N
N

N

HAL

open science

Dense visual mapping of large scale environments for
real-time localisation

Maxime Meilland, Andrew I. Comport, Patrick Rives

» To cite this version:

Maxime Meilland, Andrew I. Comport, Patrick Rives.
ronments for real-time localisation. IEEE/RSJ International Conference on Intelligent Robots and

System, 2011, San Francisco, California, United States. hal-01357369

HAL Id: hal-01357369
https://hal.science/hal-01357369
Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Dense visual mapping of large scale envi-


https://hal.science/hal-01357369
https://hal.archives-ouvertes.fr

Dense visual mapping of large scale environments
for real-time localisation

Maxime Meilland, Andrew lan Comport and Patrick Rives

Abstract— This paper presents a method and apparatus for these classical virtual 3D models [10], it is suggested ig th
building dense visual maps of large scale 3D environmentsifo paper that they are not sufficient to precisely represertt rea
real-time localisation and navigation. A spherical ego-astric world data. Alternatively, it is proposed to use an ego-gent

representation of the environment is proposed that is able del 1181 that t | ibl |
to reproduce photo-realistic omnidirectional views of capured model [18] that represents, as close as possible, real isenso

environments. This representation is novel in that it is corposed ~Measurements. _ _
of a graph of locally accurate augmented spherical panoramas A well known ego-centric representation model for camera

that allows to generate varying viewpoints through novel ww  sensors is the spherical panorama. Multiple cameras sgstem
synthesis. The spheres are related by a graph of 6dof poses g ;e a5 in [2] allow construction of high resolution spher-

which are estimated through multi-view spherical registraion. . . - o . .
To acquire these models, a multi-baseline acquisition syast has ical views via image stitching algorithms such as reviewed

been designed and built which is based on an outward facing in [21]. However, contrary to virtual reality models, these
ring of cameras with diverging views. This configuration albws tools have been developed mainly for qualitative photo-
to capture high resolution spherical images of the envi(onmnt consistency but they rarely require 3D geometric conststen

and compute a dense depth map through a wide baseline dense of the scene. This is mainly due to the fact that, in most

correspondence algorithm. A calibration procedure is devioped L . - L
for an outward facing camera ring that imposes a loop closing gases, it ',S impossible to o_btaln 3D ;tructure \_"a triangula
constraint, in order to obtain a consistent set of extrinsic tion of points when there is no or little baseline between
parameters. This spherical sensor is shown to acquire compss  images. Another approach is to use a central catadioptric
accurate and efficient representations of large environmeis and  omnidirectional camera [20] and warp the image plane onto
is used for real-time model-based localisation. a unit sphere using the model given in [9]. Unfortunately,
|. INTRODUCTION that kind of sensor has a poor and varying spatial resolution
i, ) , and therefore is not well adapted to a visual memory of the
Acquiring 3D models of large scale environments is CUTenvironment. Furthermore, these approaches assume auniqu

rently_a key ISsue for a W'de_ range of Qppl|cat|ons rangiNBenter of projection, however, manufacturing such a system
from interactive personal guidance devices to autonomm-r?StiII a challenging problem [16]

navigation of mobile robots. In these applications it is anp In order to take advantage of both 3D model based

b o id hat hold ich fd l'(La?‘pproaches and photometric panoramas it is possible to
robots, to maintain a world map that holds a rich set o at“gi’ugmemthe spherical image with a depth image containing

incl_uding photo_metr_ic, geometric_ and saliency informatiq a range for each pixel. An augmented sphere then allows
It will be shown in this paper why it is advantageous to def|n§O perform novel view synthesis [1], [7], [18] in a local

an ego-centricrepresentation of this information that aIIowsOIOmain in all directions. There are many approaches for

fast model acquisition whilst maintaining optimal reahsmObtaining depth information ranging from laser range fisder
and accuracy.

Clearl iori 3D model simolifies the localisati to structured light and stereo matching with triangulation
early, an a-prior model simplines the localisation) ,qq approaches [8], [6] are expensive and cumbersome and
and navigation t.ask since it allows to decouple the strectu;. . red light RGB-D systems [11] are short range and
and motion estimation problems. Current state of the ay ly work indoors. In [17] a spherical camera is built by

approaches mostly rely on global 3D CAD models [10] tha&o bining two fish-eye lenses with a mirror to project both
are based on tools and representations that been develo a1ges onto a unique sensor. Likewise, in [5], stereo vision

mainly for texture mapped virtual reality enwronments_.-untracking is performed using four omnidirectional mirrors.

fortunately, these representations have difficulty in rzain This type of sensor has a delicate calibration process and

ing true photo-realism_an_d thergfore ‘T‘”Oduce reconstmc again has uneven spatial resolution. A recent work, [14$ use
errors and photor_netrlc lncon3|s_tenC|es. Furthermoresethetwo rotating line scan cameras to acquire image spheres at
moqlels are co_mphcated to acquire and often resort to heayterent heights. Stereo is then achieved via dense majchi
off-line modelling prpt_:gdures. Whilst efforts are Pe'”gd“a petween the spheres, however, this system is not adapted to
to use sensor acquisition systems that automatically BEQUL \ehicle in motion due to the slow acquisition frequency
M. Meiland and P. Rives are with INRIA Sophia Antipolis of the rotating cameras. Multi-camera systems, however, ca
Méditerranée, 2004 Route des Lucioles BP 93, Sophia AligipFrance, perform dense stereo-matching [12], which can be performed

{nane. surnane}@nria.fr ~ outdoor and indoor, which provides high spatial resolution
A.l. Comport is with CNRS, I13S Laboratory, Université Ni&ophia

Antipolis, 2000 Route des Lucioles BP 121, Sophia Antipoksance, CorreSpond'ng depth and phOtomet”C data.
conmport @ 3s. uni ce. fr These ego-centric models are, however, local and do



not provide a global representation of the environment.chosen to develop a learning approach that is affoient
This problem can be solved by considering multiple aug-so that, firstly, in a practical sense environments can be
mented spheres connected bygeaph of poses that are acquired rapidly and secondly, so that the approach may be
positioned optimally in the environment. Simple spherical used for online mapping in the near future. Essentially this
images positioned in the environment are already foundnvolves filming, tracking and mapping the 3D environment
in commercial applications such as Google Street View,(=1Hz depending on the approach). See Section Il for the
and more recently [15]. The easiest method for positioninglocal ego-centric 3D model and its acquisition system along
spheres would be via a global positioning system (GPS)with Section IV for the global graph learning.

however, in urban environments this system fails easily Online tracking - This real-time phase involves estimating
due to satellite occlusion. Alternatively, the robot-egetl  the 6 d.o.f. pose of one or several camera(s) at frame-rate
representation introduced in [18] positions augmentedwie (here 45 Hz). This phase must take into account efficient
globally within a precise topological graph via accurate optimisation techniques that require a maximum amount of
stereo visual odometry [7] and does not require any externatomputation to be performed "off-line” during the learning
sensor. The present paper extends this preliminary work. phase. See Section V-B.

A. Contribution I1l. SPHERICAL EGO-CENTERED MODEL
In this paper, a custom made multi-camera spherical imag-
e e o e AR gapng — (S, ..., | WSS, are g
. : - " mented spherethat are connected by a minimal parametri-
new system is designed to maximise the overlap among six . .
) d . sationx of each pose as:
wide field of view cameras equally placed on an hexagon.
A technique is provided for calibrating this outward loadin
ring of stereo cameras with a loop closing constraint. This
system is then shown to simultaneously extract a dense
depth-map between all stereo pairs using wide-baselingedervherex®® € RS is the 6 d.o.f. twist between the sphere
matching [12]. This dense depth-map is then blended ar@hdb (see Fig. 1) defined as:
mapped onto a unit sphere with 3D geometric constraints. 1
Spheres are placed optimally within a global graph based on x = / (w,v)dt € se(3), (2)
a robust statistic criteria. The full collection of spheiiss 0
stored in a GIS (Georeferenced Information System), whiclwhich is the integral of a constant velocity twist which
is then used during the navigation phase. This ego-centiicoduces a pos&. The operatof.], is defined as follows:
visual memory is then shown to be used for real-time robust
localisation with respect to different online visual seisso X]n = [ Wl v ] ’ (3)
(webcam, monocular, stereo). The main advantages of this 0 0

An ego-centric 3D model of the environment is defined by

T(x) = e = [ o } € SE(3), (1)

spherical representation are : o wherel.] represents the skew symmetric matrix operator.
« An ego-centric representation allows to maintain accurate

local sensor data (i.e. photometric consistency) and onk. Augmented visual sphere
provides the necessary information (e.g. locally around g_., sphere is defined by the $et- {Z,, P, Z., W}
navigation path). where s Fsy dis, W

« Augmenting photometric spherical panorama’s with dense . . . . o :
depth allows to perform local novel view synthesis. - Z, is the photometric spherical image. This image is

« A spherical representation provides all local view direc-Obta',ned from the c_ustom camera system presented in
tions and therefore allows combination of different kinds Sectl_on Ii-8 by warping mult_|ple images onto the sphere
of sensors like perspective cameras, multi-view cameras oS Will be defined in Subsection 1I-C. _
omnidirectional cameras and laser range finders. - Ps={dn,...,An}iS azset of evenly spaced points on the

« Full-view sensors well condition the observability of 3D Unit sphere wherg € 5°. These points have been sampled
motion [2] which greatly improves robustness. uniformly on the sphere as in [18_]' . .

« Can be made invariant to illumination variation as in [19] Z are thg depths associated with each p|?<el Whlch.have

been obtained from dense stereo matching as will be
Il. REAL-TIME EGO-CENTRIC TRACKING detailed in Section IlI-E. The 3D point is subsequently

As mentioned in the introduction, the objective of this defined in the sphere 8 = (q, Z).
work is to perform real-time tracking using a known envi- W is a saliency image which contains knowledge of good
ronment model (see Fig. 1). The essential part of this papePixels to use for tracking applications. It is obtained by
is therefore divided into two distinct but inter-relateghasts: ~ analysing the Jacobian of the warping function so that the
« Learning - This phase consists in acquiring a 3D model PIX€lS are ordered from best to worst in terms of how they
of the environment and representing this information in condition the pose estimation problem (the interestedeead

an optimal manner for "on-line” localisation. It has been ¢an see [18] for detail).



Fig. 2. The spherical projection of a 3D poiRt on a sphereR, t is the
7 rigid transformation between the camera and the sphere.
S

Fig. 1. Ego-centric representation: graph of spheayeand augmented ) ) ) ) )
spheres containing grey levels and their correspondinghdemojected on The geometric part of the warping functiar{.), is defined

a uni}: sphereS2. A : an agent (robot or person) is shown connected to thefO represent the transfer of 3D points of an augmented sphere
raph. . .
grap wrt. a current generic sensor (see Fig. 2) such that:

IS(PS) ZI(U}(T(X),S;'PS,ZS)), (4)

Following on from the introduction, no commercial Cam_WhereI are the current sensor intensities measurengnt,

era systems are yet available to acquire spherical panoff-the intrinsic parameter vector (based on the sensor type,
mas with depth information that perform both outdoor an§-9- Perspective, catadioptric, spherical etc...) dffat) is
indoor whilst providing a high spatial resolution map ofthe rigid pose t.ransformau_on (1) between sensors (extrins
the environment. In that respect a new acquisition systeRframeters). Since there is rarely a one-to-one pixel corre
has been designed that purposely maintains a significationdence it (p), corresponding intensities are interpolated
baseline betweemultiple divergent cameradhe idea being @t Pixel locationp (i.e. by bilinear interpolation). Since

to equally place the cameras in a ring configuration (s¢i¥/© cameras measure the same intensity (due to overlap)
Fig. 5(a)). The advantage of this design is that the baselifiBeir values are fused using Laplacian blending [4]. This
between each pair of cameras allows to compute denS8MPensates exposure differences between cameras.
correspondences and their corresponding depth maps. oné&ora spherical camera the warping function is defined as:
particularity that makes this system more original is the fa ~ RP+t
that the cameras are in a divergent configuration. Indeed 1= |RP + t| <
most multi-baseline camera systems are configured so as

to observe the same point(s) in 3D space. This new cof- Closed-loop Calibration of Diverging Cameras

figuration therefore requires additional modelling to agto As mentioned previous|y, a multi-baseline divergent cam-
for diverging views and loop closing constraints around thgra system presents certain particularities in terms dgfisit
camera ring. and extrinsic calibration as well as in terms of divergent
The particular implementation of the system constructegiews. In Fig. 3 it can be seen that even if the system contains
for this purpose is composed of six high resolution camerafuitiple cameras, only pairs of cameras observe the same
(1292 x 964), each mounted with a wide angle len=%°)  parts of the scene which means that the camera system is
and configured in a hexagon. The use of wide field-of-viewssentially composed of several stereo-pairs.
sensors ensures near-complete overlap between each pair afince the calibration patterns are only viewed by two
cameras and almost covers the full 360 degrees of the sphatgmeras simultaneously, standard multi-camera caldrati
techniques such as [22] are unfortunately not suitable. It
. . . is, however, possible to successively compute the extrin-
To create a s_ph(_encal panorama from a multi-basell c parameters of each pair of cameras, but in this case
camera system It 1s necessary to warp and blend €aiibration parameters will not be completely consistent
camera’s image onto the sphere (see Fig. 5(b)). For ty en combining poses around the loop. Therefore, it is

putrpos_e of this sullaiec;[!on,hsupbpose thr?.t bo(;h mdtrt'ﬂzgda oposed here to define the calibration problem with a global
extrinsic camera calibration has been achieved an € loop closing constraint that allows to further constraie th

fh‘?pt_h f|nforrrg_at|op has been (_jetermmed ffo_r each Ft)r']xeI)hV\ll'textrinsic parameters of the system so that the poses around
is information, image warping (or novel view synthesip [ the loop remain consistent.

IS ﬁﬁ:evagle' ing f S dh The new extrinsic calibration procedure is modelled so
h st the ,w:_;lrpmg ur:ct|on 'i p_reslente ere t? Wﬁ‘r%s to simultaneously estimate pattern pogsgsand camera
each cameras image onto a spherical panorama, it wi osesx$ with respect to a central coordinate system, where

?Ieﬂgedt!n alg\;/eneraalfmgnnter: Smc? 't.'s ?ISO allt<ey c?mp(;fn Hte pose vectors are defined in equation (2). The unknown
or Section 1v-in defining the optimisation criteria 1or Ol 00 f the system is therefore defined as:

line pose estimation along with Section V-B for real-time -
tracking. xZ = (x5, X5, X0, X)) (6)

B. Spherical acquisition system

S2. (5)

C. Image warping: Novel view synthesis



Fig. 4. Rectification of two divergent stereo imagésp Un-rectified left

Fig. 3. Spherical system calibratior® are the camera pose parametersand right imagesBottom Rectified left and right images.
and xﬁ’v are theN patterns pose parameters.

it is complicated to construct a single rigid 3D calibration
with N the number of calibration patterns observed ovepattern which surrounds all the cameras simultaneously suc
multiple snapshots andli/ = 6 is the number of cameras. as [17]. Here, only a classical checker-board pattern, fvhic
The global optimisation criteria is then defined (with abusaas dimensioned to cover large parts of the image, has been
of notation) as the error between a vector of warped patternised so as to constrain different depths.

pointsw(P,) and a vector of matching points in the image
P E. Dense correspondence

. c In order to construct high resolution spherical images
e(,5) = Pm —w (T(Xi)T(X;))’&; PoZp). () (approx. 4.5 million pixels) gtJhat are augmeﬁted with degth,
wherei andj are the respective camera number and pattefhis necessary to perform dense matching. Although dense
number (see Fig 3) anK (¢;) € R®*3 the intrinsic parame- matching is not the aim of this paper, several difficultiesave
ters matrix of camera In this case, the warping function (4) encountered due to the divergent wide-baseline acquisitio
is defined to represent the projection of the points of theystem which has required a careful choice of algorithm

patternj on camera. and has highlighted potential problems. Firstly, clasgins®
For a perspective camera the warping functiofl) is  matching across diverging views is a non-trivial problem
defined such that: due to the significant difference in resolution of the scene
between two cameras. Secondly wide baseline stereo cameras
p=K[R t]|P, (8)

allow to well constrain far off objects, however, they also
where P is the 3D Euclidean point within the calibration require searching much larger intervals on the epipola: lin
pattern. In the system presented here, each camera’s image half
Using this error function, it is possible to find an optimaloverlaps with neighbouring left and right cameras respec-
%>, by minimizing the re-projection error for each overlaptively. The major difficulty in this configuration is due to
and each pattern using: the hexagonal configuration, the angle between optical axes
of two adjacent cameras are clearly divergeéi°f and
5 . 6 N g the baselines are6fcm) wide. This creates a significant
X = afg;nmz > lle(i, )10 (. 5) ©)  difference in base image resolution of the scene and resjuire
o= = a large disparity search range (See Fig. 4).
) o ) In order to perform dense matching, each stereo pair is
(i, §) = { 1 if pattern j is seen by camera i first rectified. The important advantage of rectification is
0 otherwise that computing stereo correspondences is reduced to a 1-
Iteratively minimizing the cost function (9) allows to esti D search problem along the horizontal raster lines of the
mate each camera’s pogg while respecting the loop closing rectified images. The disadvantage being that the differenc
constraint. In order to avoid local minima, the optimisatio in resolution may produce approximation errors in the rec-
problem is initialised with stereo calibration and theimsic ~ tified image. Even with rectified images, the differences in
parameterst;, are not recomputed since locally they argesolution (due to perspective distortions) and illumiomt
already estimated accurately. (due to shading correction) between two images produce
The calibration results of the system are shown offroneous dense matches with standard techniques. In this
Fig. 5(b). It can be seen that if the extrinsic parametergaper Semi-Global Block Matching [12] was used.
are estimated independently, the error is accumulated (red
positions) from the camera 1 to camera 6. By estimating the IV. GLOBAL SPHERE POSITIONING
parameters in a global optimization, the loop is closedgblu Now that the elementary augmented spheres have been de-
positions). As a practical note, due to the scale of the systefined, this next section is dedicated to defining the complete



graph (defined in Section Ill) that makes up a 3D model. This
will involve introducing a model for accurately estimating
the edges (poses) that link the vertices together and also on
how to optimally place the vertices (spheres) within the 3D
environment.

A. Spherical visual odometry

@

To accurately recover the position of the spheres with
respect to one-another, a 6 d.o.f. multi-camera locadigati Fig. 5. (a): Spherical system mounted on a Cycab robot. (BrpiNly

model is proposed based on accurate dense localisation [?I] images onto the sphere. For calibration, in red, the canmses
tcessively estimated between each overlap, we can sedrithevhen

[18] ConSideringZS_a an augmented sphere defined in SeCrpop closing is not performed. In blue the cameras posemattdl with the
tion 111-B, the objective is now to compute the pose betweemop closing constraint.

a reference sphere and the next one. The localisation pnoble
(also known as visual odometry) is then to estimate the

incremental posél'(x). Since this is a local optimisation 5 ey reference sphere is placed according to the Median

approach it is assumed that the camera framerate is hiﬁ\}Bsqute Deviation (MAD) and the norm of the error:
(30Hz) and that interframe displacements are snwal2fn),

meaning a maximum speed of 200km/h. A1 < Median(e — Median(e)), A2 < e (12)

It is noted here that dense visual odometry is computa- ) ] )
tionally efficient and locally very accurate [7] so it has bee wheree is the error defined in (11). A new reference sphere

deemed unnecessary to perform costly bundle adjustménitherefore placed when the MAD measure of the error is
on local visibility windows (although this slightly impres greater than a defined threshold, or when the weighted error

the estimate it makes timely scene acquisition practicalljo'™ iS too large. Since the registration technique is direc
unfeasible). ocal precision on the topological graph is very good (atbun

Using an iterative optimization scheme as given in thé 70 drift), which is important for online navigation.

Appendix VIII-A, the estimate is updated at each step by an

. V. RESULTS
homogeneous transformation:

A. Map Building

A 7364 x 6 image sequence was acquired ovei50

whereT is the current pose estimate with respect to the clod! eter long trajectory, using the custom spherical acqorsit

o : .~ system mounted on a mobile robot 5(a). The environment
est reference sphere which is determined from the previol : : o .
. : . contains corridors, near and far buildings, vegetatiorkgxh
iterations up to timeg — 1.

Th betw f h q;:ars, straight sections, corners and several hills (detrains
€ error measure between a Telerence spnere an na the 6 d.o.f. trajectory), which well represent most atpe
spherical multi-view system is then defined as follows:

of an urban environment. Sphere construction and global
positioning was computed off-line at around 1Hz.
Since the positioning method is based on visual odometry,

. . . . (1_1) small errors may be integrated leading to inconsistency in
Whergz =1...6 is the camera mdexzp(..) IS thg warping e global map. A Loop closure detection was performed
function of eq. (4,)?(;’: are the correspo_ndmg gxtnnsm Camerdng a global pose optimisation was used to correct the drift.
parameters optgmed in [1I-D and the intrinsic parametees aFig. 6(c) shows the final graph, composed of 310 augmented
assumed implicit, an;d_|s_a robus_t M-gstlmgtor given in [13] spheres, that cover the entire trajectory and well repteken
Wh_ere _the robu_st statistical weight is defined by the Hubq. bot path. Since the spheres are positioned using a dense
weighting function. direct method, the graph’s edges are accurately estimated,
making navigation between nodes continuous which allows
interactive navigation within a 3D world by an end-user (see

Indeed, the vertices should be carefully placed in the worl6ig. 6(0)).

so as to represent the environment with little redundancy.
One preliminary technique to achieve this goal locally is t
observe criteria between an initially selected referepbese It is considered that during online navigation, a current
and surrounding spheres. In practice, the trajectory of thmage Z, captured by a generic camera (e.g. monocular,
acquisition system along a sequence is computed by intstereo or omnidirectional) and an initial gue®s of the
grating elementary displacements estimated from sua@essturrent camera position are available. This initial guess
spherical registration. The strategy used here is to maintapermits the extraction of the closest reference spl§eirem

as long as possible the reference sphere to minimize the dtifie graph. Since a sphere provides all local information
introduced when a new reference sphere is taken. Therefarecessary for 6 dof. localisation, an accurate estimafitimeo

T — TT(x), (10)

e =p (Ii (w (T(xf)’i‘T(X);'PS, Zs)) —Z,(Ps, Zs)) )

B. Spherical node placement

. Real-time tracking and localisation



pose is obtained by an efficient direct minimization, relatecan be made robust to illumination changes [19].

to (11):
VI. CONCLUSIONS

e=r (I (“’ (TT(X)§ P Zs, WS)) ~Z:(Ps, Zs, WS)) ’ The approach described in this paper allows reconstructing
_ _ _ _ (13)  dense visual maps of large scale 3D environments. It has
where W, is the saliency image [18] which selects onlypeen shown that this representation is capable of reproguci
informative pixels for warping, which speeds up the alphotometrically accurate views locally around a learnpbra
gorithm without degrading observability and accuracy. Thikeconstructed spheres acquired along a trajectory are used
error functione is minimized using an iterative (IRLS) as input for a robust dense spherical tracking algorithm
non-linear optimization detailed in Appendix VII-A. A \yhich estimates the spheres’ positions. Through the design
maximum amount of pre-computation is performed offlingys 5 new acquisition system it has been shown that it
during the construction of the spheres (e.g. Jacobian eeatri js possible to acquire these maps efficiently and a model
and saliency maps) allowing the online algorithm to b&gas peen provided for computing the augmented spherical
computationally efficient, which allows the camera pose tgepresentation. Furthermore, a calibration procedurébes
be estimated at frame rate. . developed that accounts for loop closure on the camera ring.
To farther improve performance, a coarse-to-fine opti- | perspective, since the method proposed in this paper
mization strategy is employed by using multi-resolutionyeyiates from classical 3D texture mapped models as well
spheres (e.g.. constructed by Gaussian filtering and SUls classical panoramic spherical acquisition systemsyman
sampling [4]). The minimization begins at the lowest resyagitional tools are inadequate and need to be redesigmed f
olution and the result is used to initialize the next levelhe cyrrent system. Future effort will be aimed at improving
repeatedly until the highest resolution is reached. Thestly  givergent wide baseline matching (with large resolutio di

improves the convergence domain/speed and some 10¢&}ences between images) and taking into account illumina-

minima can be avoided. _ _ tion variation with differing aperture sizes between caaser
In order to choose the closest sphere for tracking withig,qnd the camera ring.

the graph, it necessary to define a metric. Contrary to
non-spherical approaches, a sphere provides all viewing VIl. ACKNOWLEDGEMENTS

directions and therefore it is not necessary to consider theThis work has been supported by ANR (French National
rotational distance (to ensure image overlap). The Close,&bency) CityVIP project under grant ANR-OVSFA-013-
sphere is subsequently determined uniquely by transktiony;  The authors would like to thank Mathieu Seiler for
distance. In particular this avoids choosing a referenbesp helpful discussions and software development.

that has similar rotation but large translational differen

which induces self occlusions of buildings and also differ- VIII. A PPENDIX
ences in image resolution caused by distance (which affeits Non-linear optimisation
direct registration methods).

The online algorithm was tested and validated on a subsetThe error functions for the calipration (7.)’ the off-line
of the full spherical graph containing 12 spheres. A raakti graph learning (11) and the real-time tracking (13) are all

implementation has been realized in C++. Using only Salierl'l7E||n|m|zed using a iteratively re-weighted least squared-no

pixels, the online localisation runs &Hz on an Intel Core linear minimization:
2 Duo laptop. A vehicle equipped with a monocular camera 6 )
of 800 x 600 pixels in size with a frequency of5Hz, was O(x) = argminz (ei)”, (14)
moved within the neighbourhood of the graph. vooisl

The results of Fig. 6(a) show an overview of the estimatedy VO(x)|x—z = 0, whereV is the gradient operator with
trajectory in green, (the black part (a) indicates a forwardrespect to the unknows defined in equation (2) assuming
reverse movement of the vehicle), with some camera posesglobal minimum is reached at= x.
The camera starting point i6X=-0.4,Y=-0.1, Z=0.8) An inverse compositional algorithm is used [3], which
and the vehicle begins to move in positive Z directiorallows to pre-compute most of the minimization parts di-
until the position (X=-1.8,Y=0.6, Z=20.5). Then the rectly on the reference image. In this case the unkngvis
robot is moved backward (black trajectory) until positioniteratively updated using a Levenberg-Marquart optinidrat
(X=3.3,Y=0.6, Z=18.8) to return to the initial position by procedure:
reversing. ) i

The proposed method was able to accurately track the x = —A\Q — pdiagQ))~"J" De, (15)
camera at video frame rate, for a vehicle navigating ifyhere 7 s the transposition operato€ = J7DJ is the
different directions, within a local region of the graph,ielh  ,hust Gauss-Newton Hessian approximatiprand \ are
emphasizes the advantages of a spherical ego-centered gy ar gains to ensure a fast exponential error decrdase.
resentationt. Recent results have shown that this techniqug e warping Jacobian matrix of dimensienx 6. D is a

1A high quality video is available at: diagopal v_veighting matrix _of dimen;io;m x n obtained b_y
http://www-sop.inria.fr/arobas/videos/Globeye/DevisealMappingHQ.mp4 M-estimation [13] which rejects outliers such as occlusion
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(a) Real-time tracking of a monocular camera nairigaivithin a portion of the graph containing 12 spheres (loés). The estimated trajectory

is shown in green (the black part of the trajectory betweea tliscontinuities is due to a forward-reverse movement ef rtiobile tracking system).

Several camera poses are plotted (optical axis in blue) dar she orientation of the positioning system at various tioces. (b) The top image shows a
snapshot of our real-time interactive 3D OpenGL renderilagfgrm which exploits the augmented spherical memorys Ipassible to navigate freely in

the virtual world with photo-realistic view synthesis. loth images, the red spheres indicate the 3D positions ofefegence spheres in the world. The
bottom image shows an aerial view of the mapped region andldimee virtual camera trajectory is plotted in blue. (c) & Xkm reconstructed trajectory,

after loop closures and graph optimization, with 310 refeeespheres (one sphere out of two is plotted). Some key snaigealso displayed.
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