N
N

N

HAL

open science

Photorealistic 3D Mapping of Indoors by RGB-D
Scanning Process

Tommy Tykkala, Andrew I. Comport, Joni-Kristian Kamarainen

» To cite this version:

Tommy Tykkala, Andrew I. Comport, Joni-Kristian Kamarainen.
Indoors by RGB-D Scanning Process. International Conference on Intelligent Robots and Systems,

2013, Tokyo, Japan. hal-01357355

HAL Id: hal-01357355
https://hal.science/hal-01357355
Submitted on 2 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Photorealistic 3D Mapping of

https://hal.science/hal-01357355
https://hal.archives-ouvertes.fr

Photorealistic 3D Mapping of Indoors by RGB-D Scanning Process

Tommi Tykkili!, Andrew 1. Comport?, and Joni-Kristian Kimiridinen

Abstract—In this work, a RGB-D input stream is utilized
for GPU-boosted 3D reconstruction of textured indoor envi-
ronments. The goal is to develop a process which produces
standard 3D models from indoors to explore them virtually.
Camera motion is tracked in 3D space by registering the
current view with a reference view. Depending on the trajectory
shape, the reference is either fetched from a concurrently built
keyframe model or from a previous RGB-D measurement. Real-
time tracking (30Hz) is executed on a low-end GPU, which
is possible because structural data is not fused concurrently.
After camera poses have been estimated, both trajectory and
structure are refined in post-processing. The global point
cloud is compressed into a watertight polygon mesh by using
Poisson reconstruction method. The Poisson method is well-
suited, because it compressed the raw data without introducing
multiple geometries and also fills holes efficiently. Holes are
typically introduced at occluded regions. Texturing is generated
by backprojecting the nearest RGB image onto the mesh. The
final model is stored in a standard 3D model format to allow
easy user exploration and navigation in virtual 3D environment.

I. INTRODUCTION

In this work, a process model is developed to reconstruct
watertight and textured 3D maps from indoor environments
by using a RGB-D sensor. The models are stored in a
standard format to allow further use, such as virtual ex-
ploration, robot teleoperation and 3D printing. Most of the
current visual odometry and mapping techniques do not
consider model re-distribution and visual quality, because
more coarse representations can be used in navigation tasks.
In our workflow, photorealistic 3D models are produced by
using a laptop with a low-end GPU and a RGB-D sensor.

In our previous work, we have concentrated on real-
time augmented reality in a studio environment [1]. To
prevent camera tracking drift and to allow foreground actors,
a static keyframe model was used as reference. However,
several application domains exist where the digitized 3D
model can be directly valuable. In robotics, tele-operation
tasks benefit from a 3D model. Websites support online
3D product catalogs and 3D printing devices are becoming
available for consumer market. Also apartment renovation
and re-organization can benefit from a realistic 3D model.
Currently there is no standard process, which would produce
visually pleasing 3D content for further use using commodity
hardware. The available systems store the content in internal
formats such as a point cloud (Figure 1), a Gaussian mixture
model or a voxel grid on a GPU, which are not directly

! Machine Vision and Pattern Recognition Laboratory, Lappeenranta
University of Technology, Kouvola Unit, Finland

2 CNRS-I3S/University of Nice Sophia-Antipolis, France

3 Department of Signal Processing, Tampere University of Technology,
Finland

3

Fig. 1. Room B sequence. A raw point based model generated using the
SLAM mode. The apartment is scanned using a RGB-D sensor by hand in a
single 360° sweep. The result is not a photorealistic 3D model and memory
consumption becomes high.

usable in standard softwares. The final memory consumption
may also become unnecessarily high due to naive reconstruc-
tion methods which introduce multiple surface instances.
Our contributions are the following. 1) A scanning pro-
cess is developed from raw RGB-D measurement stream
into a textured and watertight 3D model, which is stored
compactly in a standard Wavefront format. 2) A photo-
metrical refinement phase is developed, which improves
the model keyframe quality by fusing hundreds of RGB-
D measurements together. The sweeping process produces
all necessary data for generating re-usable photorealistic 3D
models. The core function is the camera tracking module
which operates in real-time on a low-end GPU (NVS4200m
with 48 CUDA cores) [1]. Watertight and textured polygon
mesh is generated in an automatic post-process. The model
is stored in Wavefront format, which also converts also to
WRML, and therefore enables online 3D visualizations.

II. PREVIOUS WORK

Early visual Simultaneous Localisation and Mapping (vS-
LAM) methods represent environment as a sparse set of
3D points which is used as a fixed reference for camera
tracking. The typical process is to detect and track a sparse
set of feature points which are matched in several images.
The first feature-based visual SLAM methods were based
on the extended Kalman filter (EKF) [3]. However, local
bundle adjustment replaced EKF, because it is more accurate
and still remains real-time. PTAM [4] separated tracking
and mapping into two parallel modules, where the mapping

part was essentially bundle adjustment. At the same time,
Comport et al. developed a novel dense image registration
technique for urban pose estimation using a calibrated stereo
camera [13]. DTAM was introduced as the dense version of
PTAM, which allowed dense tracking and mapping using
a monocular camera [5]. Due to significant indoor RGB-D
sensor developments, several systems have abandoned stereo
cameras. Engelhard er al. based their RGB-D tracking on
traditional feature extraction and matching but with addi-
tional ICP and graph optimization phases [16]. Audras et al.
implemented RGB-D camera tracking as a direct photometric
error minimization without feature extraction [12]. The sys-
tem was executed in real-time on a powerful desktop CPU.
Also Newcombe replaced monocular camera by the Kinect
sensor in the KinectFusion system [6], which generates dense
reconstructions of small objects and spaces. In KinectFusion,
the camera is tracked using the standard ICP algorithm,
which is executed on a GPU. The system also integrates
point measurements to a voxel-based 3D model concurrently.
Unfortunately the system does not scale into larger operating
volumes, because a dense voxel grid is not memory-wise
scalable [1]. In Kintinuous system, the memory scalabil-
ity problem is addressed by converting the reconstruction
volume into triangles whenever it has to be moved [15].
Henry integrate measurements into a surfel map [14]. Also
Stiickler uses surfel map during pose estimation and store it
using a sparse octree representation to better avoid memory
limitations [7]. In our previous work, RGB-D measurements
are integrated into a small number of keyframe views [1].
Data fusion may use larger resolution to avoid introducing
averaging or discretization errors [17].

Many application domains, such as 3D visualization and
printing, benefit precise models. Despite that relatively accu-
rate RGB-D pose estimation and mapping approaches exist,
most of the methods do not automatically output photorealis-
tic 3D models which are compatible with standard modeling
softwares. Whelan, in fact, is the only one to suggest a
specific technique [11] to generate textured polygon meshes
using RGB-D mapping process [15]. We presented a real-
time GPU implementation of a RGB-D camera tracker [1],
for which we now develop a process to produce photorealistic
3D models.

III. THE PROCESS MODEL

After recording a video, GPU-boosted RGB-D tracking is
executed which produces 3D trajectory [1]. Whether or not
RGB-D tracking uses keyframes, only the trajectory is stored.
The model keyframes are selected by looping the trajectory
and storing a keyframe whenever user-specified angular or
translational distance to the existing model is exceeded.
The neighboring RGB-D measurements to the keyframes are
efficiently localized (timestamp or frame index) and depth
map fusion is executed. In depth map fusion, keyframe depth
maps are filtered using all RGB-D measurements available.
Then, optionally, bundle adjustment is possible for the full
model. The results presented in this paper do not use bundle
adjustment at all, because the sequences are relatively short

and pose error remains small. Finally watertight polygon
model is generated from the RGB point cloud using Poisson
reconstruction method. Keyframe images are stored into a
single texture and UV coordinates are generated for each
polygon. The textured mesh is then stored in a simple
Wavefront format which can be loaded into various standard
3D modeling programs for further refinement. The video!
illustrates the full process for sequence Room A.
The phases in our process are thus

1) Record RGB-D video (manual)

2) Generate 3D trajectory by RGB-D tracking (automatic)
3) Select keyframes (automatic)

4) Depth map fusion (automatic)

5) Optional : bundle adjustment (semi-automatic)

6) Watertight polygonization (automatic)

7) Texture map generation (automatic)

8) UV coordinate generation (automatic)

9) Store Wavefront mesh (automatic)

IV. PHOTOMETRICAL COST FUNCTION

The pose estimation is defined as a direct image registra-
tion task between the current image I: R? = R and the near-
est keyframe K = {P*,c¢*, T*}, where P* = {P,P,,...,P,}
is a set of 3D points and ¢* = {cy,ca,...,c,} are the corre-
sponding color intensities. The 4 x 4 matrix T* defines the
keyframe pose relative to the reference coordinate system. T*
maps points from the reference to the keyframe coordinate
system. * is used to denote fixed reference variables.

The task is to find the correct pose increment T(x),
that minimizes scalar cost function 1e(x)”e(x), where the
residual is defined by

e:I(w (P*;TT(X))) e 1)

Parameters x € R® produce T(x) € SE(3) motion when
applying a Lie generator, T is the base transform and w(P; T)
is the warping function which transforms and projects 3D
points by

w(P;T) = KD(N(RP+1t),),)

where T = lg ﬂ, N(p) = (p1/p3,p2/p3) dehomogenizes
a point, D(p, o) performs lens distortion using standard
Caltech parameters o € R’ (constant) and K is 3 x 3 intrinsic
matrix of the camera (constant).

Temporal correspondence problem between feature points
fully avoided, and the warping function will produce the
dense correspondence after the correct pose is found. The
estimation is robust due to gradient-based pixel selection
and a M-estimator. Inverse compositional approach is used
for minimization, which allows pre-computing the Jaco-
bian [1][8]. Minimization enables precise camera tracking.
Accuracy and comparison with KinectFusion were docu-
mented in our earlier work [1].

"http://youtu.be/tD31FxrCHaw

V. RGB-D TRACKING MODES

RGB-D tracking can be executed in three different
modes: SLAM (algorithm 1), incremental (algorithm 2),
and keyframe mode. The main difference is in selecting
the reference keyframe for tracking. In SLAM mode, the
keyframe database is built concurrently while tracking the
camera. Loop closures are maneuvered whenever re-visiting
scenes that are already mapped. In incremental mode, a
recent RGB-D measurement is taken as a reference, and
memory consumption remains extremely small. In keyframe
mode, the reference is selected as the nearest neighbor in a
pre-recorded database. Keyframe mode is only usable after
an environment has been mapped.

In SLAM mode, the first keyframe is generated with the
identity pose using the first RGB-D measurement. Tracking
starts relative to the first keyframe, and new keyframes are
added when no keyframe is not found within a narrow search
domain. In this case, a larger search domain is used to
guarantee that at least one keyframe is found. A pose search
domains are thus expressed as angle and distance threshold
pairs (Gmax,dmax){1=2}. The nearest keyframe in a search
domain, is the one which has the smallest pose distance.
The distance metric was defined in our earlier work [1] and
it unifies rotation and translation errors into a scalar value

s = argmin ||w(P;ATy) —w(P;1)|], 3)
keQ

where Q is a set of potential candidates, AT is a relative
transformation between the frames, and K; is the nearest
keyframe. The test point set P is a sparse representation of
the view frustum. In particular, the frustum is approximated
by n sparse 2D grids, each having uniformly sampled depth
coordinates in the overall depth range of the RGB-D sensor.
In the current implementation, keyframes can be added
until the limit of GPU memory is reached. Keyframes are
compressed by a point selection procedure, where only a
fraction of the RGB-D points need to be stored based on the
image gradient magnitude. SLAM mode is useful especially
when the camera is known to re-enter scenes. For example,
when building a 3D model of an apartment, it is sometimes
necessary to add missing keyframes to remove holes in the
model. Kitchen sequence demonstrates SLAM mode use
case (Fig. 2, and video?). The downside of SLAM mode
is that in practise keyframe density in 3D space becomes
smaller than in the incremental mode, where baseline is only
few frames. The previous frame is often the best reference,
because Lambertian assumption holds well and large occlu-
sions do not exist. In Room B sequence, the trajectory is a
direct 360° where camera does not re-visit same views except
at the end (see video?). Incremental tracking produces more
accurate result (Fig. 3). The reference update is performed
in each frame. By selecting a fit tracking mode based on
camera trajectory, pose estimation bias becomes small and

the global optimization can be avoided.

2http://youtu.be/aFrVROLja38
3http://youtu.be/mfclKV7DDpI

Fig. 2. Kitchen sequence. A raw point based model is generated using
the SLAM mode. The camera re-visits same keyframes many times, and
the errors cumulated during the loop are avoided>.

Algorithm 1 SLAM mode algorithm.

Require: Keyframe database contains 1st RGB-D measurement
Input: T, = I, Search domains {6}, dl .} < {62, A%}
Output: Trajectory {L,T.,,,..., T, }, Keyframe model K.

1: for each RGB-D measurement do

2 newKeyFlag = false

3: F={P* c* Ty, } <FindKeyframe(Te,, 0L, dL)

4. if F=0 then
5: newKeyFlag = true
6‘
7
8

{P*,¢*, Tty } <FindKeyframe(Teyr, 02,4, d2)
end if
T | @Minimize(TCurT,;;,P*,c*,Icw) (eq. 1)
9 Teur < TTey
10: if newKeyFlag = true then

11: {P,c} < Select a subset of points with largest gradients
12: Precompute Jacobian

13: Add keyframe to model : K= {K,{P,¢,T¢;}}

14: end if

15: end for

VI. DEPTH MAP FUSION USING RGB-D DATA

Because the keyframes are sparsely selected from the
stream of RGB-D measurements, they do not utilize all avail-
able information. The intermediate point clouds, which are
not selected as keyframes, are warped into a nearest keyframe
and the final maps are filtered in post-processing. In effect,
this improves depth map accuracy and fills holes. A method
is required for determining the correct mode, because the
warped depths may also produce a multi-modal distributions
in case of occlusions. We assume the correct mode is near
the median of the depth values. Note that area covered by
a pixel grows as a function of distance. This should be
taken into account by avoiding points which are too far
away from the ray through pixel center point (Figure 4).
A large portion of the outlier points can be neglected based
on color deviation to the keyframe pixels. Thus, prior to
any filtering, it is useful to discard the points whose color
difference to the reference color is larger than a threshold.
If the number of remaining points is small, the depth value
should not be filtered, but completely discarded as noise. The
median depth is computed from the remaining sample points,
which determines a distance range around a surface. The

Algorithm 2 Incremental mode algorithm

Require: {P*,c¢*} <Select the best points from 1st RGB-D.
Input: Teyr =Trep =1
Output: Trajectory {I,T},,,...,T%,}.
1: for each RGB-D measurement do
2 T < Miﬂimize(LP*,c*qu,) (eq. 1)
3 Tcur ~ TTre f
4 if reference update signaled then
5 {P*,c*} < Select a subset of points with largest gradients
6: Precompute Jacobian
7
8:
9:

Tre f = Teur
end if
end for

(b)

Fig. 3. Room B sequence. Reconstruction bias in when operating in
a) incremental mode, b) SLAM mode. After 360° turn the first and last
keyframe should map points consistently into a single 90° corner. In this case
a) is slightly more precise, because subsequent images are photometrically
the most comparable with negligible interpolation errors.

samples near the surface are locally averaged within initial
bounds and standard deviations o are computed. In practise,
OpenMP is used to parallelize computations for depths.

Fig. 4. The area covered by a pixel becomes larger at longer distances.
The pixel median can be improved by focusing on the samples near a ray
through the pixel center.

The depth maps can be refined further by minimizing
photometrical criteria. The necessary pre-condition is that
the precise depth values are known to reside within bounded
ranges, and image measurements with relatively accurate
camera poses are available. From the previous phase, stan-
dard deviations oy are indeed available and a population
of depth candidates can be generated. The depth range
[zm — 6,2 + O] is sampled evenly to enumerate the solution
candidates P, which are then projected into surrounding
images for cost evaluation (Figure 5). The optimal depth z,
is selected using a photometrical error function

n

2o = eg (argmin (Ij(w(Pk;Tj)) I (w(Pk;I)))2>, 4)

k j=1

where el = (0,0,1)7 selects the z-coordinate of solution

point P,. It is noted that this cost function will provide
arbitrary results for points which are on homogeneous image
regions without any gradient. Therefore photometrical refine-
ment can only be done for the points with sufficient image
gradient magnitude. In DTAM, this problem was addressed
by assuming smoothness when the image gradient has small
magnitude [5]. The benefit with discrete optimization is that
it works even when the amount of image measurements is
small. In our implementation, the refinement is not done in
case the optimal depth is found at the search range boundary.
This is to ensure that a local minimum is within the range.

c(Py)

Fig. 5. Photometrical refinement using bounded depth range. The optimal
depth has the most similar color in all images. The pose configuration is
assumed to be precise.

VII. WATERTIGHT POLYGONIZATION

Polygon models are compact in their memory consumption
and are better supported by standard 3D modeling programs
than point clouds. A polygonization phase generates a poly-
gon mesh from a point cloud. In our context, the method
should take into account noise and missing data. A common
approach is to fit the points to a surface using the zero-
set of an implicit function, such as a sum of radial bases
or piecewise polynomial functions. We select the Poisson
method, because it produces a watertight surface based on a
photometrically refined, oriented point cloud [2]. The point
normals are derived from the depth fused maps. A depth map
is converted into a point cloud by

P(u,v) =T, [Z(“’V)K'Rll(“ v ”T}, (5)

where z(u,v) : R? = R is the depth map, T}, is the 4 x 4 base
transform between IR and RGB view and K;z is the 3 x 3
intrinsic matrix of IR view.

A normal map can then be defined as

n(u,v) = (P(LH— 1,v) —P(u,v)) X <P(u,v+ 1) —P(u,v)).
(6)

Unit normals are generated by n(u,v) < n(u,v)/||n(u,v)||.
Oriented points are transformed into a reference coordi-
nate system. The Poisson method finds a scalar function
whose gradients best match the vector field, and extracts

the appropriate isosurface. The algorithm uses OpenMP for
multi-threaded parallelization and octree data structure to
reduce memory consumption [2]. To further avoid memory
limitations, the mesh could also be done piece-by-piece using
a single, moving reconstruction volume. The most interesting
parameters are octree grid resolution, point weights and
minimum point count in an octree node. Because octree
resolution is limited, the resulting mesh may become over-
smooth at complex regions. The reconstruction accuracy
depends mostly on the precision of the oriented point cloud.
With Microsoft Kinect sensor, the depth noise increases
with distance. In our tests, we measure distance to the
camera and set quadratically decaying point weights. Poisson
reconstruction result without and with depth fusion can be
observed in Figure 6. Notice how Poisson method generates
the floor and fills holes despite that measurements do not
exist (compare with Fig. 1).

Fig. 6. Room B sequence. Watertight Poisson reconstruction without and
with depth fusion. Notice how holes are filled and missing regions such as
the floor appears.

VIII. MESH TEXTURING

The example sweep in Figure 1 created 23 RGB-D
keyframes whose textures are redundant in color due to
Bayer filtering. The images are downsampled into 320 x 240
resolution and stored into a 2048 x 2048 texture (Figure 7).
The size is good for testing purposes and it allows 6 x 8
keyframes to be used.

Fig. 7.

Keyframe images are stored into a single big texture.

The Poisson polygons which are in the visible range of
the RGB-D sensor are projected onto all keyframe views
and UV-coordinates are generated. Poisson reconstruction
module outputs polygons with n corner points. 2D area of a

polygon A is evaluated using the following formula

1 & p;
A(D) == det([r D (7)
(&) 2 k;o Prnod(k+1,1)

where points p; = (u,v)” are the corner points of a 2D poly-
gon. The formula applies to convex and concave polygons
as long as they are not self-intersecting. When a polygon is
visible in more than one view, we choose to favor largest
spatial resolution with the formula

Auvkey = argmax A;(D) eN, (8)
J

where Ayykey is the index of the best UV-mapping keyframe
(Fig. 8). Because frequent switches in UV-mapping direc-
tions can cause visually disturbing seams, mapping can
be improved by enforcing the locally dominant keyframe.
One method to do so is to recursively enumerate connected
polygon neighbors in n passes, and then prefer the mapping
direction which has the largest number of votes. Finally
the selected UV-coordinates are converted into global tex-
ture coordinates and stored. The keyframe images are not
undistorted to better maintain maximum texture quality. The
resulting meshes can be observed in Figure 9.

Fig. 8. Poisson(7) polygons are projected onto keyframe images. UV-
coordinates can be chosen from the view which has the best spatial
resolution. The corner of the shelf is visible in two different keyframes,
but the selection favors the left image, because the camera is closer.

When final texturing is patched together from keyframes,
some color banding effects may occur if brightness varies
across the images. Manual camera settings reduce global
lighting variation across images. To reduce the problem
further, averaging or median filtering could be attempted.
Also more sophisticated Laplacian pyramid filtering has been
suggested for the task [18].

The memory consumption is shown in Table I. The con-
sumption is separated into geometry and texture consumption
for Poisson meshes. The datasets Room A, Room B and
Kitchen have 47, 23 and 14 keyframes. After the trajectory
has been estimated, a raw point cloud is generated. The
minimum requirement per vertex is 9 attributes (position,
normal and color). After Poisson reconstruction and texture
mapping, the vertices require only 3 floats (x,y,z) and n
triangles have in total 9*n attributes (32 UV coordinates
+ 3 %1 index). In addition texture map requirement is
computed directly as k*320% 240+ 3, where k is the number
of keyframes. Table I shows memory footprint for 27,28,
and 2° octree grids. The corresponding geometric quality is

(b)

Fig. 9. Final textured Poisson meshes loaded into Meshlab for inspection:
a) Room B, b) Kitchen. Poisson reconstruction produces watertight mesh,
whose texturing is photorealistic as it is directly mapped from the keyframe
images. The cost of reduced memory footprint is over-smoothing, which
may occur at thin surfaces such as the shelf in 9a. Also lighting changes can
be detected at seams where texture data source switches from one keyframe
to another. Otherwise the models are photorealistic and in metric units.

illustrated in Figure 10. The reconstructions in Figure 9 are
generated using 2° grid.

Fig. 10. Kitchen scene reconstructed with 27,28 and 29 octree resolution.
Phong shading reveals the level of geometrical details at each resolution.

IX. CONCLUSIONS

We have shown how photorealistic 3D models can be
captured using a RGB-D sensor using a laptop and low-end
GPU. The main benefit is in storing the models compactly
in a standard format to enable their further use in different
applications. Two mapping modes were discussed, which
do not always require global optimization. The incremental
mode fits trajectories, which have only a small number
of potential loop closures. Otherwise the SLAM mode is
recommended. A watertight polygon mesh was generated
using the Poisson method and mesh appearance was directly
mapped from the keyframe images. The resulting models

Dataset Raw Poisson(9) Poisson(8) Poisson(7)

Room A 124MB (32+12)MB (7.8+12)MB (2.0+12)MB

Room B 60.6MB (214+5)MB (5.8+5)MB (1.6+5)MB

Kitchen 369MB (14+3)MB (3.8+3)MB (1.1+3)MB
TABLE I

MEMORY CONSUMPTION OF THE TEST SEQUENCES.

are photorealistic despite that they have significantly lower
memory footprint than raw point clouds. All phases in the
process are automatically executed after a RGB-D video
has been recorded. In the future, our goal is to experiment
with 3D printing and develop easy-to-use tools for lighting
normalization and global keyframe model refinement.

REFERENCES

[1] T. Tykkala, H. Hartikainen, A.I. Comport and J. Kamarainen, Live
RGB-D Camera Tracking for Television Production Studios, Journal
of Visual Communication and Image Representation, Elsevier, 2013.

[2] M. Kazhdan and H. Hoppe, Screened Poisson Surface Reconstruction,
Transactions on Graphics, 2013.

[3] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse, MonoSLAM:
Real-Time Single Camera SLAM. PAMI, 2007, Vol. 4, pp. 1052-1067.

[4] G. Klein, and D. Murray, Parallel Tracking and Mapping for Small
AR Workspaces, ISMAR, 2007, pp. 225-234.

[5]1 R.A. Newcombe, S. Lovegrove, A.J. Davison, and A.J. Miller, DTAM:
Dense tracking and mapping in real-time, ICCV, 2011, Vol. 1.

[6] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A.J. Davison, P. Kohli, J. Shotton, S. Hodges and A. Fitzgibbon,
KinectFusion: Real-time dense surface mapping and tracking, ISMAR,
2011, pp. 127-136.

[7] J. Stiickler and S. Behnke, Integrating Depth and Color Cues for
Dense Multi-Resolution Scene Mapping Using RGB-D Cameras, In
Proceedings of IEEE International Conference on Multisensor Fusion
and Information Integration (MFI).

[8] S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying
Framework, Int. J. Comput. Vision, 2004, Vol. 56, Number 3, pp.
221-255.

[9] C. Herrera, J. Kannala and J. Heikkila, Joint depth and color camera
calibration with distortion correction, PAMI, 2012, Vol. 34, 10.

[10] M.I. A. Lourakis and A.A. Argyros, SBA: A Software Package for
Generic Sparse Bundle Adjustment, ACM Trans. Math. Software,
2009, Vol. 36, 1, pp. 1-30.

[11] Z.C. Marton, R.B. Rusu and M. Beetz, On fast surface reconstruction
methods for large and noisy point clouds, ICRA, 2009, pp. 3218-3223.

[12] C. Audras, A.I. Comport, M. Meilland, and P. Rives, Real-time dense
RGB-D localisation and mapping, Australian Conference on Robotics
and Automation, 2011

[13] A.L. Comport, Accurate Quadri-focal Tracking for Robust 3D Visual
Odometry, IEEE Int. Conf. on Robotics and Automation (ICRA), 2007

[14] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments,
International Symposium on Experimental Robotics, 2010.

[15] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J.
Leonard, Kintinuous: Spatially extended KinectFusion, in RSS

[16] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, Real-
time 3D visual SLAM with a hand-held RGB-D camera, In Proc. of
the RGB-D Workshop on 3D Perception in Robotics at the European
Robotics Forum, 2011

[17] M. Meilland and A.I. Comport, Super-resolution 3D Tracking and
Mapping, IEEE International Conference on Robotics and Automation,
2013.

[18] R. Szeliski, Image Alignment and Stitching, Foundations and Trends
in Computer Graphics and Vision, Vol 2, Number 1, 2006.

