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Abstract—This paper proposes a new visual SLAM technique
that not only integrates 6 degrees of freedom (DOF) pose and
dense structure but also simultaneously integrates the colour
information contained in the images over time. This involves
developing an inverse model for creating a super-resolution map
from many low resolution images. Contrary to classic super-
resolution techniques, this is achieved here by taking into account
full 3D translation and rotation within a dense localisation and
mapping framework. This not only allows to take into account
the full range of image deformations but also allows to propose
a novel criteria for combining the low resolution images together
based on the difference in resolution between different images
in 6D space. Another originality of the proposed approach with
respect to the current state of the art lies in the minimisation
of both colour (RGB) and depth (D) errors, whilst competing
approaches only minimise geometry. Several results are given
showing that this technique runs in real-time (30Hz) and is
able to map large scale environments in high-resolution whilst
simultaneously improving the accuracy and robustness of the
tracking.

I. INTRODUCTION

The problem of dense real-time localisation and mapping

within complex environments is a challenge for a wide range

of applications ranging from robotics to augmented reality.

In this paper the aim is to be able to interact in real-time

with the surfaces of the environment so dense approaches are

necessary. This work is undertaken as part of a French DGA

Rapid project named Fraudo which requires dense localisation

and mapping in real-time using a low cost RGB-D sensor, so as

to allow path planning for a mobile robot to traverse uneven

ground and surfaces autonomously. The goal is therefore to

develop an efficient, accurate and robust dense visual model

for localisation and mapping. As in all SLAM problems, in

order to estimate the unknown maps using a moving sensor, it

is necessary to simultaneously estimate the pose of the sensor.

The stated objectives require real-time computational effi-

ciency so several bodies of literature are not considered in this

short review but are noted to have overlapping approaches.

In particular, the large volume of literature associated with

off-line post-production techniques such as Structure From

Motion (SFM) and multi-view video [1], [2], [3] have similar

problems but perform lengthy calculations using all the data

simultaneously. 3D volumetric approaches from the computer

graphics literature are also very relevant [4]. Equally, we focus

on approaches which look at full 6D transformations including

rotation and translation since we consider this to be essential.

Even so there are many interesting works which have looked at

dense approaches in 2D including optic flow [5] or piecewise

dense models such as affine or planar geometry.

In the past ten years a lot of work has been carried out

to perform robust real-time 6D localisation and mapping. In

particular we can note that the large majority of visual SLAM

approaches have used feature-based techniques combined with

depth and pose estimation [6], [7], [8]. Unfortunately these

approaches still are based on an error prone feature extraction

step and are not suited to interact with surfaces since they

only provide a sparse set of information and do not provide

any information about the dense structure of the surface.

Amongst the various RGB-D systems, feature based methods

include [9], [10], [11]. All of these methods rely on an interme-

diary estimation processes based on detection thresholds. This

feature extraction process is often badly conditioned, noisy and

not robust therefore relying on higher level robust estimation

techniques. Furthermore, it is necessary to match these features

between images over time which is another source of error

(feature mapping is not necessarily one-to-one). One popular

misconception is that feature-based approaches such as [12]

are direct appearance-based. Even if these approaches extract

features from the intensity information (appearance), they do

this via an intermediary estimation process.

More recently, dense techniques have started to become

popular and several groups have demonstrated superior real-

time performance with commodity hardware. In particular, an

early work performing dense 6D SLAM in real-time over large

distances [13] was based on minimising an intensity in image

key-frames (this approach currently has the best performance

on the benchmark of [14]). Other photometric approaches in-

clude [15] which looks at fully dense omnidirectional spherical

RGB-D sensors. Alternatively, other approaches have focused

only on geometry [16], [17], [18]. In the latter truncated

signed distance functions (TSDF) are used to define depth

integration in a volumetric space and a classic Iterative Closest

Point (ICP) is used to estimate the pose. Recent contributions

have included using a moving TSDF with ICP [19]. Uniquely

geometric approaches are also common to time-of-flight range

sensors [20]. Unfortunately the techniques described here

either limit themselves to photometric optimisation or geo-

metric optimisation. Neglecting one or the other means that

important characteristics are overlooked in terms of robustness,

efficiency and precision. It can be noted, however, that in [21],

a benchmark test was used to compare both approaches and

it was shown that the photometric approach is more precise.

Very few techniques have considered directly optimising an

error on both intensity and depth images. In [22] a direct ICP



technique was proposed which minimises colour and depth

simultaneously using an image-based approach but super-

resolutions were not considered. Alternatively, in [23] both

errors were minimised using a volumetric approach based

on Octomap but only very small workspaces and resolutions

were considered. There are several arguments for and against

each approach. In the image based case the resolution of the

map is a function of the path taken to acquire it, whereas

the volumetric approach is invariant to the path used. In that

way the volumetric approach is unable to easily capture the

non-linear variation of the image resolution which depends

on a particular camera trajectory. Furthermore, incremental

volumetric approaches like [18], [19] do not allow to easily

perform loop closure correction since the accumulated drift

is definitively integrated into the model. More importantly,

it should be noted that none of these techniques have tried

to ”integrate the photometric intensity information”, i.e. only

pose and depth parameters have been estimated.

To investigate models to integrate the image intensity func-

tion over time we turn to super-resolution (SR) approaches.

In this field a great amount of research has been carried

out in the past, however, this has mainly focused on appli-

cations such as photography or surveillance so as to obtain

better 2D images. More particularly, super-resolution is the

art of reconstructing higher resolution images, from a set

of lower resolution images. In the most general case, these

images are captured from different viewpoints, under different

lighting conditions and with sensors of varying resolutions.

See Figure 1 for an overview of the image degradation and

image reconstruction pipelines. Since the paper of [24], super

resolution has been extensively studied in the computer vision

community, however, most of the research only considers

small relative motion between the input images and the major

contributions are focused on how to fuse previously registered

images [25], [26], [5]. Furthermore, the registration techniques

are mainly 2D and do not take into account knowledge

about the dense depth maps of the scene. Several tutorials

of these approaches are available which give basic underlying

models and principles [27] and more recent approaches aim

at extending them such as [28] to perform spatially adaptive

block-based super-resolution. Current volumetric approaches

[17], [18] are not super-resolution because the integration is

performed and linearised in 3D and no colour intensity error

is minimised. As such they do not consider increasing the

resolution of the images in sensor space which would require

practically infeasible volume sizes.

In this paper we propose an approach to not only simulta-

neously estimate the 6D pose along with the dense 3D map

but also the photometric colour in a super-resolution format.

This is achieved by considering an inverse compositional

approach which is efficient for real-time performance since

it allows a maximum of computations to be performed a

priori. This differs from the classic super-resolution pipeline

as is shown in Figure 1(a). In the model proposed here,

direct image-based tracking is used to align the images in 6D

while several low resolution images are combined together and

integrated to estimate a target high-resolution image (SR). The

low resolution (LR) images are combined by weighting their

contributions based on a distance to an ideal ”virtual image”.

This virtual image is translated and rotated in such a way

that it has the same effective resolution as the high-resolution

image even if its resolution is less. In this way images are

considered better if they are closer to the same resolution as

the target image. Logically, integrating images further from

the target resolution will either degrade images due to a loss

in resolution or introduce aliasing due to sampling errors.

The remainder of the paper is set out as follows. In

Section II an overview is first given for the super-resolution

process. In Section III the dense SLAM algorithm is defined.

In Section IV-B a simulator is used to obtain a ground truth

and evaluate the approach. In Section IV-C real-time images

are used to perform super-resolution.

II. OBSERVATION MODEL

Consider a calibrated RGB-D sensor with a colour bright-

ness function I : Ω × R+ → R+; (p, t) 7→ I(p, t) and a

depth function D : Ω × R
+ → R

+; (p, t) 7→ D(p, t), where

Ω = [1, n]×[1,m] ⊂ R2 and where P = (p1,p2, . . . ,pnm) ∈
R2×nm ⊂ Ω are pixel locations within the image acquired at

time t and n×m is the dimension of the sensor’s images. It is

convenient to consider the set of measurements in vector form

such that I(P, t) ∈ R+nm and D(P, t) ∈ R+nm. Note that t

and P may be omitted in the following variables for clarity.

Consider now a RGB-D frame, denoted also an augmented

image [15], to be the set containing both brightness and depth

I(t) = {I(t),D(t)}. V = (v1,v2, . . . ,vnm) ∈ R
3×nm is

defined as the matrix of 3D vertices related to the surface

according to the following point-depth back-projection:

vi = K̃−1piD(pi, t), (1)

where K̃ is the intrinsic matrix of the depth camera.

I will be called the current frame and I
∗ the reference

frame. A superscript ∗ will be used throughout to designate the

reference view (or super-resolution frames), and an overscript

∼ will be used to differentiate depth from image variables.

Now consider a set of LR augmented images acquired at

different times {I(1),I(2), . . . ,I(N)}, which observe the

same scene from different 3D poses. The SR process consists

in simultaneously registering and fusing the images onto an

augmented SR frame I
∗ ∈ R2×q×r, where q × r is the

resolution of the SR reference images, such that:

I∗ = β
(∑N

t C(t)I
(
w
(
Tt,V

∗;K,S
)
, t
)
+ ηt,B

−1
)

D∗ = β
(∑N

t C̃(t)D
(
w
(
Tt,V

∗; K̃,S
)
, t
)
+ η̃t, B̃

−1
)

(2)

where each matrix T = (R̄, t̄) ∈ SE(3) is the true pose of a

RGB-D camera relative to the reference position (which are

not known). Throughout, R ∈ SO(3) is a rotation matrix

and t ∈ R(3) the translation vector. The matrix S ∈ R3×3

is the up-sampling matrix, K = {K, K̃} ∈ R2×3×3 are the

intrinsic matrices of the colour and depth cameras, C(t) =



w(Tt,V
∗;K)Discrete

Continuous

Geometric/

Sampling

Low resolution images

I(t)

Down sampling

w(S−1)

Blur

β(B)

Noise

photometric
warping

Scene

High Resolution Image

I∗

(a)

w(Tt,V
∗;K)Discrete

Continuous

Geometric/

Sampling

I(t)

Upsampling

w(S)

Inverse Blur

β(B−1)

Noise

C

photometric
warping

High Resolution

I
∗

Depth and color images

Scene

Combination

Low resolution depth and color images

I
w(t)

(b)

Fig. 1. (a) The image degradation pipeline (forward compositional). On the left an imaging sensor samples the incoming light rays to acquire a SR image.
This image is at a particular pose in space and the warping transforms the image. Optical, motion and sensor blur then further degenerate the image before
it is down-sampled to produce a low resolution image. (b) The image generation pipeline (inverse compositional). Several low resolution images are sampled
from a continuous light field. The images are combined via their weighting C based on their distance to the ideal image with the same resolution. The low
resolution images are transformed to a common reference frame. The images are up-sampled and then inverse blurring is applied.

{C(t), C̃(t)} ∈ R2×qr×qr are the diagonal combination ma-

trices of image at time t, η and η̃ are Gaussian noise vectors,

and B = {B, B̃} are the blur or inverse blur matrices of a

given radius. The warping function w(·), the blur function

β(·) and these variables will now be defined following the

processing pipeline of Figure 1(b) from left to right.

1) Intensity and depth interpolation: The SR warped

image Iw and depth-map Dw of dimensions q×r are obtained

by re-sampling the aligned LR images as

I
w(P∗, t) = I (Pw, t) , (3)

where Pw are the projected warped and up-sampled points

from equations (4) and (6) given in the following. In practice

the depth interpolation functions are optimised and computed

differently as in [22] and a bi-linear technique is used. In the

Figure 1(b) the transformation blocks are shown separately,

however, in practice the transformations are all associative and

the images are only interpolated once.

2) Geometric warping - motion model: From the next

processing block the LR images are transformed from left to

right in Figure 1(b), however, the geometric points are warped

from right to left so as to interpolate the intensities and depths

at the location corresponding to the SR pixels (interpolation

is only performed once). The motion model w(T,vs
i ;K) is

therefore a 3D point warping function, which is related to the

3D pose T of the camera and to a scene vertex vs
i :

pw
i =

K(Rvs
i + t)

e⊤3 K(Rvs
i + t)

, (4)

where vs
i is obtained by applying equation (1) to the sub-

sampled pixel ps given later in equation (6). e3 is a unit vector

with the third component equal to 1.

3) Image up-sampling : The next block involves the up-

sampling of the LR image to the SR image. As for the motion

model, the high resolution pixels coordinates are transformed

from right to left in Figure 1(b). This consists in warping the

reference SR pixels by a diagonal homography scaling matrix:

S =



1 0 0
0 1 0
0 0 s


 , (5)

where s is the desired scale factor. A sub-sample pixel in the

LR image is then obtained by the following homographic warp

that computes sub-pixel coordinates in the LR image:

ps =
Sp∗

e⊤3 Sp
∗
, (6)

where ps = (ps⊤, 1)⊤ is the homogeneous coordinate of the

SR pixel p∗ in the LR space. The relationship between the

dimensions of the LR and SR images is subsequently q = sn

and r = sm. Note we assume that the physical SR sensor

size remains the same as the LR sensor, but its resolution is

increased (SR and LR pixels units are not the same).

4) Combination matrices: The matrices C(t) and C̃(t)
are normalised diagonal ”combination” matrices,

∑N

t C(t) =
I, that allow to linearly combine the input depth-map and color

images into consistent high resolution ones. This will be shown

to penalise a difference in image resolution in the next Section.

5) Blur: The function f(Iw,B−1), is a filter which per-

forms image deconvolution. This will be assumed to be a

post-processing step of the reconstructed SR image, that can

be achieved using for example a Wiener filter.



A. Image resolution distance function

One of the main contributions of this paper is based on how

the LR images are combined to form a SR image. Classic tech-

niques average the aligned images using a smoothing point-

spread function [27]. This naive approach has the effect of

simply considering the combination matrices to be C(·) = I.

Clearly, this results in a simple average of the input warped

images. This often yields a blurred reconstruction since the

images seen with a highly different resolution than the SR

image are treated the same as those which contain as much

detail as those seen by the SR camera. In reality though, the

images undergo full 3D transformation and non-linear light

field sampling effects are hard to model. To solve this, the aim

is to define a distance function with allows to favour closer

effective resolutions of the LR images w.r.t. the SR image.

The following will show that a LR camera can undergo

a 3D transformation with respect to the SR image such that

it sees the same effective light rays in space (i.e. the same

resolution). This also means that we can compute a set of

”optimal virtual images”, with the same resolution as the LR

image, such that it intersects the same viewing cones as the

SR image. Naively, this can be seen as translating the camera

toward the scene (rotation also plays a role) so that it sees an

effective higher resolution (even if it does not cover the same

field of view as the SR camera).

To better understand, consider the Figure 2. The SR image

is defined by the frame T∗. The current LR image which

must be used to generate a part of the SR image is defined

in Frame Tt. Both the LR and SR images observe a vertex

v∗ ∈ R3 of the scene. The light reflected off the surface at v∗

forms cones in space that are projected onto the SR and LR

images respectively. Now consider moving a virtual camera

defined by the frame To and with the same resolution as the

LR image. This camera can move in 3D via its homogeneous

transformation matrix To = (Ro, to).
The first goal is to determine the 3D pose of the virtual

camera such that it has the same effective resolution as

the SR image. For each viewing cone, this is equivalent to

finding the intersection of the virtual LR image plane with

the SR viewing cone such that it sees the same surface

area. This area is equivalent when the inverse of the scaling

homography S−1, from (5), is equal to the planar homography

H =
(
Ro − d−1ton

⊤
)
. This gives the following constraint on

Ro and to:

S−1 −
(
Ro − d−1ton

⊤
)
= 0. (7)

The planar homography H is related to the unknown pose To

at which the virtual image intersects the viewing cone and the

local surface plane π = (n⊤, d)⊤. The viewing cone intersects

the 3D surface at vertex v∗ with a certain radius. This forms

the plane π tangent to the surface with the normal n. This

normal is known from the dense 3D map, and is obtained by

a local cross product on the image grid. to is the translation

vector of the virtual camera and d is the distance between the

camera centre of projection and the plane d = |n⊤v∗|.

v∗

po

n

p∗

To

T∗

Io

I
∗

I(t)

Tt

World frame
Tw

Fig. 2. T
∗ is the SR reference image, To is the optimal virtual camera pose

(with the same effective resolution of the vertex v
∗) and Tt is a LR frame.

Next we determine Ro from the intersection of the virtual

image with the viewing cone. Since this intersection is invari-

ant to rotations around the Z axis, only the other two rotations

need to be computed. In practice, the two remaining rotations

are set such that the optical axis the virtual camera is in the

direction of the viewing ray of the SR image (for each pixel).

This means that the virtual camera is centred on each pixel in

the SR image which helps avoid optical lens distortion effects

and ensures overlap (see To in Figure 2). Subsequently the

full rotation matrix Ro = (r⊤ox, r
⊤
oy, r

⊤
oz)

⊤ is defined such that

roz = v∗‖v∗‖−1, rox = [r∗y]×roz, roy = [roz ]×rox,

where [.]× represents the skew symmetric matrix operator.

Finally the virtual camera translations are obtained by

solving (7) for the translation vector as:

to = d(Ro − S−1)n.

Given To and Tt, it is possible to define a distance metric

between each LR pixel and each ideal pixel associated to v∗
i .

This distance transforms directly into a weighting coefficient

for combining the LR intensities for each image t as

Cii(t) = (‖(Tt −To)v
∗

i ‖+ ǫ)
−1

, (8)

where Cii(t) is a diagonal element of C(t). ǫ is a noise

constant and v∗

i = (v∗⊤, 1)⊤ ∈ R4 is the homogeneous vertex

vector.

It can be seen that this distance constrains 5DOF (i.e. not

the rotation around Z). Also if the LR current image moves

towards the optimal resolution (in translation and rotation) then

the error is zero whilst as it moves away the error increases.

The scale factor which combines the rotational and translation

components is determined by the vertex v∗

i on the surface.



B. Depth weighting coefficients

A theoretical random error model proposed in [29] is used

for weighting depths. The corresponding weighting coefficient

of the pixel pi is defined by

C̃ii(t) =
fb

σd

D(pi, t)
−2, (9)

where f is the focal length of the depth camera, b is the

baseline and σd is the standard deviation of the expected

disparity error.

III. SUPER-RESOLUTION VISUAL SLAM

A. Cost function

The SR visual SLAM problem is defined here to be that

which estimates, incrementally, the set of camera poses Tt(xt)
whilst simultaneously estimating the SR depth image D∗ and

the SR intensity measurements I∗ from a set of LR images.

This is achieved by considering the following photometric and

depth errors:

eI =
∑N

t C(t)
(
I∗ − I

(
w
(
T̂tT(xt),V

∗,S
)
, t
))

eD =
∑N

t C̃(t)
(
D∗ −D

(
w
(
T̂tT(xt),V

∗,S
)
, t
)) ,

(10)

where it is supposed that for each pose there exists an incre-

mental pose that combines homogeneously with the global

pose to give the true transformation: ∃x̃i : T̂tT(x̃t) = Tt.

The full state vector representing the unknowns is then

[I∗,D∗,x1, . . . ,xN ]. Non-linear optimisation of this error can

then be decomposed via marginalisation into two separate

minimisation phases which are performed iteratively for each

LR input image: i.e. pose estimation followed by depth and

intensity estimation. This is the optimal formulation for the

joint problem assuming that the initial SR depth and intensities

measurements are locally close to the solution [22].

B. 3D image registration and tracking

For each current image, the unknown motion parameters

x ∈ R6 are defined as:

x =

∫ 1

0

(ω,υ)dt ∈ se(3), (11)

which is the integral of a constant velocity twist which

produces a pose T. The pose and the twist are related via

the exponential map as T = e[x]∧ with the operator [.]∧ as:

[x]∧ =

[
[ω]× υ

0 0

]
. (12)

Thus the pose cost function is then obtained by simultane-

ously minimising the errors of equation (10) in an iterative

robust least square procedure

O(x) = λ2
I
eI

⊤WIeI + λ2
D
eD

⊤WDeD, (13)

where λ(.) are weighting scalar gains and where W(.) are

diagonal weighting matrices obtained by M-estimation [30].

The unknown x is then iteratively estimated using

x = −(J⊤WJ)−1J⊤W
[
eI eD

]⊤

T̂← T̂T(x),
(14)

where J contains the stacked Jacobian matrices of the errors

and W contains the stacked weighting matrices. More details

on such a minimisation can be found in [22].

Minimising both errors provides a lot of advantages since

photometric and depth information are complementary. In

practice the depth error usually offers a larger domain of

convergence and fast minimisation. It also allows to track

texture-less areas, but is sensitive to noise and may encounter

unconstrained scenes. On the other hand, the photometric term

allows to track any textured areas with a better precision [21].

C. Super-resolution

Since the matrices C(t) and C̃(t) are diagonal, minimising

equation (10) w.r.t. the photometric parameter I∗ can be done

independently as new LR images I(t) are registered and

warped onto the SR frame. The update rule is then:

C∗(t)← C∗(t− 1) +C(t)
I∗(t)←

(
C∗(t− 1)I∗(t− 1) +C(t)Iw(t)

)
C∗(t)−1 ,

where C∗(t− 1) is the global intensity cost at time t− 1 and

Iw(t) is the warped current image after registration. The same

procedure is applied for the depth parameter D∗

C̃∗(t)← C̃∗(t− 1) + C̃(t),

D∗(t)←
(
C̃∗(t− 1)D∗(t− 1) + C̃(t)Dw(t)

)
C̃∗(t)−1.

IV. EXPERIMENTS

A. Real-time implementation

A real-time implementation of the super resolution tracking

and mapping algorithm was implemented on the GPU using

OpenCL. The algorithm runs at 30 Hz with low resolution

input images of size 640×480 pixels and a 4× super-resolution

factor on a Nvidia GTX 670 card. The up-scaling factor of

s = 4 was chosen for real-time purposes but theoretically it is

only limited by the Cramer-Rao lower bound.

The entire tracking and mapping pipeline is performed on

the GPU, except insignificant linear algebra computations such

as the pose matrix update in (14) which is performed on

the CPU. A coarse to fine multi-resolution pose estimation

approach is employed as detailed in [13]. Since the RGB-D

sensor usually provides noisy depth measurements, a bilateral

filter is applied to remove noise whilst preserving discontinu-

ities. The filtered depth-map is only used for pose estimation,

whilst the raw depth-map D is used for depth integration, in

order to preserve details in the integration process.

B. Simulated results

The algorithm has been tested on a synthetic sequence

of images and depth-maps of dimensions 640 × 480 with

ground truth poses, generated from the Sponza atrium model1.

The sequence is a 20 meter corridor with textured surfaces

and complex geometry. The reference image is taken at the

beginning of the sequence and then the camera moves along

the corridor (see Figure 3). To simulate realistic data, the input

depth-maps are perturbed with a Gaussian noise using the

1Sponza atrium model, Dabrovic, M and Meinl, F., 2002
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Fig. 3. Absolute translation error with respect to the distance to the reference
image. In red, LR tracking without depth and intensity integration. Note that
after 10 meters, the LR tracking is not able to track correctly the current image.
In green SR tracking with the combination coefficients (C = I) (equivalent
to averaging). In blue the proposed approach. Both SR algorithms reduce the
localisation error but the proposed approach clearly outperforms the standard
averaging model.

model of equation (9), setting (σd = 0.1, f = 530, b = 0.075).
These values where chosen to match the Asus Xtion cali-

bration parameters. The input images are automatically low-

passed filtered by the rendering pipeline through mip-mapping.

Three experiments are conducted: First simple tracking is

performed without using super-resolution mapping. Then the

sequence is tracked with the proposed SR algorithm (scale

factor s = 4) but only averaging is performed on the intensity

(C(t) = I). Finally SR is performed using the proposed

weighting function (8) which takes into account the camera

poses and the scene structure.

The plot reported in Figure 3 shows the absolute translation

error of the current frame Tt with respect to the ground truth

Tt for each experiment. It can be seen that the SR approach

clearly improves the localisation error, by integrating new

information as the camera moves along the trajectory. The

proposed weighting function also outperforms the standard

average, especially when the camera approaches the surface

at the end of the corridor. Note that the error peak around

x = 18 is due the presence of new occlusions (the camera is

going under a porch).

C. Experimental results

The visual SLAM algorithm has been successfully tested on

a number of real scenes in real-time. The images of Figure 4

report the results of an experiment performed in an office

containing a desk, with different objects and books. The RGB-

D camera used for this experiment is a calibrated Asus Xtion

Pro Live, capturing low resolution images of 640×480 pixels

at 30Hz. Super-resolution SLAM is performed in real-time

with a scale factor s = 4. A first reference image is taken at

the beginning of the sequence and the camera is moved around

the desk with different motions.

The final super-resolved reference image after optimisation

is shown on Figure 4(a). The Figures 4(b) and 4(c) show the

Phong shaded surfaces computed from the depth-maps and the

surface normals. It can be seen that compared to the original

depth-map, the SR one is much more detailed and less noisy.

The second row of Figure 4(a) shows a region of interest of

the reference image. Figure 4(d) is extracted from the original

LR image, Figure 4(e) is obtained using an averaging of the

intensities and Figure 4(f) is obtained using the proposed

weighting function. We can visually see that the SR images are

highly detailed compared to the original one. The competing

averaging approach yields blurry reconstructions since each

measurement is averaged independently of the sensor pose,

whilst the proposed method produces detailed sharp images.

Thanks to the photometric error, the proposed approach also

allows to keep tracking and integrating intensities when the

depth camera is totally occluded or too close to the scene (the

Asus Xtion minimum range is 30cm) which is not possible

with pure ICP techniques such as [18]. Note that the proposed

approach is easily applied to any RGB-D sensor including

passive stereo, and that larger scenes can be handled as in [13],

[15]. Other aspects of this visual SLAM method, such as the

ability to track during very rapid motion, or its robustness to

camera occlusions are illustrated in the accompanying video2.

V. CONCLUSION

In conclusion, this paper has proposed a new super-

resolution visual SLAM technique which integrates 6DOF

pose and dense structure simultaneously with the colour infor-

mation contained in the images of a RGB-D sensor over time.

A novel inverse model has been provided for creating a super-

resolution map from many low resolution images based on a

3D distance criteria which weights the difference in resolution

between the low and high resolution images. Additionally this

paper shows the importance of minimising both colour and

depth errors compared to current ICP approaches which only

minimises depth. Experimental results are given showing that

this technique runs in real-time (30Hz) and is able to map large

scale environments in high-resolution whilst simultaneously

improving the accuracy and robustness of the tracking.

Future research in this direction will be focused at using the

resolution distance criteria proposed here to better choose the

position of the key frames in space. It would also be interesting

to use this approach to take into account illumination changes

on the surface within a dynamic model.
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