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In this work, a real-time image-based camera tracking solution is developed for television broadcasting studio environments. An affordable vision-based system is proposed which can compete with expensive matchmoving systems. The system requires merely commodity hardware: a low cost RGB-D sensor and a standard laptop. The main contribution is avoiding time-evolving drift by tracking relative to a pre-recorded keyframe model. Camera tracking is defined as a registration problem between the current RGB-D measurement and the nearest keyframe. The keyframe poses contain only a small error and therefore the proposed method is virtually driftless. Camera tracking precision is compared to KinectFusion, which is a recent method for simultaneous camera tracking and 3D reconstruction. The proposed method is tested in a television broadcasting studio, where it demonstrates driftless and precise camera tracking in real-time.

INTRODUCTION

Rendering virtual elements, props and characters to live television broadcast combines augmented reality (AR) and video production. A robust camera estimation method is required for rendering the graphics from camera viewing direction. In film industry the process is known as matchmoving and it is traditionally done in post-processing [START_REF] Dobbert | Matchmoving: The Invisible Art of Camera Tracking[END_REF]. Matchmoving typically requires manual effort because the available tools are not fully automatic. In online broadcasting, special hardware based solutions exist for automatic camera tracking, but their value is degraded by limited operating volume, weaker reality experience and expensive price.

The goal of this work is to develop an affordable, portable and easy-to-use solution for television production studios. Marker-based AR techniques, such as ARToolKit [START_REF] Kato | Marker tracking and hmd calibration for a video-based augmented reality conferencing system[END_REF], are trivial to use but visible markers are irritating in the studio scene. Thus, we seek solution from more recent techniques which are able to track the camera without any markers. Visual simultaneous localisation and mapping (vSLAM) techniques are a true option, because they track the camera using a 3D model which is concurrently built based on visual measurements [START_REF] Davison | MonoSLAM: Real-time single camera SLAM[END_REF]. Recently, low-cost RGB-D sensors have developed to a level where they can provide realtime stream of dense RGB-D measurements which are directly usable for camera tracking and scene reconstruction purposes.

In this work, we introduce an image registration based dense tracking and reconstruction method particularly for TV studios. Tracking precision is good, but over long sequences, time-evolving drift will eventually displace virtual props. We avoid drift by generating a RGB-D keyframe model, and tracking the camera relative to the nearest keyframe. The results are demonstrated with real studio shots. We thank Heikki Ortamo and Jori Pölkki for their professional support in a TV production studio.

Related Work

Traditionally vSLAM methods detect and track a sparse set of feature points which are matched in several images. The first feature-based visual SLAM methods used the extended Kalman filter (EKF) to update pose and structure [START_REF] Davison | MonoSLAM: Real-time single camera SLAM[END_REF]. However, bundle adjustment has replaced EKF, because it is more accurate. PTAM [START_REF] Klein | Parallel tracking and mapping for small ar workspaces[END_REF] separated tracking and mapping into two parallel modules, where the mapping part was essentially bundle adjustment. To avoid feature extraction and matching problems, the raw pixel measurements can be used directly. DTAM was introduced as the dense version of PTAM, which allows every pixel to contribute to pose and structure estimation (Newcombe et al., 2011a). Finally, with KinectFusion system which replaces monocular camera by a RGB-D sensor [START_REF] Newcombe | Kinectfusion: Realtime dense surface mapping and tracking[END_REF], pose tracking and structure estimation have become mature enough to be considered for live TV broadcasts.

In this work, we adopt the dense RGB-D approach [START_REF] Tykkala | Direct iterative closest point for real-time visual odometry[END_REF][START_REF] Audras | Real-time dense rgb-d localisation and mapping[END_REF][START_REF] Comport | Accurate quadri-focal tracking for robust 3d visual odometry[END_REF]. Our method differs rather strongly from the KinectFusion, because we estimate camera pose using dense RGB-D measurements instead of depth maps only. This is necessary because studio settings often contain planar surfaces for which the KinectFusion fails to track the camera. We do not estimate 3D structure concurrently because it can be solved prior to broadcasting. This simplification lightens computation and enables running the system with a low-end hardware. Robustness to outlier points is increased by selecting the photometrically stable pixels and by omitting unreliable regions (occlusion and moving objects) with the M-estimator.

DENSE TRACKING METHOD

Cost Function

Our dense pose estimation is defined as a direct color image registration task between the current image I : R 2 ⇒ R and a frame K * = {P * , c * }, where P * = {P 1 , P 2 , . . . , P n } is a set of 3D points and c * = {c 1 , c 2 , . . . , c n } are the corresponding color intensities. Our goal is to find the correct pose increment T(ω, υ) which minimizes the following residual:

e = I (w (P * ; T(ω, υ))) -c * , (1) 
where w(P ; T) is a projective warping function which transforms and projects P into a new view using the 4 × 4 transformation matrix T and the intrinsic matrix K (constant, omitted in the notation). The exact formula is

w(P ; T, K) = w P ; R t 0 1 , K = N(K(RP + t)),
(2) where N(p) = (p 1 /p 3 , p 2 /p 3 ) dehomogenizes a point. T(ω, υ) is defined as the exponential mapping which forms a Lie group T(ω, υ) ∈ SE(3) [START_REF] Ma | An invitation to 3-D vision: from images to geometric models[END_REF]:

T(ω, υ) = e A(ω,υ) , A(ω, υ) = [ω] × υ 0 0 , (3) 
where ω and υ are 3-vectors defining rotation and translation. From the practical point of view it is convenient to re-define (3) as

T(ω, υ) = Te A(ω,υ) , (4) 
which generates smooth increments around the base transform T. This allows using iterative optimization and particularly the inverse compositional trick for estimating the transformation efficiently [START_REF] Baker | Lucas-kanade 20 years on: A unifying framework[END_REF].

Minimization

We adopt the inverse compositional approach for efficient minimization of the cost function [START_REF] Baker | Lucas-kanade 20 years on: A unifying framework[END_REF]. The cost is reformulated as

c * (ω, υ) = I * w P * ; e -A(ω,υ) e = c * (ω, υ) -I w P * ; T ,
where reference colors c * are now a function of the inverse motion increment. The benefit is gained when computing the Jacobian

J i j = ∆I * (w(P i ; I)) ∂w(P i ; I) ∂x j , (5) 
where

∆I (p) = [ ∂I (p) ∂x ∂I (p) ∂y ]
. By this trick J does not depend on the current transformation anymore and it is sufficient to computed it only once for each K * .

Gauss-Newton iteration is well-suited for minimization when the initial guess is near the minimum and the cost function is smooth. The cost function is locally approximated by the first-order Taylor expansion e(x) = e(0) + Jx, where e(0) is the current residual. Now the scalar error function becomes

1 2 e(x) T e(x) = 1 2 e(0) T e(0) + x T J T e(0) + 1 2 x T J T Jx (6)
where the derivative is zero when

J T Jx = -J T e(0) . (7) 
Because J T J is a 6 × 6 positive definite matrix, the inversion can be done efficiently using Cholesky method. The matrix multiplication associativity in SE(3) enables collecting the previous increments into the base transform by

T k • • • T 1 e A(ω,υ) ⇒ Te A(ω,υ) (4).

Keyframe Based Reference K *

Minimisation of the cost function (1) with the Gauss-Newton method in Sec 2.2 provides us real-time dense RGB-D camera tracking (and scene reconstruction), which frame by frame finds the optimal transformation T(ω, υ) between a previous frame K * and a current frame (image I ). This approach has one disadvantage: small per frame estimation error cumulates into global drift which gradually displaces virtual elements. Fortunately, the studio scene can be prerecorded into a set of keyframes prior to broadcasting (see Fig. 1). The tracking is then defined relative to the nearest keyframe K * ← select closest(K * j ). For small studios, a single dense tracking sweep is sufficient, but methods exist also for building larger models [START_REF] Henry | RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[END_REF]. 

Robust estimation

Now we know that our reference keyframes contain merely static geometry with Lambertian reflection, it is possible to increase robustness of the estimation by emphasising stronger color and depth correlation between the static reference points and the current 3D points matched in each iteration. We do this by employing M-estimation in which uncertainty based weights w k ∈ [0, 1] ∈ R are given to the residual elements e k . Color correlation is enforced by the Tukey weighting function

u k = |e k | c * median(e a ) , (8) 
w c k = (1 -( u k b ) 2 ) 2 if |u k | <= b 0 if |u k | > b , (9) 
where e a = { e 1 , . . . , e n }, c = 1.4826 for robust standard deviation, and b = 4.6851 is the Tukey specific constant.

The depth correlation weights are computed simultaneously by a depth lookup

e z = Z (w(P ; T(ω, υ))) -e T 3 T(ω, υ) P 1 , (10) 
where Z : R 2 ⇒ R is the depth map function of the current RGB view and e T 3 = (0, 0, 1, 0) selects the depth coordinate. When the standard deviation of depth measurements is τ, the warped points whose depth differs more than τ from the current depth map value can be interpreted as foreground actors/outliers. Thus we define a diagonal matrix

w z k = max (1 -e 2 z (k)/τ 2 ), 0 2 , ( 11 
)
The weighted Gauss-Newton step is obtained by re-writing (7)

J T WJx = -J T We, ( 12 
)
where W is a diagonal matrix with diag(W) k = w k c w k z . The robust step is obtained by J ⇐ √ WJ and e ⇐ √ We. The both weight components are quadratic and therefore the square roots are not evaluated in practise.

Selecting keyframe points

The reference points P * can be freely selected from the keyframe. When considering the minimization of the photometrical error, only the 3D points with image gradients infer pose parameters. Therefore the majority of the points can be neglected based on the magnitude of the image gradient. Gradient vector ∇c is evaluated at the projection of P * using bilinear interpolation. Instead of sorting |∇c|, we generate the histogram of the magnitudes. The value range is bounded to [0, 255]. We seek the bin B t for which Σ 255 k=B t -1 h(k) < n <= Σ 255 k=B t h(k), where n is the number of points to be selected.

IMPLEMENTATION DETAILS

Our method was implemented in Ubuntu Linux environment using open software tools, Kinect RGB-D sensor and a commodity PC laptop hardware on which the method runs real-time. The main limitations are the operating range (≈ 1m -5m) and that it uses controlled IR lighting which may not work in outdoors. Below, we discuss Kinect related implementation issues.

Kinect Calibration

Since Microsoft Kinect can be set into a special mode where the raw IR images can be stored, it is possible to use standard stereo calibration procedure for obtaining the calibration parameters for the IR and the RGB view [START_REF] Bouguet | Camera calibration toolbox for matlab[END_REF] (Fig. 2). IR view and the depth view are trivially associated with image offset (-4, -3).

A single camera calibration is used to initialize IR and RGB camera parameters. Then calibration is followed by a stereo procedure which re-estimates all free parameters (K IR , K RGB , kc RGB ,T b ). The lens distortion parameters of the IR camera are forced to zero, because data has already been used to generate the raw disparity map. This means that the IR lens distortion is compensated by tweaking other parameters. The RGB camera lens distortion parameters kc RGB are estimated without any special concerns. In practice, the distortion seems to be minor and the first two radial coefficients are sufficient (kc RGB = (0.2370, -0.4508, 0, 0, 0), and the stereo baseline is b = 25.005mm. T b stores the baseline transform as 4×4 matrix. The conversion from raw disparities into depth values can be done by z = 8p f B-d , where p is the baseline between the projector and the IR camera, B is a device specific constant and f is IR camera focal length in pixel units. Note, that this reconstruction method is merely an approximation which procludes measurements at long ranges. There are also dedicated calibration toolboxes for RGB-D sensors, which model disparity distortion accurately [START_REF] Herrera | Joint depth and color camera calibration with distortion correction[END_REF]. 

Dense Tracking with Kinect

The The cost function is minimized using coarse-tofine approach using image pyramid with 80 × 60, 160×120 and 320×240 layers for each RGB-D input frame.

EXAMPLES

Dense tracking vs Kinfu

Kinfu is the open source implementation of Kinect-Fusion [START_REF] Rusu | 3D is here: Point Cloud Library (PCL)[END_REF]. We compare our dense tracking accuracy with Kinfu using the RGB-D SLAM benchmark provided by Technical University of Münich [START_REF] Sturm | Towards a benchmark for rgb-d slam evaluation[END_REF] (Figure 3). Dense tracking is executed incrementally by using a recent view as the reference. Thus, both methods aim at tracking the camera pose without a prior model and small drift will be present. The major difference between the systems is that Kinfu optimizes a voxel based 3D structure online and uses the iterative closest point (ICP) approach for pose estimation. Kinfu has small drift when the voxel size is small and geometry is versatile. Kinfu fails in bigger operating volumes, because voxel discretization becomes coarse and, for these sequences especially, the volume will also contain planar floor which break downs ICP 1 . In broadcasting studios, scenes are often larger than (3m) 3 and geometrical variations can not be guaranteed. Our dense tracking demonstrates robust tracking even when planar surfaces are present, because the cost function matches also scene texturing. Memory consumption is low even in larger operating volumes, because RGB-D keyframes can be memoryoptimized based on the viewing zone.

Table 1 shows the comparison between our method and Kinfu numerically.

The dense tracking drifts 1.08cm/s with the slower freiburg2/desk sequence and 2.60cm/s with the faster freiburg1/desk sequence. Our dense tracking has smaller error when the camera is moving faster. Kinfu has lower drift when using (3m) 3 voxel grid, but fails to operate in bigger volumes (8m) 3 that match with broadcasting studios. Also the computational requirements of Kinfu are significantly higher compared to our approach even though Kinfu is executed on a powerful desktop 1 Video: http://youtu.be/tNz1p1sdTrE Table 1: Drift is evaluated using standard sequences with known ground truth trajectories. The proposed approach has smaller drift when a camera is moving faster. The keyframe model can be memory-efficiently built. Kinfu has smaller drift when a camera is moving slower but bigger scenes are not possible due to inscalability of the voxel grid. Problems exist with planar surfaces. The computational requirements are higher even though Kinfu is executed on a powerful desktop hardware.

hardware. Drift was measured by dividing the input frames into subsegments of several seconds (10 and 2 correspondingly) whose median error was measured against the ground truth. 1 second average error was computed from the median subsegment. The error values are computed from bigger windows to average out random perturbations and neglect gross tracking failures which occur with Kinfu in all cases except on freiburg2/desk using (3m)3 volume.

Driftless keyframe tracking

The relative poses between the keyframes could, in theory, be obtained by bundle adjustment techniques [START_REF] Triggs | Bundle adjustment -a modern synthesis[END_REF] if feature point extraction and matching succeeded, and a good initial guess would exist. With the studio sequences recorded, texturing was so limited that popular tools, such as Bundler [START_REF] Snavely | Photo tourism: Exploring photo collections in 3d[END_REF] failed without manual annotated feature points. As an alternative solution, we utilised the proposed dense RGB-D tracker to incrementally build a keyframe model. It is noteworthy, that a single quick sweep of the scene produces accurate keyframe model2 . Figure 4 illustrates how dense tracking is used to sweep a keyframe model of the studio scene rapidly. With pre-recorded keyframes, the online broadcasts are guaranteed to operate with the correct 3D geometry. K * j were selected by picking RGB-D frames evenly from the recorded sequence. A keyframe database is illustrated in Figure 1.

In Figure 5, we show how the drift increases in a studio environment when using dense tracking. On the right-hand side, the drift problem is solved by tracking relative to keyframes 3 . Note that in longterm use, even a small number of keyframes eventually outperforms the dense tracking due to drift. However, a small keyframe number produces drift jumps between the keyframes which can be visually disturb- 

CONCLUSIONS

In this work, camera pose tracking was defined as a photometrical registration problem between a reference frame and the current frame. To remove the global drift in incremental tracking, the closest prerecorded keyframe was chosen to be the motion reference. The system was designed to be an affordable solution for TV broadcasting studios relying only on the Kinect sensor and a commodity laptop. The proposed approach performs robustly in a standard benchmark, where KinectFusion has problems with planar surfaces and limited voxel grid resolution. Our future work will address the practical issues how studio staff and camera men can use our computer vision system in live broadcasts. Moreover, combination of the best properties of our approach and KinectFusion will be investigated.
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 1 Figure 1: Stored scene keyframes and their pixels mapped to a common 3D world model.

  p and B are estimated by solving the linear equation -1 Z A B T = D, where A = 8p f , Z is n × 1 matrix of reference depth values z k from the chessboard pattern (Caltech calibration), and D is a n × 1 matrix whose elements are d k z k . The parameters will be p ≈ 75mm and B ≈ 1090.

Figure 2 :

 2 Figure 2: RGB and IR images of the calibration pattern.

  reference point clouds {P * , c * } in (1) were generated from Kinect RGB image and disparity map in the following way. Kinect Bayer images were converted into RGB format, downsampled into 320x240 and undistorted from lens distortions. Downsampling is almost lossless due to sparsity of RGB values in the Bayer pattern. The raw disparity map was first converted into a depth map, downsampled into 320x240 size using max filter and then transformed into a point cloud P * IR . Maximum filtering is chosen because it does not produce artificial geometry. P * was then generated from T b P * IR , where T b is the baseline transformation between the IR and RGB cameras. Points p ∈ P * do not exactly project to the pixel centers of the RGB image grid, and thus, bi-linear interpolation is used for generating the corresponding intensities c * .

Figure 3 :

 3 Figure 3: On the left Kinfu result for freiburg desk2 sequence using 3x3x3, 5x5x5 and 8x8x8 meter voxel volume. Kinfu gains lower drift due to structural optimization, but planar surfaces cause tracking failures. 3x3x3 volume does not contain floor and therefore Kinfu works well. Limited operating volume is a problem for practical use in the studio. On the right, our dense tracking drift illustrated when a fixed keyframes are not used. Problems with planar surfaces or limited operating volume do not exist. Green dots reveal the selected points for given RGB-D measurement.

Figure 4 :

 4 Figure 4: Camera trajectory solved from Kinect input by minimizing the cost function (1). A small shark is rendered into the studio scene.

Figure 5 :

 5 Figure5: Camera moving front and back along a fixed 3.30m studio rail. On the left, three images taken from the beginning, middle and the end of the rail. Green regions illustrated selected points. On the right, comparison between dense tracking and keyframe tracking. In dense tracking drift increases in time, but keyframe tracking maintains small bounded error. A person is moving in the scene during the last four cycles.

Video: http://youtu.be/wALQB3eDbUg

Video: http://youtu.be/zfKdZSkG4LU