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RESUME :

Cet article propose une technique nouvelle de SLAM visuelrgagre non seulement le pose en 6ddl et la structure 3D de
facon dense, mais il intégre simultanément les informatiten couleur contenues dans les images au fil du temps. It dagi
développer un modéle inverse pour la création d'une cartgugder-résolution & partir de plusieurs images a basseutiésuol
Contrairement aux techniques classiques de super-risglnbtre approche tient pleinement compte de la traosiati rotation
3D dans une formalisme de localisation et cartographieadddsla permet non seulement de prendre en compte toute lagam
des déformations de I'image, mais permet également de peoptes criteres nouveaux pour combiner les images a faible
résolution ainsi que sur la base de la différence de résoletntre les images différentes dans I'espace 6D. Plusiésuitats
sont donnés montrant que cette technique fonctionne erstedep(30 Hz) et est capable de cartographier les enviroantsa
grande échelle en haute résolution tout en améliorant Eigioé et la robustesse du suivi.

MOTS CLES:
super-resolution, SLAM visuel, localisation, cartograpisuivi 3D

ABSTRACT.

This paper proposes a new visual SLAM technique that notiotdgrates 6DOF pose and dense structure but also simultane
ously integrates the color information contained in thegesmover time. This involves developing an inverse modetifeating a
super-resolution map from many low resolution images. €oyto classic super-resolution techniques, this is aelidere by
taking into account full 3D translation and rotation witldmense localisation and mapping framework. This not obyel to
take into account the full range of image deformations tad allows to propose a novel criteria for combining the losotation
images together based on the difference in resolution leetwldferent images in 6D space. Several results are givewish
that this technique runs in real-time (30Hz) and is able tp ftagge scale environments in high-resolution whilst stargously
improving the accuracy and robustness of the tracking.

KEY WORDS:
super-resolution, visual SLAM, localisation, mapping, 8&cking
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Abstract—This paper proposes a new visual SLAM technique consider this to be essential. Even so there are many ititeges
that not only integrates 6DOF pose and dense structure but works which have looked at dense approaches in 2D including
also simultaneously integrates the color information contained in optic flow [6] or piecewise dense models such as affine [7] or

the images over time. This involves developing an inverse model | trv 18], S I-ti t lgorith h
for creating a super-resolution map from many low resolution planar geometry [8]. Some real-time stereo algorithms have

images. Contrary to classic super-resolution techniques, this is @lso been around for quite some time [9], however, only stere
achieved here by taking into account full 3D translation and matching is performed and full poses are not estimated.
l’Otf':ltiOI’l within a dense Iocalisgtion and mapping framework. In the past ten years a lot of work has been carried out
This not only allows to take into account the full range of 4 harform robust real-time 6D localisation and mapping. In
image deformations but also allows to propose a novel criteria . .
for combining the low resolution images together based on the particular we can note that mOSt V'Slj'al SLAM approaches
difference in resolution between different images in 6D space. have usedeature-based techniquesmbined with depth and
Several results are given showing that this technique runs in pose estimation [10], [11], [12], [13]. Unfortunately tlees
real-time (30Hz) and is able to map large scale environments approaches are still based on an error prone feature @mtract
in high-resolution whilst smyltaneously improving the accuracy step and are not suited to interact with surfaces since they
and robustness of the tracking. . . . .
only provide a sparse set of information and do not provide
any information about the dense structure of the surface.
|. INTRODUCTION Amongst the various RGB-D systems, feature based methods
The problem of dense real-time localisation and mappingclude [14], [15], [16]. All of these methods rely on an inte
within complex environments is a challenging problem for mediary estimation processes based on detection threshold
wide range of applications ranging from robotics to augment This feature extraction process is often badly conditioned
reality. In this paper the aim is to be able to interact in +eahoisy and not robust therefore relying on higher level robus
time with the surfaces of the environment so dense apprsackstimation techniques. Furthermore, it is necessary tehmat
are necessary. This work is undertaken as part of a Freribese features between images over time which is another
DGA Rapid project named Fraudo which requires denseurce of error (feature mapping is not necessarily one-to-
localisation and mapping in real-time so as to allow patbne).
planning for a mobile robot to traverse uneven ground andMore recently, dense techniques have started to become
surfaces autonomously. Another objective is to allow remopopular and several groups have demonstrated real-time per
observation of the complex scenes for the operator. The gé@amance with commodity hardware. In particular, an early
is therefore to develop an efficient, accurate and rodesse work performing dense 6D SLAM in real-time over large
visual modeldor localisation and mapping. As in all SLAM distances [17] was based on minimising an intensity in image
problems, in order to estimate the unknown maps usingkay-frames. Other photometric approaches include [18Fkwhi
moving sensor, it is necessary to simultaneously estinfte tooks at fully dense omnidirectional spherical RGB-D segso
pose of the sensor. Alternatively, other approaches have focused only on geome
The objectives here require real-time computational effiry [19], [20]. In the later truncated signed distance fimrcs
ciency so several bodies of literature are not considered (iIRSDF) are used to define depth integration in a volumetric
this short review but are noted to have some overlappisgace and a classic Iterative Closest Point (ICP) is used to
approaches. In particular, the large volume of literatiggoa estimate the pose. Recent contributions have includedysin
ciated with off-line techniques such as Structure From btoti moving TSDF with ICP [21]. Uniquely geometric approaches
(SFM) and video post-production techniques [1], [2], [3]] [ are also common to time-of-flight range sensors [22]. Unfor-
have similar problems but perform lengthy calculationsigsi tunately the techniques described here either limit thérase
all the data simultaneously. 3D volumetric approaches froto photometric optimisation in the former case and in therlat
the computer graphics literature are also very relevant [®Jnly geometric information is used. Neglecting one or the
Equally, we focus on approaches which look at full 6@ther means that important characteristics are overlodked
transformations including rotation and translation sivee terms of robustness, efficiency and precision. It can bedhote



however, that in [23], a benchmark test was used to compa&ection Il an overview is first given for the super-resolntio
both approaches and it was shown that the photometric gpecess. In Section Il the dense SLAM algorithm is defined.
proach is more precise. In Section IV-B a simulator is used to obtain a ground truth
Few techniques have considered optimising an error and evaluate the approach. In Section IV-C real-time images
both intensity and depth images. In [24] a direct ICP teclare used to perform super-resolution.
nigue was proposed which does this simultaneously using
an image-based approach. Alternatively, in [25] both error
were minimised but using a volumetric approach based on
Octomap. There are several arguments for and against eac@onsider a RGB-D sensor with a color brightness function
approach. In the image based case the resolution of the nigp, ) and a depth functiod(p,t¢), wherep = (u,v) are
is a function of the path taken to acquire it, whereas thgxel locations within the image acquired at tinte It is
volumetric approach is invariant to the path used. In that waonvenient to consider the set of measurements in vector
the volumetric approach is unable to easily capture the ndorm such thatl € R*™ and D € R™. Consider now a
linear variation of the image resolution which depends onRGB-D image, denoted also augmented imaggl8], to be
particular camera trajectory. More importantly, it sholdd the set containing both brightness and defith= {I,D}.
noted that none of these techniques have tried to "integhate v = {p, D} € R3**® are then the 3D vertices of the surface
photometric intensity information”, i.e. only pose and tlep associated with the image poingsand the depth imageZ
parameters have been estimated. will be called thecurrentimage andZ* thereferencémage. A
To investigate models to integrate the image intensity funsuperscript will be used throughout to designate the reference
tion we turn to super-resolution (SR) approaches. In thid fieview variables.
a great amount of research has been carried out in the pashNow consider a set of low resolution augmented images
however, this has mainly been focused on applications ssich{d,Z,, ..., Zy}, which observe the same scene from differ-
photography or surveillance so as to obtain better 2D imagesit 3D poses, the super-resolution process consists irtaimu
More particularly, super-resolution is the art of recomsting neously registering and fusing the images onto an augmented
higher resolution images, from a set of lower resolutiosuper-resolved imag&?, such that:
images. In the most general case, these images are captured
from different viewpoints, under different lighting cotidns I =f (Zf\’ Cl, (w (T, vi; K, S)) + n,Bfl)
and with.sensors of varying resolut.ions.. Se_e Figure 1 (a) _fo Dt = f (ZN CPD, (w (Ti7vi;K, S)) " n,B“)
an overview of the image degradation pipeline reconstucti sr v )
ipeline. Since the paper of [26], super resolution has been o _
gxﬁensively studied |Fr)1 E)he corE1pL]1ter \t)ision community, hOV\yyhere the matricesI'’ = (R.t) € SE(3) are the true

ever, most of the research only considers small relativéamot poses of the RGB-D cameras relative to the reference positio

between the input images and the major contributions a‘[@roughout,R €50(3)isa rptatlon ;Q?V'X and € R(3) the
anslation vector. The matri$ € R is the up-sampling

focused on how to fuse the registered images [27], [28], [é. : 3x3 N .
Furthermore, the registration techniques are mainly 2Ddnd atrix, K € R s the |ntr|S|p m_atrlx of t_he real camera,
€ Rnm x nm is the combination matrix and is the

not take into account knowledge about the dense depth m : . ) .
of the scene. Several tutorials of these approaches alataeai ur-or nverse b!ur Of. a given rad|us: Thgse var!ables and
which give basic underlying models and principles [29],][3dhe warping .funct|or.1 will pe npw gxplglned in detail.
and more recent approaches aim at extending them suc 'ote that in practlce/afflne illumination pargmet.ers areals
as [31] who perform spatially adaptive block-based supdfStimated as in [29]1" = ol + § along with vignetting
resolution. pa_lrameters but t(_) improve the clarity of the equations we omi
In this paper we propose an approach to not only simult%b—IS part of th? plpellng. ) i .
neously estimate the 6D pose along with the dense depth map) Geometric warping: Consider the Figure 1 which
but also the photometric images in a super-resolution farmgnows the processing pipeline. From the first processingkblo
This is achieved by considering an inverse composition)e motion models(T;,v;; K) is a 3D warping function,
approach which is efficient for real-time performance siitce Which is related to the 3D posE of the camera and to the
allows a maximum of pre-computations to be performed. THS€ENE vertices:
differs from the classic super-resolution pipeline as isvan " K(Rv + 1)
in Figure 1. In the model proposed here, dense tracking is p = ma 2
used to align the images in 6D while several low resolution 3
images are combined together and integrated to form the hig¥herees is a unit vector with the third component equallto
resolution image (SR). The low resolution (LR) images are 2) Image up-sampling : The next block in Figure 1
combined by minimising their distance to a "virtual imageinvolves the up-sampling of the LR image to the SR image.
which is translated and rotated in such a way that it has thisually this is done by creating intensity values at sulejpix
same resolution as the high-resolution image. In this way Idncrements, however, for ease of notation and programming,
resolution images are considered better if they are claserhere we consider the SR image pixels to be smaller than the
the the same resolution as the target images. LR pixels by a scaling factos. This consists in warping the
The remainder of the paper is set out as follows. Ireference low resolution image by a diagonal homography

II. OBSERVATION MODEL
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Fig. 1. (a) The image degradation pipeline (forward compmsiti). On the left an imaging sensor samples the incoming ligys to acquire a SR image.
This image is at a particular pose in space and the warpingftlans the image. Optical, motion and sensor blur then furtegederate the image before
it is down-sampled to produce a low resolution image. (b) Thegengeneration pipeline (inverse compositional). Sevemalrsolution images are sampled
from a continuous light field. The images are combined via tiveighting wrt. their distance to the ideal image with the sagswlution. The low resolution

images are transformed to a common reference frame. The imagep-aagnpled and then inverse blurring is applied.

scaling matrix 5) Combination matrix: The matricesC} and CP are
1 0 0 normalized diagonal "combination” matricei{v C, =1

Ss=1(01 0], (3) that allow to correctly combine the input depth-map and

0 0 st images into a consistent high resolution one. This will be

shown to minimise the difference in image resolution and wil
where s is the desired scale factor. Note, however, that thige detailed in the next Section.
means that we must transform between SR pixel units and LR
pixel units in the equations.
A pixel in the SR image is then obtained from the LR imag8- Image resolution distance function

by performing a homographic warping as: One of the main contributions of this paper is based

on how the low resolution images are combined to form
(4) a high-resolution image. Classic techniques mainly awerag
the aligned images using a smoothing point-spread function
where p;, are the corresponding low-resolution pixels irf NiS naive approach has th‘la effect of simply considering the
normalized coordinates. The equivalent intensity andfdept combination matrices to b€ = L. Clearly, this results in a
sampling are done via warping as in (5) given further. simple average of the input warped images. This often yields
3) Intensity and depth warping: The super-resolution & blurred reconstruction since the images taken with a yighl
image I*. and depth-mafD*, of dihensionSSm « sn are different resolution than the SR image and treated the same
ST ST

finally obtained by warping the corresponding low resolutio®S those which contain as much detail as those taken by the

Splr
eEo,FSPlr '

Psr =

images such that SR camera. In reality though, the images undergo full 3D
transformation and non-linear light field sampling effeats

| S (w (s—l,pw)) c hard _to mpdel. To solve_: fthi_s, the aim is_ to define_a distance
D!, =D}, (w (sfl, pw)) () function with allows tominimise the effective resolutiar the

LR image with the SR image.

wherep® are the geometrically warped pixels from (2). The The following will show that a LR camera can undergo
corresponding warped intensities are obtained by intatfgsl a 3D transformation with respect to the SR image such that
(nearest-neighbour, bi-linear or bi-cubic). In practice tepth it sees the same effective light rays in space (i.e. the same
warping function is optimised and computed differently agesolution). This also means that we can compute an "optimal
in [24] and bi-linear interpolation is used. virtual image” with the same resolution as the LR image such

4) Blur: The function f(I*,B~1), is a filter which per- that it intersects the same viewing cones as the SR image.
forms image deconvolution. This will be assumed to be Ehis can be seen intuitively as moving the camera toward the
post-processing step of the reconstructed SR image, timat saene so that it sees an effective higher resolution (evén if
be achieved using for example a Wiener filter [32]. does not cover the same total area as the SR camera).



To better understand, consider the Figure 2. The SR image is
defined by the fram&'. The current LR image which must be
used to generate a part of the SR image is defined in Frame
T.. Both the LR and SR images observe a vertex R?
of the scene. The light reflected of the surfacevaforms
cones in space that are projected onto the SR and LR images
respectively. Now consider moving a virtual camera defined
by the frameT, and with the same resolution as the LR
image. This camera can move in 3D via its homogeneous
transformation matrixt, = (R, t,). T,
The first goal is to determine the position in 3D space of the '
virtual camera such that it has the same effective resolutio
as the SR image. For each viewing cone, this is equivalent to
minimising the area between the SR image’s pixel size and
the intersection between the virtual image plane and the.con
This area is minimised by computing the following equality: O T

S — (RO — diltonT) =0, (6) Fig. 2. Super-resolution camera poses. The optimal @seprojects the
. ) ) ] ) vertexv on the low resolution camera with the same resolution as thersup
where S is the scaling homography defined in Section |l-Zesolved image.

and the right hand side is the parametrised homography
describing the equivalent transformation in 3D. The vieywin

cone intersects the 3D surface at ve ith a certain radius It can be seen from this error that it constrains the 5 degrees
This forms a plane with the surface with the normealand of freedom (i.e. not the rotation around Z). Also if the cuitre

n”n = 1. This normal is known from the dense 3D map, an'ﬁnage (LR) moves towards the optimal resolution then the

is obtained by a local cross product on the image gtjds the error is zero Wh"St. as it moves away t.he error ingreases.
translation vector of the virtual camera adds the distance The scale factor which combines the rotational and traiosiat

between the camera centre of projection and the plane: components is determined by the vertex on the surface.

d=[n"v"|. (7)  B. Depth weighting coefficients
To reduce the number of solutions we first & = I and For the depth weighting, a theoretical random error model
solve (6) for the translation vector as: proposed by [33] can be used. The depth weighting coefficient
is then
to, =d(I— S)n. 8
=S ©) e = 1Y giag(D) (11)

Since the scale is invariant to rotations aroundAhaxis, only maa

the other two axes need to be set. In practice, the rotationwBerem is a constantf is the focal length of the camera,
set such that the optical axis of the virtual camera is in th& the baseline and, is the disparity standard deviation.
direction of the viewing ray of each pixel. This has the dffec

of ensuring that we minimise the distance in both transtatio Ill. SUPER-RESOLUTION VISUAL SLAM

and rotation between the virtual image and the LR image. ThAs Cost function

also means that the virtual camera is centred on each pixel ifnfpe super-resolution visual SLAM problem is defined here
the image which helps avoid optical lens distortion eff@rtdl o pe that which estimates, incrementally, the set of camera

(see Figure 2). This matrix can be computed by poses T;(x;) whilst simultaneously estimating the super-
Loy = o, resolved depth imag®?, and the super-resolved intensity
_ M g9) Mmeasurementk;. from a set of low resolution images. This is
Loy =Ty AToz, (9) i s DT . :
o —r o Ar achieved by considering the following photometric and Hept
v e e errors:
Note that the computation of the virtual camera for each N

pixel apd subsequently its distance, is not computatignall ep = ch (I:r _1, (w (’i‘iT(Xi),Di,p, S))) . (12
expensive. ,

Following the definition of the optimal pose, it is now N
possible to define the error metric between the LR pixel and, c? (D* —D. T-Tx.. D: p.S 13
the ideal LR pixel. This transforms directly into a weiglgfin e zzj ¢ ( T ! (w( PR H0 P, ))) - 13)
coefficient for each vertex* and each LR pixel intensity, both
defined with respect to the current estimated pbse

3

where it is supposed that for each pose there exists an in-
] cremental pose that combines homogeneously with the global
Cl(v*) = (||(TC —T,)v|| + e)_ , (10) pose to give the true transformatictk; : T, T(X;) = T,. The

wheree is a noise constant and is the homogeneous vertexfUII state vector representing the variables is then
D, ., x1,...,xn]. (14)

coordinates. (1

ST



0.6

Non-linear optimization of this error can then be decomposeg

via marginalization into three separate non-linear mination No SR
. . . . 0.4

phases which are performed iteratively for each low regmiut

input image: i.e. pose estimation, depth estimation arehint 02 N

sity estimation. This is the optimal formulation for therjoi ' [

problem assuming that the initial super-resolution deptt a 0 Lt ai el

intensities measurements are locally close to the solution 0 5 10 15 20

T
SR 4x

Translation error

Absolute distance to reference (m)

B. 3D image registration and trackin
9 9 9 Fig. 3. Absolute translation error with respect to the distato the reference

For each current image, the unknown motion parametemngge. The super-resolution algorithm reduces the lodadisarror.
x € R® are defined as:

1
X = / (w,v)dt € se(3), (15) The same procedure is applied for the depth paraniater
0

which is the integral of a constant velocity twist which CP..(1) FCDDST(tﬂHCD(t) . (19)
produces a pos&. The pose and the twist are related via D.,(t) «+ < S'f'“*”Dg](jjl(Z;fC LD"(E) -
the exponential map & = e*» with the operatof.], as: "

x]n = { Wl v } , IV. EXPERIMENTS

0 0
A. Real-time implementation

where[.]« represents the skew symmetric matrix operator. A real-time imol tati fth lution tracki
Thus the pose cost function is then obtained by simulta- reai-time impiementation of the super resofution tragxin

neously minimising the errors of equation (12) and (13) in %nd mapping algorithm ha§ been made on GPU using the
penCL library. The algorithm runs at 30 Hz with low
robust least square procedure o . . :
resolution input images of siz&40 x 480 pixels and a4 x
C(x) = Mer’ Wrer + Abep” Wpep, (16) super-resolution factor on a Nvidia GTX 670 card. For the
pose estimation minimisation, a coarse to fine multi-resmhu
pproach is employed. The minimisation begins at the lower
esolution, and the result is used to initialize the nexelev
repeatedly until the higher resolution is reached. In théy,w
x = —(JTWI)~1ITW [er eD}T !arger displacements are minimised at low <_:ost on smaller
~ A (17) images. Since the RGB-D sensor usually provides noisy depth
T + TT(x), . . ; i )
measurements, a bilateral filtered is applied to removeenois
whereJ contains the stacked Jacobian matrices of the erravhilst preserving discontinuities. The filtered depth-map
and'W contains the stacked weighting matrices. More detaitly used for pose estimation, whilst the raw depth-niap
on such a minimisation can be found in [24]. is used for depth integration, in order to preserve details i
Minimising both errors provides a lot of advantages sindé@e integration process.
photometric and depth informations are complementart Fir
the depth error term usually offers a larger domain of conver
gence and a fast minimisation. It also allows to track texturB- Simulated results
less areas, but it is sensitive to noise and not efficient withThe algorithm has been tested on a synthetic sequence of
symmetric objects or with unconstrained scenes. On the oth@ages with ground truth poses, generated from the sponza
hand, the photometric term allows to track any texturedsaregtrium model [35]. The sequence is a 30 meters corridor with

where )\ are weighting scalar gains and whew¥ ) are
diagonal weighting matrices obtained by M-estimation [34
The unknownx is then iteratively estimated using

with a better precision [23]. textured surfaces. The input images were downscaled to an
input resolution ofl60 x 120 pixels. The reference image is
C. Super-resolution taken at the beginning of the sequence and then the camera

moves along the corridor. Two experiments were conducted:
(12) with respect to the photometric paramelér can be f|r§ta5|mp|e ”""C"'r?g IS appheq to each current image mtho
; R using super-resolution integration. Then the same seguisnc
done incrementally as new low resolution images) are . 2 : .
. tracked with super-resolution integration, with a scaletda
registered and warped onto the super-resolved frame,nigadi . :
. s = 4. For both methods, we set the gain which controls the
to the following update rule : .
depth errorAp = 0, in order to only compare the influence
{ Cl,.(t) « . (t—-1)+C 1) of the photometric integration in the tracking process. The

L () « Ci,-(t—l)IsE:(Itf‘l(z;rCI(t)I”(t) ’ (8) plot reported on Figure 3 shows the absolute translaticor err

Since the matrice€?; are diagonal, minimising equation

with respect to the distance to the reference frame for both
where C!,.(t — 1) is the global intensity cost at time— 1 approaches. It can be seen that the super-resolution approa
andI*(t) is the current image, warped from the registrationlearly improves the localisation error, by integratingwne
process of Section IlI-B. information as the camera moves along the trajectory.



C. Experimental results [6]

The visual SLAM algorithm has been successfully testeg,]
on a number of real scenes. The images of Figure 4 reports
the results of an experiment performed in an office contginin
a desk, with different objects and books. The RGB-D camer
used for this experiment is an Asus Xtion Pro Live, capturing
low resolution images 0840 x 480 pixels at 30Hz. The super-
resolution SLAM is performed in real-time with a scale facto
s = 4. The original reference image is shown on Figure 4(c).
The camera was then moved around the desk with different
motions. The image of Figure 4(d) shows the photometrﬁi‘:0
image obtained at the end of the sequence. The Figures 4(e)
and 4(f) show a region of interest. We can visually see thiad]
the super-resolved image is highly detailed compared to the
original one. The Figures 4(a) and 4(b) show the Phong shages
surfaces computed from the depth-maps and the surfaces
normals. We can see that compared to the original depth-m R
the super-resolved depth-map is much more detailed and | SL
noisy. Other aspects of our visual SLAM method, such as the
ability to track during very rapid motion, or its robustndss
camera occlusions are illustrated in our submitted Video 4]

V. CONCLUSION [15]

In conclusion, this paper has proposed a new visual SLAM
technique which integrates 6DOF pose and dense struct
simultaneously with the color information contained in the
images over time. A novel inverse model has been provided
for creating a super-resolution map from many low resoluti(ﬁ7
images based on a 3D distance criteria which minimises the
difference in resolution between the low resolution image i
3D and integrates the super-resolution image. Experirhe
results are given showing that this technique runs in riea-t
(30Hz) and is able to map large scale environments in high®l
resolution whilst simultaneously improving the accuracyl a
robustness of the tracking. [20]

Future research in this direction will be focused at usirgy th
resolution distance criteria proposed here to better ahtivs [21]
position of the key frames in space. It would also be inté@ngst
to use this approach to take into account illumination cleang
on the surface within a dynamic model. 2]
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