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Abstract—In this work, a new method is introduced for
localization and keyframe identification to solve a Simultaneous
Localization and Mapping (SLAM) problem. The proposed
approach is based on a dense spherical acquisition system that
synthesizes spherical intensity and depth images at arbitrary
locations. The images are related by a graph of 6 degrees-of-
freedom (DOF) poses which are estimated through spherical
registration. A direct image-based method is provided to estimate
pose by using both depth and color information simultaneously.
A new keyframe identification method is proposed to build the
map of the environment by using the covariance matrix between
raletive 6 DOF poses, which is basically the uncertainty of the
estimated pose. This new approach is shown to be more robust
than an error-based keyframe identification method. Navigation
using the maps built from our method also gives less trajectory
error than using maps from other methods.

Index Terms—SLAM, spherical system, keyframe identifica-
tion, covariance matrix.

I. INTRODUCTION

S
IMULTANEOUS Localization and Mapping (SLAM) has

been one of the most discussed research topics in the

domain of autonomous robotics. In the general visual SLAM

problem, the camera pose and environment structure are esti-

mated simultaneously and incrementally using a combination

of sensors. A visual SLAM approach is interesting in a wide

range of robotics applications where a precise map of the

environment does not exist.

In the last decade, many methods have been explored to

perform robust full translation and rotation (6DOF) localiza-

tion and mapping. In particular, some of the visual SLAM ap-

proaches [1], [2] have used feature-based techniques combined

with depth and pose estimation. Unfortunately, these methods

are still based on error-prone feature extraction techniques.

Furthermore, it is necessary to match the features between

images over time which is also another source of error since

feature mapping sometimes is not necessarily one-to-one.

One can also refer to appearance and optical flow based

techniques to avoid the feature-based problems, by directly

minimizing the errors between image measurements. Methods

that have similar approach like this fall into the category of

image-based or direct methods. One of the earlier works [3]

uses a planar homography model, so that perspective effects

or non-planar objects are not considered. Recent work [4], [5]

uses a stereo rig and a quadrifocal warping function which

closes a non-linear iterative estimation loop directly with

images. Visual odometry methods are however incremental

and prone to small drifts, which when integrated over time

become increasingly significant over a large distance.

A solution to reduce drift in visual odometry is to use image-

based keyframe techniques such as in [6], [7], where each pose

is estimated with respect to a reference image (keyframe) that

has been acquired from learning phase. This is one of the

solutions for mapping problem in SLAM, where the environ-

ment is represented by a set of connected image keyframes.

This approach is also referred to as graph-based SLAM. Most

of the work in this domain focused on the back-end which

optimizes the obtained graph, such as the method in [8] that

performs pose graph optimization by exploiting the sparseness

of the Jacobian of the system. However, such methods do not

investigate the importance of a keyframe, subsequently do not

reduce the number of keyframes. Traditionally, the choice of

keyframes is solely based on the travelled distance by the robot

or the passing time in between keyframes. This is, however,

not the best way to select, from an image sequence, the best

images to build the structure of the environment. In the earlier

work [9], a statistical approach to identify keyframes using a

direct-method was proposed, which is based on the median

absolute deviation (MAD) of the residuals. The drawback of

this method is that it depends on a threshold value that does

not apply for all types of sequences, so that different values

are given for different kind of environment, making the map

learning process totally empirical.

In the last few years, dense techniques have started to

become popular. In particular, an early work [10] performing

dense 6DOF SLAM over large distances was based on warping

and minimizing the intensity difference using omnidirectional

spherical sensors. Alternatively, other approaches have focused

only on the geometry of the structure [11]. However, these

techniques limit themselves either to photometric optimization

only or to geometric information only. Dropping one or the

other information means that there are important characteris-

tics from the complete information that are being overlooked

which might degrade in terms of robustness, efficiency and

precision.

More recently, some techniques have considered to include

both photometric and geometric information in the pose esti-

mation process. In [12], a direct ICP technique was proposed

which minimizes the error of both information simultaneously.

Unfortunately, the approach is not well constrained in the

technique because the minimization of the geometric error is

only performed on the Z-component of the scene, not the

whole 3D component. In this paper, it is argued that the
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error minimization should incorporate all information provided

from an omnidirectional spherical camera system, i.e. the

photometric and depth (thus, 3D geometric) information, as

also proposed in [10], [9]. By using all data, it is ensured

that nothing will be overlooked while performing localization.

The main contribution of this paper is to investigate a new

keyframe identification method for graph-based SLAM that

can be applied to general visual SLAM problem. However, in

this case, a model of the environment is built by incrementally

selecting a subset of the images from the learning sequence

to be our reference spheres.

II. SPHERICAL TRACKING AND MAPPING

An environment will be represented as a graph containing

nodes that correspond to robot poses and to all information

obtained from those poses, as laid out in [10]. Every edge

between two nodes corresponds to the spatial constraints

between them. The 3D model of the environment is defined by

a graph G = {S1, ..,Sk;x1, ..,xm} where Si are augmented

spheres that are connected by a minimal parameterisation xi

which is the 6 degree of freedom (DOF) velocity twist between

two spheres, expressed in exponentional map. For every sphere

S , it is defined by a set of {I,Q,Z} where

• I = {i1, . . . , in} is the spherical photometric image.

• Z = {z1, . . . , zn} is the depth image.

• Q = {q1, . . . ,qn} is a set of equally spaced and

uniformly sampled points on unit sphere where q ∈ S2

is expressed in spherical coordinate system (θ, φ, ρ) and

belongs to a unit sphere (ρ = 1)

A. Localization

Robot motion can be represented by a transformation T(x)
that takes the parameter x that consists of two vectors rep-

resenting: translation velocity v =
[
vx vy vz

]T
and

rotation velocity ω =
[
ωx ωy ωz

]T
. The parameter

x ∈ R
6 is defined by the Lie algebra as x =

∫ 1

0
(ω,v) dt ∈

SE(3) which is the integral of a constant velocity twist which

produces a transformation T. The transformation and twist are

related via the exponential map as T(x) = e
[x]

ˆ , where the

operator [.]
ˆ

is defined as follows:

[x]
ˆ
=

[
[ω]× v

0 0

]
(1)

where [.]× represents the skew symmetric matrix operator.

For localization of a sphere S , an initial guess T̂ =
(R̂, t̂) ∈ SE(3) of the current vehicle position with respect

to a reference sphere S∗ = {I∗,Q∗,Z∗} is available, where

R̂ ∈ SO(3) is a rotation matrix and t̂ ∈ R
3 is a translational

vector. Since it is assumed that the initial guess T̂ is available,

the tracking problem boils down to the estimation of an

incremental pose T(x) such that T̄ = T(x)T̂, where T̄ is

the estimated pose of the current sphere.

The pose and the trajectory of the camera can be estimated

by minimizing a non-linear least squares cost function[13]:

C(x) = eTI eI + λ2
Pe

T
PeP (2)

where, for every pair of spherical point and depth

{q∗
i , z

∗
i } ∈ S

∗:

eI =



I
(
w
(
T̄;q∗

1, z
∗
1

))
− I∗ (q∗

1)
...

I
(
w
(
T̄;q∗

n, z
∗
n

))
− I∗ (q∗

n)


 (3)

eP =




(
R̄n∗

1

)T (
P̄
(
w
(
T̄;q∗

1, z
∗
1

))
− T̄P̄∗

1

)

...(
R̄n∗

n

)T (
P̄
(
w
(
T̄;q∗

n, z
∗
n

))
− T̄P̄∗

n

)


 (4)

where eI is a vector containing the intensity errors, eP is a

vector containing the structural errors, Pi is the i-th 3D point

on the current sphere, P̄∗
i is the homogeneous coordinate of

P∗
i on the reference sphere, n∗

i is the surface normal at point

P∗
i , R̄n∗

i is the normal at point T̄P̄∗
i , and w(.) represents the

warping of a 3D point from a sphere to another, as shown in

Figure 1.

x
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P

q1

q2

x

z

y

θ
φ

R,t

Figure 1. Illustration of spherical warping where the warping goes from S1

to S2 and P is a 3D point in the coordinate frame of S1.

The localization can now be considered as a minimization

problem. The aim is to minimize simultaneously the cost

function in an accurate, robust and efficient manner. Using

an iterative approach, the estimate is updated at each step by

a homogeneous transformation T̂ ← T(x)T̂. Using Gauss-

Newton algorithm, the pose update x can be obtained itera-

tively from:

x = −(JTJ)−1JT

[
eI

λPeP

]
(5)

where J is the Jacobian of the cost function which is its

derivative with respect to the 6DOF twist, and (JTJ)−1JT

is the pseudo-inverse of the Jacobian. The Jacobian can be

expressed as J(x) =

[
JeI

λPJeP

]
. By using chain rule, one

can rewrite the Jacobian into more modular parts:

JeI = JIJwJTP∗ (6)

JeP = △PT JRn∗ +
(
R̄n∗

)T
(JPJwJTP∗ − JTP∗ )(7)

where:

• JI is the intensity gradient with respect to its spherical

coordinate position (θ, φ). It is of dimension n × 2n.
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In [10], an efficient way to compute JI using efficient

second-order minimization is presented. The same tech-

nique is applied in this paper.

• Jw is the derivative of Cartesian to spherical conversion

function. It is of dimension 2n× 3n.

• JTP∗ is the derivative (velocity) of point transformation

with a dimension 3n× 6.

• JP is the 3D point gradient with respect to its spherical

coordinate position (θ, φ). It is of dimension 3n× 2n.

• △P is the difference between the transformed points and

the warped points
(
P̄w − T̄P̄∗

)

• JRn∗ is the derivative with respect to the normal rotation.

It is of dimension 3n× 6.

B. Robust Estimation

During the navigation, the environment can vary between

the keyframe and the current images due to moving objects,

illumination changes and occlusions. To deal with them, a ro-

bust M-estimator is used. The idea of M-estimator is to reduce

the effect of outliers by replacing the residuals with another

function of the residual. After applying the M-estimator to the

residual, the pose update x can be obtained from:

x = −(JTWJ)−1JTW

[
eI

λPeP

]
(8)

where W is the weighting matrix where the diagonal

corresponds to the weight computed by the weight function

[14].

III. KEYFRAME IDENTIFICATION

In graph-based SLAM, selecting keyframes (i.e. reference

spheres in this case) to be put as nodes in the final map

is an important step. Taking too many references will cause

the system to suffer from a high accumulated error because

every time a new reference is taken, the residual error of

the new reference will always be integrated in the following

pose estimates, resulting in an accumulated drift. The error

can be due to interpolations, occlusions, illumination change,

and the dynamic of the environment (e.g moving cars). Yet

needless to say, taking a new reference is also necessary to

perform localization because the already mapped reference

image goes out of view over large distances. Several strategies

for keyframe selection will now be presented.

A. Median Absolute Deviation (MAD) [9]

One technique to achieve this goal locally is to observe the

statistical dispersion of the residual error e obtained from the

pose estimation process. The most common way to measure

this is by computing the standard deviation (STD). However,

the standard deviation is not a robust method because of its

sensitivity to outliers. The MAD, on the other hand, is one of

the simplest robust methods. It has a breakdown point of 50%,

which means that the measurement still holds up close to 50%
contamination of outliers, while STD has 0% breakdown point

since a single large outlier can throw it off.

A new reference sphere is then placed according to the

MAD of the weighted error:

γ < med(|We−med(We)|) (9)

where med(.) is a function to extract the median of data

and γ is the threshold for keyframe placement decision.

This approach is computationally cheap and optimized in

many frameworks, resulting in a possibility to be applied for

real-time applications. However, the criterion signifies that a

new reference should be taken when the robust variance is too

high, while ’too high’ is an open statement. A drawback of this

criterion is that we need to define a value to be the threshold.

This process is totally empirical based on experiments and

highly dependent on the characteristics of the sequence. Note

that MAD can be applied to univariate data, hence the MAD

is applied only on the intensity error since there isn’t a good

way to merge the two errors into the same scale and unit.

B. Incremental Ellipsoid

In the pose estimation process, one can compute the un-

certainty of the estimation by using the covariance matrix. We

propose a method that further observes the error ellipsoid. The

orientation of the ellipse can be obtained by computing the

eigenvector of the sub-covariance matrices. The orientation of

the ellipsoid is, however, not used in the proposed criterion

since the orientation of the error is invariant because it is

based on the magnitude of the uncertainty. Instead, the semi

axes s =
[
sx sy sz

]T
of the error ellipsoid are more

interesting to monitor since they are directly connected to the

magnitude of the uncertainty. A new keyframe will be added

to the map whenever:

∥∥st|t∗
∥∥ >

∥∥st|t−1

∥∥+
∥∥st−1|t∗

∥∥ (10)

where st|t∗ are the semi-axes resulting from warping the

current sphere to the reference sphere, st|t−1 are the semi-

axes for warping the current sphere to the previous current

sphere, st−1|t∗ are the semi-axes for warping the previous

current sphere to the reference sphere. The diagram of the

comparison is shown in Figure 2.

S* St-1
St

Et-1|t*

Et|t-1

Et|t*

Tt|t*

Tt-1|t*
Tt|t-1

Figure 2. Illustration of incremental ellipsoid criterion

C. Symmetric Ellipsoid

The incremental error ellipsoid is, however, biased to the

direction of computing the sequence. It is almost certain that

if the direction of the exploration is inverted (i.e moving from
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the end to the beginning of the sequence), the selected nodes

will not be the same. This shows the method for selecting

reference spheres is not based on the underlying information

in the measurement, but depends on the computation order. If

it is assumed that the complete sequence and its connectivity is

already acquired (before the map learning is performed), a less

biased method can be implemented. Instead of selecting the

references incrementally, all the images in the sequence will

initially be considered as references in the graph. In order to

get the best nodes symmetrically, a symmetric comparison is

added in the three-node groups. In this case, both forward and

backward uncertainty is considered, as shown in Figure 3. The

inequality in Equation 10 is now:

∥∥st|t∗
∥∥+

∥∥st∗|t
∥∥ >

∥∥st|t−1

∥∥+
∥∥st−1|t∗

∥∥+
∥∥st∗|t−1

∥∥+
∥∥st−1|t

∥∥
(11)

S* St-1
St

Et-1|t* Et|t-1

Et|t*

Et*|t

Et-1|t
Et*|t-1

Figure 3. Illustration of symmetric ellipsoid criterion

IV. EXPERIMENTS

A. Experimental Setup

To test the method, four synthetic sequences have been

made. These sequences simulate indoor environment, however

the system is designed to work in both outdoor and indoor

environments. The detail of the sequences can be seen in

Table I and some images are shown in Figure 4. The first

two sequences are used to build the map and the last two

are used during the map testing phase. We will compare the

performance of our keyframe identification methods with the

MAD criterion. In this experiment, two MAD thresholds γ are

used: 8 and 12.

(a) (b)

Figure 4. Image with (a) spherical and (b) diffuse illumination

Our quantitative evaluation involves the number of refer-

ences during the map building as well as the trajectory error

with respect to the ground truth that can be computed from:

△T = T̃−1T̂ (12)

where T̃ is the ground truth and T̂ is the estimated pose.

The 6 DOF error between the estimated and the ground truth

Table I
SEQUENCE DATA

Seq #Images Size Illumination Distance Traveled

1 1549 1024×512 Spherical 142 m

2 1549 1024×512 Diffuse 142 m

3 1400 512×256 Spherical 169 m

4 1400 512×256 Diffuse 169 m

can be obtained by computing the logarithmic map of △T,

such that △x = log (△T). The trajectory error △x will be

a 6-element vector that caintains the difference of translation

velocity △v and rotation velocity △ω.

B. Map Building Result

From Table II, it can be seen that there is a huge increase of

number of references in the maps using MAD criteria on the

sequence with spherical illumination (Sequence 1) compared

to the sequence with diffuse illumination (Sequence 2). This

is inevitable due to the higher intensity error introduced in

the Sequence 1, meaning that the MAD threshold is easily

reached after only a few images. The number of references

using the incremental ellipsoid criterion, however, does not

vary much with respect to the change in illumination: 32 and

30 for Sequence 1 and 2 respectively. In contrast, the number

of keyframes in the maps using the MAD criteria varies with

changes in lighting condition: 30 to 150 for MAD-8, and 19

to 77 for MAD-12.

From this result, it can be seen that the ellipsoid criteria are

better in terms of automatically choosing a consistent number

of references for both types of sequences because it does

not include a scalar threshold that has to be tuned before

map learning process. In other words, the value 8 or 12 is

not the best threshold value for the MAD criterion to select

keyframes from Sequence 1. This verifies our argument that

the MAD has a disadvantage due to its threshold that needs to

be adjusted depending on the condition on the sequence, unlike

the ellipsoid-based criteria that do not need any adjustments.

To observe the pose error, we can refer to Figure 5 that

shows graphs of the chosen keyframes index against their

pose error. If we look closely on the graphs, keyframes in

the maps built by using the MAD are rather uniformly picked

along the sequence. On the other hand, the ellipsoid criteria do

not behave the same way and pick more keyframes at certain

points along the sequence. These are the points where the robot

is taking a turn and going to another corridor. By doing such

turns, there will be a lot of new information introduced in the

sequence and naturally it is favorable to take new keyframes

when a lot of new information is introduced. The implication

of this new information in the sequence is that higher error

and higher uncertainty will be computed, resulting in more

keyframes during the turns. However at some other points, the

criteria pick less keyframes. This is the counter part of taking

a turn which is going through a straight trajectory. Since we

are working with a dense spherical system, going through such

straight trajectory (in a corridor) does not introduce a lot of

new information in the images. So, the criteria will only decide
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to take a new keyframe when the interpolation error starts to

decrease the accuracy of the tracking system.

Table II
MAP BUILDING RESULT

Seq. Criterion #Ref Avg. transl. err. (m) Avg. rot. err.

1

MAD-8 150 0.1972 0.0183
MAD-12 77 0.1484 0.0121
Inc. ell. 32 0.0979 0.0065

Sym. ell. 33 0.0982 0.0055

2

MAD-8 30 0.0999 0.0091
MAD-12 19 0.1045 0.0086
Inc. ell. 30 0.0814 0.0066

Sym. ell. 34 0.0983 0.0061
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Figure 5. Keyframe’s translational error for: (a) Sequence 1 and (b) Sequence
2. The rotational error is similar.

So far, we can conclude that in Sequence 1 the two ellipsoid

criteria are superior compared to the MAD, in terms of

number of references and pose error. Almost at every point

in the maps obtained by ellipsoid criteria, the keyframes’

pose error is less than the ones by the MAD. Although it

is also the case for Sequence 2, we can not conclude yet

whether the ellipsoid criteria are better than MAD criteria

since the keyframes’ pose error is not very different in the

maps. However, we can see in Figure 6 that the reconstructed

structures using ellipsoid criteria are slightly better, as the

reconstructed structures of the second floor from MAD criteria

are slightly slanted compared to the ground truth because the

MAD criteria give more rotational error in the maps compared

to the ellipsoid criteria. This can be the effect of reference

placement choice by the criteria which has been mentioned

previously, in which ellipsoid criteria select more keyframes

on the turns than on straight trajectories. The reconstructed

structures from Sequence 1 also have similar results, in which

the structures reconstructed using MAD criterion are slanted

compared to the ellipsoid criteria.
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Figure 6. Map quality on the second floor in the order of MAD-8, MAD-
12, incremental, and symmetric ellipsoid ((a),(b),(c),(d)) on Sequence 2. The
structure in green is the ground truth.

C. Map Testing Result

The first noticeable result from the trajectory error in Figure

7 is that there are a lot of spikes in the translational error graph.

These spikes are caused by the changing of reference during

navigation because the minimiziation process is still biased to

the previous reference. This can be avoided by taking multiple

keyframes simultaneously as references during navigation,

as mentioned in [13], such that when a new reference is

considered, change is not so radical since other references are

kept during reference switching.

Referring to the trajectory error for environment with

spherical illumination (Sequence 3) in Figure 7-a, it can be

seen that tracking with the maps obtained by using MAD

gives higher error. This drift is naturally caused by the

reference pose error during the map learning. In addition to

higher pose errors, other problems might appear in maps with

high number of keyframes. Such maps make creating edges

in the graph challenging, making it necessary to consider

more sophisticated methods to build the connections between

keyframes. With a high number of keyframes, they can be

easily connected by false connections (false loop closures).

These wrong connections can lead to wrong changes during

navigation process, which will result in failure in tracking and

higher trajectory errors.

The incremental and symmetric ellipsoid methods seem to

perform equally well, with slightly better performance from

incremental ellipsoid, except at the end of the sequence. This

might be the result of bias in direction. The incremental

ellipsoid only considers one direction of the trajectory during

learning which is the same direction as the testing sequence.

So, the minimization scheme favors the incremental ellipsoid

more than the symmetric ellipsoid.

If the case with diffuse illumination is considered, as shown

in Figure 7-b, the performance of all four criteria pretty much
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the same. Even so, at some points the ellipsoid criteria perform

better than the MAD criteria and vice versa. This is highly

related to the reference pose estimation error during the map

building phase.

Table III
MAP TESTING RESULTS

Seq. Criterion Avg. transl. err. (m) Avg. rot. err.

3

MAD-8 0.2026 0.0161
MAD-12 0.1706 00116
Inc. ell. 0.1193 0.0077

Sym. ell. 0.1207 0.0065

4

MAD-8 0.1247 0.0102
MAD-12 0.1292 0.0088
Inc. ell. 0.102 0.0069

Sym. ell. 0.1241 0.0065

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

Image index

T
ra

ns
la

tio
n 

E
rr

or
 (

m
et

er
)

 

 
MAD 8
MAD 12
Ellipsoid
Sym Ellipsoid

(a)

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

Image index

T
ra

ns
la

tio
n 

E
rr

or
 (

m
et

er
)

 

 
MAD 8
MAD 12
Ellipsoid
Sym Ellipsoid

(b)

Figure 7. Translational error during navigation test on: (a) Sequence 3 and
(b) Sequence 4. The rotational error is similar.

V. CONCLUSIONS

A new spherical localization method was proposed that uses

all photometric and geometric information for dense visual

SLAM. A novel keyframe identification method (incremental

ellipsoid) was proposed that incorporates the covariance ma-

trix and compares the uncertainty ellipsoid between spheres.

We have also extended it to work on symmetric navigation

paths within the pose graph (symmetric ellipsoid) to ensure

best selection of the keyframes. Although the MAD has the

advantage of computational efficiency, it has been shown that

the MAD has a drawback due to its scalar threshold value that

needs to be adjusted accordingly to the characteristics of the

sequence. On the other hand, the proposed methods don’t need

this adjustment and have better statistical properties, in terms

of number of references as well as the quality of the maps. It

has been shown that the method is more robust to variations

in the lighting condition of the map.

There are still several aspects that remain to be explored

within the proposed model. All the criteria presented in this

paper are still biased to the first image in the sequence since

it has to be included in the final map. By combining the

symmetric ellipsoid criterion and loop-closure detection during

keyframe identification, this bias can be eliminated since the

first keyframe can be pruned during the map building phase. It

has been mentioned beforehand that the work presented here

is just improving the front-end of the graph-based SLAM.

Some testing should also be done after applying it to the back-

end. By doing this, the graph optimization method that will

adjust the position of the nodes in the graph accordingly to its

constraints. However, no pruning is needed since the selected

nodes are already optimized in the mapping process.
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