop closure detection was performed
and a global pose optimisation was used to correct the drift.
Fig. 6(c) shows the final graph, composed of 310 augmented
spheres, that cover the entire trajectory and well represent the
robot path. Since the spheres are positioned using a dense
direct method, the graph’s edges are accurately estimated,
making navigation between nodes continuous which allows
interactive navigation within a 3D world by an end-user (see
Fig. 6(b)).

B. Real-time tracking and localisation

It is considered that during online navigation, a current
image I, captured by a generic camera (e.g. monocular,
stereo or omnidirectional) and an initial guesŝT of the
current camera position are available. This initial guess
permits the extraction of the closest reference sphereS from
the graph. Since a sphere provides all local information
necessary for 6 dof. localisation, an accurate estimation of the



pose is obtained by an efficient direct minimization, related
to (11):

e = ρ
(
I

(
w

(
T̂T(x); Ps,Zs,Ws

))
−Is(Ps,Zs,Ws)

)
,

(13)
where Ws is the saliency image [18] which selects only
informative pixels for warping, which speeds up the al-
gorithm without degrading observability and accuracy. The
error function e is minimized using an iterative (IRLS)
non-linear optimization detailed in Appendix VIII-A. A
maximum amount of pre-computation is performed offline
during the construction of the spheres (e.g. Jacobian matrices
and saliency maps) allowing the online algorithm to be
computationally efficient, which allows the camera pose to
be estimated at frame rate.

To farther improve performance, a coarse-to-fine opti-
mization strategy is employed by using multi-resolution
spheres (e.g.. constructed by Gaussian filtering and sub-
sampling [4]). The minimization begins at the lowest res-
olution and the result is used to initialize the next level
repeatedly until the highest resolution is reached. This greatly
improves the convergence domain/speed and some local
minima can be avoided.

In order to choose the closest sphere for tracking within
the graph, it necessary to define a metric. Contrary to
non-spherical approaches, a sphere provides all viewing
directions and therefore it is not necessary to consider the
rotational distance (to ensure image overlap). The closest
sphere is subsequently determined uniquely by translational
distance. In particular this avoids choosing a reference sphere
that has similar rotation but large translational difference
which induces self occlusions of buildings and also differ-
ences in image resolution caused by distance (which affects
direct registration methods).

The online algorithm was tested and validated on a subset
of the full spherical graph containing 12 spheres. A real-time
implementation has been realized in C++. Using only salient
pixels, the online localisation runs at45Hz on an Intel Core
2 Duo laptop. A vehicle equipped with a monocular camera
of 800 × 600 pixels in size with a frequency of45Hz, was
moved within the neighbourhood of the graph.

The results of Fig. 6(a) show an overview of the estimated
trajectory in green, (the black part (a) indicates a forward-
reverse movement of the vehicle), with some camera poses.
The camera starting point is(X=−0.4, Y =−0.1, Z=0.8)
and the vehicle begins to move in positive Z direction
until the position (X=−1.8, Y =0.6, Z=20.5). Then the
robot is moved backward (black trajectory) until position
(X=3.3, Y =0.6, Z=18.8) to return to the initial position by
reversing.

The proposed method was able to accurately track the
camera at video frame rate, for a vehicle navigating in
different directions, within a local region of the graph, which
emphasizes the advantages of a spherical ego-centered rep-
resentation1. Recent results have shown that this technique

1A high quality video is available at:
http://www-sop.inria.fr/arobas/videos/Globeye/DenseVisualMappingHQ.mp4

can be made robust to illumination changes [19].

VI. CONCLUSIONS

The approach described in this paper allows reconstructing
dense visual maps of large scale 3D environments. It has
been shown that this representation is capable of reproducing
photometrically accurate views locally around a learnt graph.
Reconstructed spheres acquired along a trajectory are used
as input for a robust dense spherical tracking algorithm
which estimates the spheres’ positions. Through the design
of a new acquisition system it has been shown that it
is possible to acquire these maps efficiently and a model
has been provided for computing the augmented spherical
representation. Furthermore, a calibration procedure hasbeen
developed that accounts for loop closure on the camera ring.

In perspective, since the method proposed in this paper
deviates from classical 3D texture mapped models as well
as classical panoramic spherical acquisition systems, many
traditional tools are inadequate and need to be redesigned for
the current system. Future effort will be aimed at improving
divergent wide baseline matching (with large resolution dif-
ferences between images) and taking into account illumina-
tion variation with differing aperture sizes between cameras
around the camera ring.
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VIII. A PPENDIX

A. Non-linear optimisation

The error functions for the calibration (7), the off-line
graph learning (11) and the real-time tracking (13) are all
minimized using a iteratively re-weighted least squared non-
linear minimization:

O(x) = argmin
x

6∑

i=1

(ei)
2
, (14)

by ∇O(x)|x=x̃ = 0, where∇ is the gradient operator with
respect to the unknownx defined in equation (2) assuming
a global minimum is reached atx = x̃.

An inverse compositional algorithm is used [3], which
allows to pre-compute most of the minimization parts di-
rectly on the reference image. In this case the unknownx is
iteratively updated using a Levenberg-Marquart optimization
procedure:

x = −λ(Q− µdiag(Q))−1JT De, (15)

where T is the transposition operator,Q = JT DJ is the
robust Gauss-Newton Hessian approximation,µ and λ are
scalar gains to ensure a fast exponential error decrease.J

is the warping Jacobian matrix of dimensionn × 6. D is a
diagonal weighting matrix of dimensionn × n obtained by
M-estimation [13] which rejects outliers such as occlusions.
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Fig. 6. (a) Real-time tracking of a monocular camera navigating within a portion of the graph containing 12 spheres (bluedots). The estimated trajectory
is shown in green (the black part of the trajectory between two discontinuities is due to a forward-reverse movement of the mobile tracking system).
Several camera poses are plotted (optical axis in blue) to show the orientation of the positioning system at various locations. (b) The top image shows a
snapshot of our real-time interactive 3D OpenGL rendering platform which exploits the augmented spherical memory. It is possible to navigate freely in
the virtual world with photo-realistic view synthesis. In both images, the red spheres indicate the 3D positions of the reference spheres in the world. The
bottom image shows an aerial view of the mapped region and a real-time virtual camera trajectory is plotted in blue. (c) A 1.5 km reconstructed trajectory,
after loop closures and graph optimization, with 310 reference spheres (one sphere out of two is plotted). Some key images are also displayed.
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