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Figure 1: Realistic HDR reflections on several virtual objects with shadow casting, rendered in real-time from live video stream. The reflection
maps have been computed from a dense live reconstruction of the scene’s light-field.

ABSTRACT

Acquiring High Dynamic Range (HDR) light-fields from several
images with different exposures (sensor integration periods) has
been widely considered for static camera positions. In this paper a
new approach is proposed that enables 3D HDR environment maps
to be acquired directly from a dynamic set of images in real-time.
In particular a method will be proposed to use an RGB-D cam-
era as a dynamic light-field sensor, based on a dense real-time 3D
tracking and mapping approach, that avoids the need for a light-
probe or the observation of reflective surfaces. The 6dof pose and
dense scene structure will be estimated simultaneously with the ob-
served dynamic range so as to compute the radiance map of the
scene and fuse a stream of low dynamic range images (LDR) into
an HDR image. This will then be used to create an arbitrary num-
ber of virtual omni-directional light-probes that will be placed at
the positions where virtual augmented objects will be rendered. In
addition, a solution is provided for the problem of automatic shutter
variations in visual SLAM. Augmented reality results are provided
which demonstrate real-time 3D HDR mapping, virtual light-probe
synthesis and light source detection for rendering reflective objects
with shadows seamlessly with the real video stream in real-time.

Index Terms: Real-time rendering, photo-realistic rendering,
vision-based registration and tracking, MR/AR for entertainment.
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1 INTRODUCTION

Rendering virtual objects seamlessly in real-time video streams re-
quires both visually coherent and efficient rendering techniques.
Achieving this goal depends on several major criteria including ac-
curate estimation of the pose between the camera and the scene,
correctly handling occlusions between objects and generating re-
alistic lighting conditions. Whilst large advances have been made
in both computer graphics for illumination and in computer vision
for structure and motion, fewer papers have looked at the difficult
topic performing 6D pose, dense structure and complex illumina-
tion estimation in real-time. Efficient lighting models should not
only make pose estimation and mapping approaches more robust
and accurate but also enable realistic illumination of virtual ob-
jects for Augmented Reality (AR). In particular, real-time AR with
photo-realisitic rendering of virtual objects is far from current state-
of-the-art computer graphics approaches.

Lighting is one of the most important subjects in the field of 3D
graphics and modelling it correctly adds a lot to the visual appeal of
the rendered scene. Modern computer graphics approaches exist for
real-time realistic rendering and illuminating scenes based on accu-
rate models for lighting, textures and bidirectional reflectance dis-
tribution functions (BRDFs). The basic light encompasses Ambi-
ent, Diffuse and Specular elements and rendering reflective surfaces
is often handled by an efficient reflection-map whereby a texture
is used to store the image of the environment surrounding the ob-
ject [14]. Note that in this paper the term ”reflection-map” is used to
define the ”2D environment-map” as widely known in the computer
graphics literature, whereas, ”scene-map” and ”3D environment-
map” will be used to refer to a 3D image-based model of the world.
In computer graphics, the reflection-map is usually assumed to be
distant or at infinity so that parallax effects can be neglected. One
of the best ways of obtaining high-quality data is through measure-
ments of scene attributes from real photographs, known as image-



based rendering or light-field rendering [19]. Inevitably, there is
always a trade-off between real-time rendering performance and
highly realistic rendering such that efficient image-based rendering
approaches have rarely been considered in real-time.

In computer graphics, the process of estimating the various
rendering attributes from photos is known as inverse rendering.
In [31, 32] a mathematical framework was proposed which de-
scribes reflected light as a convolution of the lighting with the
BRDF and expresses it mathematically as a product of spherical
harmonic coefficients. This approach is only well conditioned if a
reflective or specular surface is observed, however, it provides an
efficient representation for real-time diffuse shading. Several sur-
veys on inverse rendering are available including [29] and more
recently [17] where the various approaches to illuminating mixed
reality scenes are classified. Inverse rendering approaches have not
only considered recovering lighting parameters but also 3D struc-
ture estimation. In [5] a useful ”voxel” representation was proposed
for representing 3D worlds based on extending classic 2D image
grids to 3D and much effort has been invested in efficiently repre-
senting surfaces by truncated signed distance functions.

The problem of representing the dynamic range of a scene has
existed since the beginning of photography, however, early work
on compositing multiple LDR images to form an HDR image us-
ing electronic CCD sensor was pioneered by [21]. In this approach
multiple images, each with a different exposure times or shutter
speeds are used to capture a single radiance map covering a large
dynamic range. A common method of compositing is to estimate
the radiance by independently transforming each of the input im-
ages and combining the results using a weighted sum or per-pixel
non-linear optimisation [8]. Much of this research assumes that the
images have been acquired at the same time instant and real-time
computation is not considered. In [1], the comparametric camera
response function (CRF) was used to model the response of a vir-
tual HDR camera to multiple inputs using a lookup table. Whilst
efficiency was largely improved compared to direct computation
methods, it is still not real- time (20sec per image). More recently
HDR videos have been considered with processing achieved on spe-
cialised hardware. Finally, in [20] a real-time hardware based ap-
proach was proposed that triggers the acquisition of images with
different dynamic range sequentially in the video [20, 22].

In [6], scene radiance and illumination are measured to render
synthetic objects in real scenes with realistic lighting. The approach
uses an HDR image-based map of the scene for relighting rather
than synthetic light sources. In many approaches such as [6, 18, 28],
the global illumination is measured using a light probe. These ap-
proaches are non-passive and involve estimating the lighting using
probes such as omni-directional cameras that use mirrored balls or
wide angle fish-eye cameras. A stereo omni-directional light probe
was used in [34, 4] to acquire reflection-maps with depth. Only
static cameras are considered and it is assumed that the exposure
time of the cameras can be varied manually in order to acquire a
large dynamic range. This class of techniques is very cumbersome
and too invasive to be used in a real-time AR setting. Furthermore,
the light probe only measures the light-field from one point in space
and therefore the lighting environment is only approximated locally
around that point. If several virtual objects are required or a single
virtual object is displaced from the probe location then it is neces-
sary to have placed the light probe at all these positions beforehand,
otherwise the reflectance map is completely wrong.

More recently several approaches [42, 38] have been proposed
using multiple views with multiple illumination conditions allow-
ing virtual relighting of a scanned object. A multi-view 3D re-
construction algorithm is first applied using traditional multi-view
stereo algorithm. After this, the reconstructed model is relit through
an image-based relighting scheme for each camera view, followed
with view-independent texture mapping procedure. Whilst these

approaches show the fundamental properties of image-based re-
lighting, they are prohibitive and require complex apparatus along
with manual procedures to acquire an object. Whilst compositing
several real scans together (ie. a scanned scenes with scanned ob-
jects) is of high interest, the present paper does not aim to cover
this problem and the focus will be made on augmenting reality
with virtual objects and realistic relighting using dense 3D HDR
environment-maps.

Alternatively to inverse-rendering, if the light sources have been
detected in a scanned 3D map of the scene, it is then possible to con-
sider illuminating a virtual object placed in the scene. In this for-
ward lighting case, virtual light sources are placed in the scene and
used to cast light and shadows onto the virtual objects. An image-
based lighting (IBL) of the environment using a finite number of
point lights is a solution proposed in the literature that provides
realistic illumination. [7] proposes to use the Median Cut Algo-
rithm to subdivide an HDR image into regions of equal light energy
(or equal sum of pixel intensities), whereby each region represents
one estimated light source. Another approach is to use classic K-
means clustering [2] to segment the light sources from the HDR
image. In [10] both clustering and Median-cut methods are com-
bined. First a pre-processing step is used based on fuzzy C-means
to segment the image into three subtypes: Bright, Medium and Dim.
The Median Cut Algorithm is then applied independently on each
of the three images analyse the distribution of the light intensities.
With a real-time constraint, however, increasing the number of light
sources decreases the performance of these methods.

Whilst computer graphics has focused on inverse-rendering, the
geometrical aspects of visual perception have been much more
widely studied in the computer vision literature where the funda-
mental problem of structure and motion estimation from a set of
images is well defined. Image-based photometric rendering tech-
niques have previously been studied in the context of multi-view
structure from motion such as in [12], however, this approach is not
efficient enough to be run in real-time. With the advent of more
powerful hardware and improved methods, real-time approaches,
known as 3D tracking and mapping have been demonstrated which
allow new applications in Augmented-reality. Many techniques for
real-time localisation and mapping estimate the geometry from a
sparse set of features [15, 11, 37, 36]. Approaches in dense lo-
calisation and mapping [3, 27, 33, 41, 25], however, have shown
that dense 3D tracking can be performed in real-time using the full-
image. Few approaches, however, minimise both photometric and
geometric errors directly in the sensor space [39, 25]. In the present
context, knowing the scene geometry and the camera pose is quite
useful for relighting a virtual scene and casting shadows correctly
using image-based 3D environment-map.

Few approaches have been proposed which consider reflectance,
light source positioning, occlusions and shadow mapping simulta-
neously in real-time with a moving camera. In [18] and [30] it is
assumed that the camera observes a planar scene for which shadows
and occlusions are estimated for an augmented reality application.
More recently, [16] proposed to capture the light-field from a single
hand-held camera observing a specular planar surface. The esti-
mated environment map is then used to augment a planar surface
with an object in real-time. Dense mapping approaches [25], on
the other hand, are especially suited to handling arbitrary geometry
and provide much information for the inverse rendering pipeline,
however, they have been little exploited. In[13], a dense mapping
approach was proposed and the environment map was decomposed
using spherical harmonics, as proposed in [31]. This approach fo-
cuses on obtaining only very rough reflection-maps because reflec-
tive surfaces are used to replace the light-probe in order to acquire
a reflected illumination map at 5Hz frame-rate. In that case the
reflection-map is approximate and depends on observing reflective
surfaces in the environment which is not always possible.



Live 3D HDR 

tracking and mapping
Virtual light-field

synthesis

Real-time

rendering

LDR RGB-D

frames 

HDR 3D model 

HDR RGBD-frame
Camera pose

Reflection maps

Lights positions

LDR image

Soft shadows

HDR reflections

Glow

AR 

Display
Sec. 2 Sec. 3.1 Sec. 3.2

Figure 2: Augmented reality pipeline: A live stream of LDR images is input and a real-time AR video stream is output. Section 1 describes a new
approach to dense tracking and mapping that fuses LDR views into a 3D HDR Model. Section 2.1 presents how individual reflection-maps are
computed for any number of virtual objects. Section 2.2 details the rendering pipeline including reflective objects, shadows and glow.

Contributions

In this paper an approach is proposed which allows to directly esti-
mate a dense 3D HDR environment-model (up to scale) in real-time
and exploit that map for augmented reality relighting. Contrary to
classic 2D HDR approaches, which assume that the camera is static,
the approach proposed here will create a dense HDR scene-map in
3D from a live set of moving images. Furthermore, no light probe is
required, nor is it necessary to compute reflection-maps indirectly
via specular surfaces of the scene. Instead the approach consists
in extending recent real-time dense mapping and 6D tracking ap-
proaches based on an image-based key-frame model as proposed
in [3, 24] to directly observe and acquire the 3D environment-map
and subsequently the entire 4D light-field covering the amount of
light faring in every direction through every point in space. The
resulting dense 3D HDR map is therefore of much higher quality
than a single light probe and can be used to render virtual spherical
reflectance maps at any given virtual object positions. Moreover,
only a single 3D environment-map is required for the set of all vir-
tual object locations within that scene which differs to a light-probe
which has to be individually placed for each virtually rendered ob-
ject. Whilst the present paper is formulated around using stereo and
projective light RGB-D sensors, we also note highly relevant work
in [26] which proposes a graph of spherical RGB-D key-frames
which are ideally suited to the purpose of measuring light-fields.
Another contribution of the approach proposed here is that auto-
matic shutter variations are modelled and exploited to capture dense
HDR maps without the need to manually vary the exposure settings.

Additionally, to performing reflection mapping of virtual objects
in real-time, the dense 3D map is also used to detect light sources
for shadow rendering. Given a detected light source, virtual light
sources can be placed in the same pose so that shadows can be cast
from the virtual objects onto the dense map of the real world. In par-
ticular the approach proposed will estimate the position, direction
and intensity of a reduced number of light sources from an HDR
image. Two solutions proposed in the literature are implemented,
optimised for real-time performance and compared. The first being
the Median-cut algorithm for image-based lighting proposed in [7].
The second being to used a classic K-means algorithm [2] to seg-
ment the brightest regions in the HDR image.

The reader is invited to refer to Figure 2 for a global overview of
the full Augmented reality pipeline. In the next section an the dense
visual tracking and 3D HDR mapping approach will be introduced
and an illustration is given in Figure 3.

2 DENSE VISUAL TRACKING AND 3D HDR MAPPING

2.1 Sensor model

Consider a calibrated RGB-D sensor with a colour brightness func-
tion I : Ω× R

+ → L;(p, t) 7→ I(p, t) and a depth function D :

Ω×R
+ → R

+;(p, t) 7→ D(p, t), where Ω = [1,n]× [1,m] ⊂ R
2,

P = (p1,p2, . . . ,pnm)
⊤ ∈R

mn×2 ⊂Ω are pixel locations within the
image acquired at time t, and n×m is the dimension of the sen-
sor’s images and L = [0,1] is the normalised low dynamic range
luminance interval.

It is convenient to consider the set of measurements in vector
form such that I(P, t) ∈ L

nm×1 and D(P, t) ∈ R
nm×1. Note that t

and P may be omitted in these functions for clarity.

V = (v1,v2, . . . ,vnm)
⊤ ∈ R

mn×3 is defined as the matrix of 3D
vertices related to the surface according to the following point-
depth back-projection:

vi = K−1piD(pi), (1)

where K ∈ R
3×3 is the intrinsic matrix of the camera. pi are the

homogeneous pixels coordinates. For clarity, we will also consider
V to be a 3D vertex function such that V : Ω×R

+→ R
3;(p, t) 7→

V(p, t). The set I = {I,V} is therefore defined to be an augmented
image containing both intensities and vertices for each pixel.

2.2 Image-based 3D model

The 3D representation considered here is based on a graph of N
augmented images G = {I ∗1, . . . ,I

∗
N}, where each node of the

graph is the 6 dof twist x = (υυυ ,ωωω) ∈ R
6 that connects two images.

The twist is related to a 3D pose T = (R, t) ∈ SE(3) via the

exponential map as T = e[x]∧ with the operator [.]∧ as:

[x]∧ =

[
[ωωω]× υυυ

0 0

]
, (2)

where [.]× is the skew symmetric matrix operator, R ∈ SO(3) is a
rotation matrix and t ∈ R(3) a translation vector.

As proposed in [25], this 3D model is build incrementally in
a SLAM approach, and is used to predict a dense virtual image
by rasterising and blending nearby key-frames at a desired camera
pose within the model. The predicted augmented reference frame
denoted I

∗ = {I∗,V∗} can then be used to perform a dense regis-
tration with a current live frame I . A superscript ∗ will be used
throughout to designate the predicted reference view variables.

2.3 Low dynamic range registration

This is the classic case used for image-based realignment for which
it is assumed that the exposure of the camera remains fixed [3]. The
objective here is to register a current image I with an augmented
reference image I

∗ predicted from the 3D model, where I is un-

dergoing a full 3D transformation T̃. The aim is to estimate the
incremental twist transformation x that satisfies

T̃ = T̂T(x), (3)

where T̂ is an initial pose estimate of T̃ (ie. initialised from the
previous frame).
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Figure 3: High level HDR tracking and mapping pipeline. A live RGB-D frame is registered to a 3D HDR map by estimating the pose and shutter
values. The incoming LDR images are then fused with the HDR map to improve the dynamic range. A HDR environment map is available as
output for rendering purposes. On the right, a graph of key-frames is displayed in the image, with the edges of the graph in violet.

Assuming brightness consistency and that both I and I∗ have the
same exposure, the 6 dof unknown x can be estimated by minimis-
ing the following non-linear intensity error:

e(x)ldr =
[

I
(

w(T̂T(x),V∗)
)
− I∗(P∗)

]
, (4)

where the warping function w(T̂T(x),V∗) warps the vertices V∗,
associated with the back-projected pixels P∗ from equation (1),

with the transformation T̂T(x) onto the normalised image plane:

pw = KΠΠΠT̃v∗. (5)

The matrix ΠΠΠ = [I3×3,0] ∈ R
3×4 projects 4 vectors onto 3 space.

An overline will be used to indicate homogeneous coordinates nor-
malised wrt. the last component. One difference with respect to
classic approaches is that each LDR image is normalised in a range
[0,1] instead of [0,255] for an 8 bit image.

2.4 High dynamic range registration

Now consider that the 3D key-frame model contains high dy-
namic range images, hence the reference image intensities are not
clamped: I∗hdr ∈ [0,∞]. The scene irradiance E, which is indepen-
dent of the camera transformations, is related to its corresponding
pixel intensities I by the following camera response function:

I = cr(E∆t) (6)

where the inner term corresponds to the light-exposure E∆t in units
Jm2, received by the sensor during the exposure time, ∆t. As
in [8] we use the term irradiance, however, the quantity is actually
weighted by the spectral response at the sensor site.

In this work it is assumed that the exposure setting ∆t of the cam-
era is unknown. If the electronic shutter or exposure time is varied
(automatically or manually) over time between different captured
images then it is still possible to estimate the relative exposure time

α = ∆t1
∆t2

between two subsequent frames. If an exact exposure time

is available then it is possible to recover the irradiance.
For real-time performance it is assumed here that the camera re-

sponse function (CRF) is simple non-linear function:

Ĩ = (E∆t)γ (7)

where γ is the gamma correction factor which can be chosen man-
ually or is usually provided by the constructor. For the remainder
of the paper it will be assumed that the gamma correction has been

removed from the sensor images such that I = Ĩ
1
γ .

The classic LR intensity error can then be re-formulated as:

e(x)hdr =
[

I
(

w(T̂T(x),V∗)
)
− (α̂ +α)I∗hdr(P

∗)
]
, (8)

where α̂ +α is the unknown shutter estimate that linearly maps an
HDR intensity to an LDR intensity. α̂ is the initial value (initialised
from the last estimate) and α is the increment (initially α = 1).
Note that in the formulation of this objective function, the error is
bounded by the LDR image space (even if the values remain float-
ing point and thus HDR). This choice is somewhat arbitrary (the
error could have been minimised in HDR space) but it allows in
practice to maintain a known bound on the error I ⊂ [0,255]. In
practice a depth error can also simultaneously minimised with the
intensity (see [25]) but for clarity this will not be detailed here. In
particular, choosing a bounded error function allows to avoid tuning
the weighting between intensity and depth components.

The unknowns x and α are estimated using a standard re-
weighted Gauss-Newton approach:

[
x α

]
=−(JT WJ)−1JT Wehdr, (9)

where W is a diagonal weighting matrix of dimensions nm×nm ob-
tained by robust M-estimator based on Huber’s influence function
which rejects un-modelled data such as moving object occlusions
and local illumination changes. The nm× 7 Jacobian matrix J is
computed using an efficient second order approach as in [35]

J =
1

2

[
Jesm Iw + I∗hdr

]
(10)

where Jesm ∈ nm×6 is the Jacobian of x computed as in [3]. Iw +
I∗hdr ∈ nm× 1 is the Jacobian matrix of α and Iw is the warped
image of equation (8).

The homogeneous pose estimate T̂ and the linear gain α̂ are fi-
nally updated incrementally using the following updates:

{
T̂← T̂T(x)
α̂ ← α̂ +α

(11)

and the minimisation is iterated until x and α are sufficiently small.

2.5 3D High dynamic range mapping

Once the current camera pose and shutter increments have been
estimated with respect to the HDR space, the goal is to update the
3D model with new HDR measurements. The current image can be
converted to the common HDR space using the estimated gain α :

Ihdr =
I

α
. (12)

Similarly to the super-resolution fusion approach in [25], the cur-
rent frame in HDR space I hdr = {Ihdr,V} is fused into a 3D model
represented as a graph of key-frames (see Figure 4). In this pro-
cess, the current image is warped onto the M closest key-frames in



Figure 4: HDR fusion: From left to right same scene observed with increasing shutter values. The last image on the right is obtained using the
HDR blending of equation (13) and is displayed using the tone-mapping of [23].

the graph using the estimated pose and the transformed intensities
from (12). Integration of the intensities is then performed using an
incremental weighted average of each pixel p.

Each key-frame image I∗hdr and its cumulative weights C∗hdr are
updated incrementally between time t−1 and time t as:

C∗hdr(p, t)← C∗hdr(p, t−1)+ f (Iw(p, t))

I∗hdr(p, t)←
f (Iw(p, t))Iw

hdr(p, t)+C∗hdr(p, t−1)I∗hdr(p, t−1)
C∗hdr(p, t)

(13)
where Iw and Iw

hdr are respectively the current LDR and HDR im-
ages warped onto the reference key-frame. f (I(p)) is the weighting
function of [8] which is used to compute a weight from the original
LDR measurements I(p), defined as

f (I(p)) =

{
I(p) if I(p)≤ 0.5

1− I(p) if I(p)> 0.5
(14)

This blending function is a simple hat function that gives a lower
weight when an intensity value is close to the sensor saturation
bounds of [0,1] and favours intensities in images that are closer
to the center of the dynamic range of that image. This allows to
continually integrate new information into the key-frame images of
the graph by weighting higher dynamic ranges better.

Figure 4 illustrates the HDR fusion process of a single reference
image. The first 4 images are captured with increasing shutter val-
ues. It can be seen that, depending on the shutter time, each individ-
ual image is not able to capture the full intensity range of the scene
because several regions are either under- or over-exposed. The last
image is the HDR reconstruction obtained with equation (13). For
display purposes it has been converted to LDR space with non-
linear tone mapping [23]. It can be seen that the HDR reconstruc-
tion allows to represent the full scene range without saturations.

In order to map large environments, the amount of occluded pix-
els between the current frame and the predicted 3D model frame
are computed and monitored. This allows to detect unvisited areas
and extend the 3D environment-map with new HDR key-frames
(see [24] for more detail).

3 AUGMENTED REALITY

The main underlying objective of this work is to perform photo-
realistic augmented reality in such a way that the virtual objects are
indistinguishable from the real scene. Most state-of-the-art works
in augmented reality focus on positioning and orientating the vir-
tual object(s) w.r.t the viewer producing promising results, however,
photo-realistic rendering is rarely considered in live AR. Indeed vi-
sual cues are present for real objects at many levels, ranging from
environment reflections to shadows and this needs to be integrated
into the rendering of virtual objects for high realism.

In this paper the augmented reality pipeline is divided in two
steps. The first step, illustrated in Figure 5 consists in reconstruct-
ing reflection maps at arbitrary locations and detecting the light po-
sitions. Assuming a static environment, it only necessary to per-
form this once when the 3D model is reconstructed. The second

step, illustrated in Figure 6, is performed for each live image and
consists in augmenting the live images with virtual objects contain-
ing HDR environment reflections and shadows.

3.1 Virtual light-field synthesis

As shown on Figure 5, the input to the virtual light-field pipeline is
the graph of HDR key-frames and the virtual objects positions. The
output is a set of HDR reflection maps (one for each object) and a
set of light positions with their pre-computed depth-maps. The fol-
lowing sections will describe each step of the light-field synthesis.

3.1.1 Generating reflection maps

When a sufficiently complete 3D model of the environment is
reconstructed, classic 2D HDR reflection-maps can be generated
within the scene at arbitrary 3D locations. For a desired rendering
location (typically specified by the user-application in the current
image), each reflection-map is obtained by rasterising and blending
the entire graph of HDR key-frames onto the six faces of a cube-
map positioned at the selected 3D location. The blending func-
tion of equation (13) is used to obtain un-saturated measurements
in HDR space. To take into account reflections between virtual ob-
jects, the reflection maps are generated recursively for each object.
Additionally the scene depth is stored in a second cube-map in or-
der to detect lights positions as described in Section 3.1.2 and also
to allow shadow casting on the reflection maps.

3.1.2 Detecting light sources

The aim here is to detect light sources for casting shadows onto
the dense scene map. Two approaches have been implemented, the
K-means method [2] and the Median Cut approach. To simplify
computation, the light sources are only detected in a single gener-
ated reflection map (corresponding to a single virtual object).

For the K-means method, each sample is considered as being
composed of three values: the position of the pixel in the image
(u,v) and the intensity of the pixel I(u,v). First the images are
filtered for high intensity pixels (above a given threshold). Then
n clusters corresponding to n light sources are estimated using K-
means. Finally the light source position is given as the centre of
each cluster and its direction is chosen to point toward the centre of
the HDR map (which is the centre of the virtual object).

The K-means method aims to minimise the sum of squared dis-
tances between all points and the cluster centre:

1. Choose K initial cluster centres.
2. Assign each image observation to the cluster whose mean is

closest to it.
3. Estimate the new centres of the new clusters.
4. Iterate steps two and three until the assignments no longer

change.

The Median Cut algorithm is computed as follows:

1. The image is divided by a line l (along the longest dimension)
into 2 sub-images I1 and I2.

2. The splitting line is moved until the optimal line position is
found : argmin{l}(∑I1−∑I2).
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Figure 5: Virtual light-field composition pipeline. The 3D HDR model is used to create virtual light probes, detect light sources and to perform
pre-computations for real-time shadow mapping. This provides necessary scene information for photo-realistic AR.

3. Recurse to step one with each of the 2 new sub-images until
the initially fixed number of regions is reached.

4. Estimate the position of the light (which is the barycentre) in
the sub-images.

The Median Cut is accelerated using Integral Images [40].

3.1.3 Shadow-maps pre-computation

Real-time shadow casting is performed using variance shadow
maps [9] which allow to generate smooth shadows with a minimal
computational cost. To efficiently compute light casting onto the
dense 3D surface, the lights’ depth-maps are pre-computed and pre-
filtered once (since a quasi-static background 3D environment-map
is considered). The 3D model (several key-frame’s depth maps) is
rendered and blended at each light position and the corresponding
depth values and variances are stored in a floating point texture.
One of the major drawbacks of shadow maps is that their computa-
tional cost grows linearly with the number of lights, which restricts
the maximum number of lights for real-time constraints (≈ 10 lights
for the hardware described in Section 4).

3.2 Rendering

As shown on Figure 6, the rendering pipeline input is the current
RGB-D frame converted to HDR space and its 3D pose. The output
is an augmented image, containing virtual objects, HDR reflections
and shadows projected onto the real 3D scene. The pipeline can be
divided in several steps which are described in the following sec-
tion, whilst Figure 7 shows the intermediate results of the pipeline.

3.2.1 Reflection mapping

The generated reflection-maps (2D omni-directional environment-
maps) can be used to perform classic HDR reflection mapping [6]
of virtual objects positioned in the scene (at the same position as
the light-field maps). The objects are rendered in the scene using
classic rasterisation and a depth test is performed with the current
depth-map in order to handle occlusions. The standard reflection
model is computed in the fragment shader (screen space), for each
given incident vector v and surface normal n. This model returns

the reflection direction calculated as v− 2n⊤vn. The reflected di-
rection allows to perform efficient texture look-up in the reflection-
map associated to the virtual object.

3.2.2 Real-time shadow casting

Real-time shadow casting is achieved using the pre-computed light
depth-maps, and the current frame depth-map. Each vertex of the
current frame is projected onto each light depth-map, in order to
perform a depth comparison which indicates if the pixel is shad-
owed or illuminated. To avoid aliasing and also to obtain more
realistic shadows, we use variance shadow maps. Instead of storing

a single depth value in the shadow map, an overlapping Gaussian
distribution (mean and variance) is maintained for each pixel. This
allows to weight the shadow value with the variance of the shadow
map, which creates smooth shadows edges (see Figure 7(c)). The
interested reader can refer to [9] for additional details.

3.2.3 Forward CRF

Since the inputs of the rendering pipeline are in HDR space (im-
age and HDR reflections), it is necessary to convert the output aug-
mented image into LDR space for on-screen display. Whilst any
kind of tone-mapping could be performed, it is proposed here to
simply apply the estimated α from equation (8) followed by the de-
sired gamma correction, which corresponds to transforming back
the image to its original colour space.

3.2.4 Glow mapping and display

For additional realism a glow-map is also used to blur the saturated
reflections in the final image which simulates lens blooming. This
is achieved by first down-sampling the augmented image, then ex-
tracting the pixels with an intensity value above a saturation thresh-
old (e.g ≥ 1.0) and finally blurring the segmented image with a
Gaussian filter. The final glow-map is then blended with the cur-
rent image using an additive blending function and the result is dis-
played on screen. Figure 7(e) shows the glow-map obtained from
the image of Figure 7(d). It can be seen that only saturated pixels
(i.e the lights) are extracted and blurred.

4 RESULTS

The entire 3D HDR tracking and mapping pipeline along with aug-
mented reality rendering is implemented on the GPU using the
OpenCL library with OpenGL interoperability and GLSL shaders.
The entire algorithm runs robustly and accurately at frame-rate
(30Hz) on a standard desktop PC running Ubuntu 12.10 with an
Intel Core i7 2700k and a 2GB nVidia GeForce GTX670.

The approach has been successfully tested on various environ-
ments with an Asus Xtion RGB-D sensor in automatic shutter
mode. According to the constructor, the RGB image delivered by
the sensor is by default non-linearly corrected with a gamma correc-
tion of 2.2. In order to avoid non-linear intensity changes induced
by shutter variations, the gamma correction is removed from the
images before processing and re-applied before display as in (7).

Figure 8 shows the resulting HDR reflection-maps acquired after
performing dense mapping of an entire room in real-time using an
image-based key-frame 3D model. The automatic shutter of the
camera varies naturally as the camera scans the dark and lighter
parts of the scene allowing to capture the full dynamic range of
the office. The LDR images with different shutter settings have
been incrementally warped and fused into the same map in a dense
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Figure 6: Augmented reality rendering pipeline. The AR pipeline provides all necessary information to perform real-time reflection mapping from
each cube-map, shadow casting from the detected lights, conversion to LDR for display and application of a realistic glow filter.
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Figure 7: Enlarged images of intermediate results from Figure 6. The final output is shown in Figure 1.

manner. In Figure 8(a) an HDR reflection map is shown after non-
linear tone mapping allowing the full range to be rendered into the
image. In Figure 8(b) a second image of the same scene is rendered
to the right that shows the degraded performance when an LDR
image observes only part of the dynamics of the scene.

4.1 Light source estimation

The dense HDR light-field image is used as input to a light esti-
mation algorithm that looks to obtain the 3D position, orientation
and intensity of several unknown light sources. Two methods, the
Median-cut [7] and K-means [2] have been implemented and their
results are shown in Figure 9. It can be seen visually that the prin-
cipal lights in the HDR image are detected with the K-means ap-
proach, whilst the Median-cut method clearly has larger regions for
the darker regions and smaller regions for the brightest ones (each
region is divided according to equivalent intensity).

When analysing these two approaches, the Median-cut clearly
provides correct lighting, however, it requires a much larger num-
ber of lighting sources (mostly artificial) to achieve this. The solu-
tion to segment the brightest regions in the image using a K-means
algorithm is much more efficient, however, it requires a manually
chosen threshold to do a first pass and choose the bright pixels in the
image. If the number of lights is greater then the K-means becomes
computationally expensive.

An important difficulty for each of these approaches is being able
to detect the number of light sources automatically. The Median-
cut method does not try to detect light sources but simply represents
equal regions of illumination. In that case reflections and other light
properties are nicely modelled at the expense of a large number of
light emitting regions. The problem with the K-means is that it
needs to determine the number of lights. This requires beginning
with a high number of clusters and once the centres are computed
they are merged to reduce the number of regions. This can handle
large lights such as fluorescent tubes.

4.2 Real-time rendering

The previous results have shown how to obtain a dense HDR light-
field map in real-time using a dense key-frame localisation and
mapping approach. This was then used to estimate light positions.
Now that all the essential photometric properties such as scene ge-
ometry, illumination and reflectance properties have been estimated
it is possible to render virtual objects seamlessly into the real video
sequence for a realistic augmented reality experience.

4.2.1 Comparison with ground truth

A qualitative comparison has been performed using real and vir-
tual light-probes that were both placed manually at the same loca-
tion in the scene. Figure 10(a) shows the image obtained using the
real-light probe and Figure 10(b) shows that of the synthetic light
probe. It can be seen that the HDR reflections are quite similar, the
3 lights are correctly reflected, as well as the rest of the far environ-
ment. The close environment is, however, less accurate, since the
proposed approach uses a cube-map (or sphere) centred on the ob-
ject in order to perform fast texture look-ups in the reflection-map.
This does not consider the parallax between the object surface and
the centre of projection of the cube-map, which yield to false re-
flections for close surfaces. Another difference between the two
images is the colour of the reflected environment. Indeed the real
light-probe that was used for the experiment has its own colour re-
sponse, whilst the virtual light-probe is a perfect mirror.

4.2.2 Live results

Figure 1 from the teaser along with Figure 11 depict different aug-
mented scenes that were rendered and interacted with in real-time.
The associated video with this article demonstrates the real-time in-
teractive nature along with the realism of the rendering. The viewer
can also note the stability of the localisation and mapping approach
with respect to fast movements.

In Figures 11(a) and 11(b) a rendered teapot can been seen along
with two reflective balls. Several real reflective objects such as CDs



(a) HDR reflection-map after non-linear tone mapping with full visible range. (b) The same image with an 8 bit range corresponding to a single input image.

Figure 8: An HDR reflection-map

(a) Median Cut for 4 lights. (b) Median Cut for 32 lights. (c) K-means merged from 10 to 4 lights.

Figure 9: In (a) and (b) the regions detected by the Median-cut algorithm are shown. In (c) the green points correspond to the points which have
been detected before merging and the red points are the final result with merging.

and aluminium packaging have also been placed in the scene for
comparison. It can be seen that the reflectance map provides very
high realism and it is possible to identify the various light sources
in the room within the reflections on both real and virtual objects.
The various surrounding objects can also be identified.

In Figures 11(c) and 11(d) a second augmented scene is pre-
sented. It contains four virtual objects: a teapot, a green sphere, a
red sphere and a full reflective sphere. Three real light probes and a
CD are also in the scene. It can be seen that the virtual objects are
well integrated in the scene, thanks to the reflection mapping and
shadow mapping. Virtual inter-object reflections are also visible on
the teapot and the larger sphere, where the green and red spheres
are reflected along with the real CD.

4.3 Limitations

The proposed 3D HDR mapping pipeline assumes that the camera
has a simple non-linear CRF. However [8] showed that radiance
may map in complex non-linear ways to the pixel values given by
a camera. For professional cameras, this CRF can be calibrated by
taking several images with different exposure settings and minimis-
ing a non-linear error function which yields the CRF. For low-cost
sensors, manually setting the exposure time is, however, rarely pos-
sible which means that the environment illumination has to be uni-
formly controlled in order to calibrate automatic shutter variations
making the entire procedure much more complex. Another lim-
itation comes from the combination of low frequency fluorescent
lights (ie. 50 Hz) with a rolling shutter sensor: this creates a peri-
odic light change across the image when the shutter time is smaller
than a light period (flickering).

As stated in Section 4.2.1, another limitation of the proposed
approach (and all real-time approaches) is that the reflection maps
capture the light-field at the centre of the object. This does not
consider the parallax between the object surface and the centre of
projection of the cube-map, which yield to false reflections for close
surfaces. In the given experiments, those artefacts are visible where

the reflected spheres touch the surface of the table, however, as can
be seen in Figure 10, this does not affect the photo-realism.

Finally, only static objects were considered so that rendering re-
mained real-time and efficient. This is due to the fact that with static
objects it is simple to pre-compute the reflection and shadow maps.
Future works will aim at generating dynamic virtual light-fields for
moving objects as well as global illumination.

5 CONCLUSION

This paper has demonstrated a method for acquiring a 3D HDR
environment-map and using it to synthesise virtual light-fields at
arbitrary positions in a scene at high-quality in real-time. The pro-
posed approach does not require any light-field probe nor does it
need to capture an approximate light-field through the observation
of surface reflectance. Additionally, it is assumed that it is not
possible to manually control the shutter as is the case in low-cost
cameras. As such the dynamic range of each LDR image is esti-
mated whilst simultaneously localising a moving camera in 6 dof
and mapping an environment densely to performing 3D HDR com-
positing. Estimating the sensor’s exposure settings also solves the
problem of dense tracking and mapping in the presence of unknown
shutter variations. In the results it is shown that the approach suc-
cessfully recovers a dense 3D HDR environment-map that can be
interactively modified by choosing a desired dynamic range for the
rendered image. Subsequently, this approach allows to transform
an RGB-D camera sensor into a light-field sensor and perform 3D
image-based rendering in real-time. In the results a virtual spheri-
cal light-field sensor is used to render reflective virtual objects for
an augmented reality scenario. This provides a highly realistic ren-
dering of the virtual objects in the scene in real-time. This realism
is further augmented via the automatic detection of light sources
in HDR maps which are then used to cast shadows and deforming
them correctly onto a dense 3D map of the scene.



(a) Reflections on a true light-probe (ground truth). (b) Reflections on a synthetic light-probe.

Figure 10: A qualitative comparison between a true light probe and a synthetic one. Whilst highly realistic (especially in the moving sequence
from the video), the parallax effects due to near objects can be observed (i.e. the CD on the table). The lights and various objects in the scene
can be clearly identified in both real and virtual objects at the same positions. A difference in material colour can also be noticed.

(a) (b)

(c) (d)

Figure 11: Augmented reality results obtained in real-time from the 3D HDR mapping approach. (a) and (b) show images from the live AR
sequence. The reflections and shadows provide a highly noticable change in realism when compared with AR images without these effects (see
Figure 7(d)). (c) and (d) show more images with ground truth light probes. Additionally inter-object reflections have been computed and can be
observed in the virtual objects (not the real ones).
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