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Abstract

In this work, a real-time image-based camera tracker is designed for live television production studios. The major
concern is to decrease camera tracking expenses by an affordable vision-based approach. First, a dense keyframe
model of the static studio scene is generated using image-based dense tracking and bundle adjustment. Online camera
tracking is then defined as registration problem between the current RGB-D measurement and the nearest keyframe.
With accurate keyframe poses, our camera tracking becomes virtually driftless. The static model is also used to
avoid moving actors in the scene. Processing dense RGB-D measurements requires special attention when aiming
for real-time performance at 30Hz. We derive a real-time tracker from our cost function for a low-end GPU. The
system requires merely a RGB-D sensor, laptop and a low-end GPU. Camera tracking properties are compared with
KinectFusion. Our solution demonstrates robust and driftless real-time camera tracking in a television production
studio environment.

Keywords: Dense Tracking, Dense 3D Reconstruction, Augmented Reality, Real-Time, RGB-D, GPU

1. Introduction

In this work, we develop a real-time image-based
camera tracking solution for television broadcasting stu-
dios. Such a system enables adding virtual scene el-
ements and interactive characters into live television
broadcasts. The film industry knows this technique
as matchmoving, which is traditionally done in post-
processing using semi-automatic trackers [1]. A tracker
is a tool which estimates a 3D camera motion trajec-
tory based on observed 2D point tracks [2]. A tracker
should only use the static scene geometry in order to
avoid estimation bias. Scene segmentation is not typ-
ically fully automatic process and studio-specific stan-
dard technologies such as bluescreens, image masks and
movement zones are used. Online matchmoving solu-
tions exist, such as MotionAnalysis motion capture sys-
tem, which tracks a camera in real-time based on pas-
sive markers attached to the camera. Brainstorm Multi-
media product is compatible with many camera trackers
and can be used to render view-dependent graphics in
real-time. Although motion capture is precise and en-
ables a large operating volume, the total price of such a
system is currently 200 − 500k€. Overall, matchmov-
ing is a time-consuming process, which is expensive and

lacks automatic, affordable, and easy-to-use tools.
The main aim in this paper is to reduce the costs of

matchmoving in studio environments by introducing an
affordable RGB-D sensor based camera tracking tool
which operates in real-time, fits studio use, and merely
requires a low-end GPU. Our contributions are the fol-
lowing. 1) A RGB-D keyframe-based tracking method
is proposed, which does not suffer from time-evolving
global drift. A static studio scene is first modeled as a
database of RGB-D keyframes, which are obtained by
using our dense tracking approach and bundle adjust-
ment. The database is then used as a reference for real-
time pose estimation (Figure 1)1. By defining the cam-
era tracking problem relative to the nearest keyframe,
the time-evolving drift present in various other systems
is avoided. We show how the keyframe tracking even-
tually outperforms incremental dense tracking. The es-
timation is robust due to gradient-based pixel selection
and a M-estimator.

When aiming at processing dense RGB-D data in
real-time, the algorithms must be parallelized to obtain
sufficient performance and scalability properties. 2) The

1http://youtu.be/L_OLnFc7QxU
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Figure 1: Top: A RGB sensor is used to build a keyframe database
which contains the views in the camera motion zone. The TV cam-
era pose is estimated by registering the image content with the nearest
keyframe. Bottom: A real-time AR broadcast with virtual 3D charac-
ters which are rendered from the estimated pose. See example video1.

computational scalability and performance of the cam-
era tracking is improved by designing the full algorithm
for a commodity GPU. A detailed description from our
cost function definition into an efficient GPU imple-
mentation is given. 3) With a static keyframe-based
3D model available, the dynamic foreground points can
be rejected from the camera pose estimation by observ-
ing discrepancies in intensity and depth simultaneously.
Generally in RGB-D tracking, outliers both in color and
depth can exist (occlusions, foreground objects, lighting
effects etc) and must be taken care of. Our results are
verified in a real television broadcasting studio with and
without foreground dynamics. The proposed tracking
solution is also compared with KinectFusion which is a
recently presented alternative technique [3]. This work
optimizes the previous work with near real-time sim-
ulation results [4] into real-time application use. Due
to keyframes, the local drift will be negligible without
depth map registration.

2. Related work

In this section, various image content based camera
tracking approaches are discussed. Our focus is on af-
fordable, real-time methods which can be robust in stu-
dio environments without extensive scene manipulation.

2.1. Sparse feature based SLAM
Visual Simultaneous Localization and Mapping (vS-

LAM) methods aim at estimating camera poses and
structure concurrently from a real-time image sequence.
The same scene geometry may be visible only for short
time when the camera is moving. Therefore, an optimal
pose and structure configuration are commonly solved
within a sliding window of n recent frames using bun-
dle adjustment [2, 5]. The problem is formulated by
a cost function which measures 2D projection discrep-
ancy of the current pose and the structure configura-
tion. The minimization requires an initial guess, which
is iteratively improved until the cost decreases below
a threshold. The relative pose between two views are
often inferred from the essential matrix, which can be
estimated from 2D point correspondencies. The struc-
ture can be initialized using direct depth measurements
or by triangulation from 2D projection points. This pose
estimation process suffers from some drawbacks. Fea-
ture point extraction and matching is an error-prone pro-
cess and requires an outlier rejection mechanism such
as RANSAC. Extraction of high quality features such
as SIFT can be expensive for real-time systems and
still mismatches can not be fully prevented. For ex-
ample, repetitive patterns and homogeneous textureless
regions easily produce mismatches. Typically the esti-
mation suffers from time evolving drift, which is often
corrected by a loop closure mechanism. In loop clo-
sure, the current viewpoint is identified using a previ-
ously stored map. The cumulated pose error can then
be divided evenly along the loop for removing the drift.
Loop closure mechanisms are problematic in real-time
AR applications unless they remove drift nearly in ev-
ery frame, because bigger corrections are often visually
disturbing. PTAM system by Klein is able to do loop
closure for each frame, but suffers from error-prone fea-
ture extraction and matching process [6].

2.2. Pose tracking using planar surfaces
By introducing a priori information of surrounding

3D geometry into the estimation, the camera tracking
becomes easier to solve. Several algorithms have been
developed to track a camera based on a set of known
3D planar surfaces [7]. The planarity of the environ-
ment allows describing the optical flow analytically via
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homography mapping, which can be decomposed into
three-dimensional rotation and translation components.
Homography mapping is described as a 3× 3 matrixH ,
which is traditionally solved from point corresponden-
cies. After successful initialization, the pose increments
can also be obtained by using homography-based warp-
ing function which minimizes appearance based cost
function. Accurate camera tracking is possible using
visible planar markers, but unfortunately they are visu-
ally disturbing during television broadcasting.

2.3. Direct methods with dense 3D structures

The direct methods use image alignment methods
for pose estimation instead of depending on 2D feature
points [4, 8, 9]. By avoiding the error-prone feature ex-
traction and matching process, precision and robustness
can be increased. Direct methods minimize the photo-
metrical error between a reference point cloud and the
current RGB image. The drift can be further reduced
by matching also the current depth map values with
the reference points [4]. A joint SLAM cost function
has been formulated, which integrates structure com-
ponent into the same cost function [10]. Steinbrücker
et al. have recently proposed minimization of a pho-
tometrical cost [11], but do not take the benefit of M-
estimator, which can increase robustness with neglible
computational cost. The image warping function is
used to model the appearance change due to camera
motion. The warping requires a homography or a rel-
atively accurate 3D estimate of the surrounding envi-
ronment geometry. 3D point appearance generally de-
pends on the lighting conditions and the point of view,
but when observing subsequent frames, the points ap-
proximately maintain the same color. DTAM applies
the photometrical cost function for pose estimation, but
also refines 3D structure by minimizing photometrical
reprojection error [12]. DTAM is designed to oper-
ate with monocular camera in real-time, but it has sev-
eral drawbacks, such as a special initialization proce-
dure, discretization of depth values, not being compati-
ble with dynamic scenes, heavy hardware requirements
and parameter tuning with the correct surface smooth-
ness. A RGB-D sensor such as Microsoft Kinect is bet-
ter suited for direct pose estimation because it produces
a real-time feed of RGB-D measurements which can be
photometrically aligned [13]. KinectFusion formulates
pose estimation as depth map alignment problem using
traditional Iterative Closest Point (ICP) [3]. The system
also aims at maintaining small drift by registering the
current depth maps with a voxel grid based 3D model,
which is filtered over time by weighted averaging.

3. Dense RGB-D tracking
Our previous work tracked camera with respect to the

RGB-D measurements which were recently captured by
a RGB-D sensor. In this work, the previous frame ref-
erence is replaced by fixed keyframes which are stored
in advance to avoid drift. The pose estimation is de-
fined as a direct image registration task between the
current image I : R2 ⇒ R and the nearest keyframe
K = {P∗, c∗,T∗}, where P∗ = {P1,P2, . . . ,Pn} is a set of
3D points and c∗ = {c1, c2, . . . , cn} are the correspond-
ing color intensities. The 4 × 4 matrix T∗ defines the
keyframe pose relative to the reference coordinate sys-
tem. T∗ maps points from the reference to the keyframe
coordinate system. ∗ is used to denote fixed reference
variables.

Our goal is to find the correct pose increment T(x)
which minimizes scalar cost function 1

2 e(x)T e(x), where
the residual is defined by

e = I
(
w

(
P∗; T(x)T̂

))
− c∗. (1)

T̂ = Tg(T∗)−1 is the base transform, which encodes
the relative pose between the initial guess Tg and the
keyframe pose T∗. w(P; T) is the warping function
which transforms and projects 3D points by

w(P; T) = w(P;
[
R t
0 1

]
) = KD(N(RP + t),α), (2)

where N(p) = (p1/p3, p2/p3) dehomogenizes a point,
D(p,α) performs lens distortion using parameters α ∈
R5 (constant) and K is a 3 × 3 intrinsic matrix of the
camera (constant). We use standard Caltech distortion
model

D(p,α) =

[
p(1 + α1r2 + α2r4 + α5r6) + dx

1

]
(3)

where r2 = p2
1 + p2

2 and dx is the tangential distortion

dx =

[
2α3 p1 p2 + α4(r2 + 2p2

1)
α3(r2 + 2p2

2) + 2α4 p1 p2

]
. (4)

T(x) ∈ SE(3) forms a Lie group by exponential map-
ping [14]:

T(x) = eA(x), A(x) =

[
[ω]× υ

0 0

]
, (5)

where x = (ω, υ) ∈ R6 encodes relative 3D motion be-
tween two camera poses. ω is the rotation axis and ‖ω‖
is the rotation angle in radians, and υ is the velocity
twist. [ ]× produces a skew-symmetric matrix which
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performs a cross product. The matrix exponential pro-
duces 3×3 rotation matrix R and 3×1 translation vector
t embedded in a 4 × 4 matrix. This cost function form
does not require any predefined temporal corresponden-
cies. The warping function will produce the dense cor-
respondency when the minimization has converged.

3.1. Minimization

The inverse compositional approach [9] is adopted
for efficient minimization of the cost function. The cost
is reformulated as

c∗(x) = I∗
(
w

(
P∗; e−A(x)

))
, cw = I

(
w

(
P∗; T̂

))
e = c∗(x) − cw,

where reference colors in c∗ are now a function of the in-
verse motion increment (Figure 2). The current warped
intensities cw are produced by resampling I using T̂.
The residual e is then minimized by resampling the ref-
erence image I∗. The benefit can be observed from the
form of the Jacobian

Ji j =
∂c(0)
∂x

= ∇I∗ (w(Pi; I))
∂w(Pi; I)
∂x j

, (6)

where ∇I(p) = [ ∂I(p)
∂x

∂I(p)
∂y ]. Now J does not depend

on T̂ anymore and it can be computed only once for each
K∗ for better performance. Gauss-Newton iteration is
well-suited for minimization when the initial guess is
near the minimum and the cost function is smooth. The
cost function is locally approximated by the first-order
Taylor expansion e(x) = e(0) + Jx, where e(0) is the
current residual. c∗k(0) are bi-linearly interpolated only
once using reference image I∗. The scalar error func-
tion becomes

1
2

e(x)T e(x) =
1
2

e(0)T e(0) + xT JT e(0) +
1
2

xT JT Jx (7)

where the derivative is zero when

JT Jx = −JT e(0) . (8)

Because JT J is a 6×6 positive definite matrix, the in-
version can be efficiently calculated using the Cholesky
method. The matrix multiplication associativity enables
collecting the estimated increment into the base trans-
form by T̂keA(̂x) ⇒ T̂k+1.

3.2. Cost function smoothness

The first-order Taylor approximation is required for
efficient minimization and therefore the cost function
must be assumed to be locally smooth. Unfortunately,

Figure 2: Inverse compositional image alignment. The inverse incre-
ment is found which minimizes the difference between Iw and I∗.
Linearization is specially computed only once using I∗ and P∗.

the exact cost function is non-linear and non-continuous
due to arbitrary surface and appearance functions and
the perspective projection. Bi-linear interpolation is
used for continuous sampling of the images and smooth-
ness is assumed between the pixels. The motion is pa-
rameterized by the matrix exponential, whose deriva-
tives at zero are simply constant matrices ∂T(0)

∂x j
=

∂A(0)
∂x j

.
Strong photometrical variations at different resolutions
are the main cue of camera motion. The cost smooth-
ness increases with the number of 3D points because
noise deviations average out. Larger convergence do-
mains can be obtained by using downsampled images,
provided that aliasing effects do not dominate. By ex-
perimentation, 80 × 60 images provide rough estimates
which can be refined using higher resolution images.
Discontinuities in the cost function may occur when
switching between different resolutions. Maintaining
a fixed structure throughout the minimization is impor-
tant and thus we do not downsample the geometry even
though low resolution intensity images are used.

3.3. Rejecting outliers using M-estimator

The warping function models the appearance change
due to camera motion when 3D points are static with
Lambertian reflectance. Some of the points are consid-
ered outliers, because this model is not sufficient to ex-
plain their appearance. For example, intensity changes
due to occlusions, lighting effects and geometry dynam-
ics have not been modeled. Outliers can be detected ef-
ficiently by comparing the intensity and depth values at
the warped points and the reference points. Inliers al-
ways have small error whereas outliers may have any
error value. Increased robustness is obtained by damp-
ing the high error values out from the estimation (Fig-
ure 3). Instead of using a fixed threshold, a certain
adaptation level to image brighness variations is useful.
One method to determine the damping weights is by the
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Tukey weighting function

uk =
|ek |

c ∗ median(ea)
, (9)

wk
c =

(1 − ( uk
b )2)2 if |uk | <= b

0 if |uk | > b
, (10)

where ea = (|e1|, |e2|, . . . , |en|) is a vector of absolute
residual values, c = 1.4826 is the robust standard de-
viation, and b = 4.6851 is the Tukey specific constant.
Thus, Tukey weighting generates adaptive weighting
based on the statistical distribution of the residual.

The depth correlation weights are computed directly
from the depth residual

ez = Z
(
w(P; T̂)

)
− eT

3 T̂
[
P

1

]
, (11)

without adaptation, whereZ : R2 ⇒ R is the depth map
function of the current RGB image and eT

3 = (0, 0, 1, 0)
is used to obtain the current depth value. When the stan-
dard deviation of depth measurements is τ, the warped
points whose depth differs more than τ from the cur-
rent depth map value can be interpreted as foreground
objects. The depth weights are determined by

wz
k = max

(
1 − e2

z (k)/τ2, 0
)2
. (12)

The weighted Gauss-Newton step is obtained by
rewriting equation 8 as follows

JT WJx = −JT We, (13)

where W is a diagonal matrix with diag(W)k = wk
cwk

z.
The robust step is obtained by J ⇐

√
WJ and e ⇐√

We. The weights are quadratic and therefore square
root is not evaluated in practice.

Figure 3: Tukey M-estimator effect illustrated. The points with high
error values are given small or zero weight, because their appearance
change is not explained by the motion model.

3.4. Selecting reference points

The points used in the motion estimation can be
freely selected from a reference RGB-D measurement.
The points which do not contribute to the residual vec-
tor through linearization are not useful. Thus, only
the points, which are associated with the greatest ab-
solute values of the Jacobian should be selected [15].
The selected points will then have strong optical flow
‖ ∂w
∂x ‖ > θw and/or strong image gradient ‖ ∂I

∂p ‖ > θg.
We use a simpler selection criteria and focus on the set
of points P∗s which merely have strong image gradient.
This method fits GPU better, because it does not require
sorting of the Jacobian elements.

P∗s = { Pk | ‖∇I
∗(w(Pk; I))‖ > θg , Pk ∈ P

∗}, (14)

where θg is the threshold which selects p percent of all
points. p depends on the computational capacity avail-
able and the amount of image edges in the application
context.

3.5. Point distortion modeling vs image undistortion

By modeling the distortion in the warping function,
the input images do not need to be undistorted. This
is beneficial because image undistortion requires addi-
tional resampling of the image. Resampling degrades
raw RGB data, because bi-linear interpolation fails to
predict exact colors precisely. Also the number of dis-
tortion operations for a set of points will be smaller
than full image resolution even though warping has to
be done many times per frame.

4. Real-time implementation

Our method was implemented in Ubuntu Linux en-
vironment using open software tools, Microsoft Kinect
and a commodity PC laptop hardware on which the
method runs real-time. The cost minimization requires
special attention when aiming at an efficient real-time
implementation. Because the computational phases
benefit from parallel computing, we implemented the
full method (algorithm 1) on a commodity GPU. The
same minimization algorithm can be used with dense
incremental tracking and keyframe tracking. The im-
plementation scales into multiple threads/cores. Only
Cholesky inversion and matrix exponential computation
are executed on a single GPU thread.
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Algorithm 1 Minimization on GPU.
Input: IL={1,2,3} with 320× 240, 160× 120, and 80× 60 sizes.
Z in 320 × 240. Iteration counts {n1, n2, n3}. T̂ = T0.

Output: Relative pose T̂.
1: for all multi-resolution layers L = {3, 2, 1} do
2: for all iterations j = {1 . . . nL} do
3: Compute residual e and Wz (sec. 4.1)
4: Determine M-estimator weights Wc (sec. 4.2)
5: W⇐Wc ∗Wz

6: J⇐
√

WJ, e⇐
√

We
7: Reduce linear system (sec. 4.3)
8: Solving linear system for x̂ (sec. 4.3)
9: T̂⇐ T̂eA(̂x) (sec. 4.4)

10: end for
11: end for

4.1. Warping

The warping function is applied in parallel to the se-
lected Pk ∈ P

∗. The cost function (eq. 1) is evaluated
using bilinear interpolation. Additionally the points
are transformed into IR view for evaluating the near-
est depth value (eq. 11). Unnecessary resampling errors
are avoided by evaluating the depth values directly in
the IR view. The depths are used to generate weighting
Wz. The warping is illustrated in Figure 4.

Figure 4: The warping of points from keyframe into Microsoft Kinect
RGB and IR image coordinate systems. The additional depth lookup
from an IR image is required by Equations 1 and 11.

4.2. M-estimator

Tukey based weights require the median of the error
distribution, which easily becomes a bottleneck of using
M-estimator. Therefore, we use the histogram technique
(eq. 15) to find an approximate median. The distribution
of the residual is represented using a 64-bin histogram
and n is set to half residual length. histogram64 rou-
tine fits this purpose, because it is fast enough to be
executed in every iteration and is specifically designed
for NVIDIA video cards [16]. By experiment, 64 bins

Figure 5: Efficient reduction on GPU. Dot products are divided into
sub-ranges which are reduced in parallel. JT J is symmetric 6 × 6
matrix and elements can be mirrored with respect to the diagonal.

seems to provide sufficient adaptation to different error
distribution profiles.

4.3. Linear system reduction

The reduction of the linear system means computing
JT J and JT e. This phase compresses the linear equa-
tions from n-dimensional to six-dimensional. Reduction
is required for each iteration and therefore should be
implemented efficiently. Matrix multiplication is often
computed in parallel by dividing k dot products into sep-
arate threads. In this case, we have only 36 dot products,
but our video card can manage 1024 threads in parallel.
To gain maximal efficiency, we parallelize the computa-
tion in the dot product direction instead. Each dot prod-
uct has n elements, where n is usually 8192 or more.
Dot products are reduced by dividing them into sub-
blocks and summing them efficiently in parallel. The
total sum is finally cumulated from the subsums. JT J
is a positive semidefinite matrix which is also symmet-
ric. This means it is sufficient to compute only the up-
per triangle of the values and mirror the results into the
lower triangle. This property reduces the number of dot
products from 36 to 21. JT e requires six dot products.
The process is illustrated in Figure 5. The inversion can
be efficiently calculated using Cholesky decomposition
due to positive definite property. The explicit inverse of
JT J can also be avoided by using the conjugate gradient
method with six iterations. Both approaches are fast due
to the small matrix size. The inversion is executed on a
single GPU thread.

4.4. Evaluating matrix exponential

Matrix exponentials can be computed in closed form
using the translation extended Rodriquez formula [14].
Unfortunately it is not numerically stable in the most
important small angle case. Expokit, however, provides
various numerical approaches which are guaranteed to
produce smooth and precise mapping [17]. By com-
paring them with MATLAB default implementation, it
seems that complex matrix exponential (zgpadm) is the
most accurate. Thus, we choose to evaluate T(x) = eA(x)
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by the matrix exponential of a general complex matrix
in full, using the irreducible rational Padé approxima-
tion combined with scaling-and-squaring. The expo-
nential is computed in a single GPU thread due to se-
quential nature of the operation.

4.5. Selecting points on GPU
Even though keyframe reference points can be se-

lected in a pre-process, a fast implementation is use-
ful when executing dense tracking incrementally. We
adopt the histogram technique to find the best points ef-
ficiently [4]. We seek such histogram bin Bt for which

Σ255
k=Bt−1 h(k) < n <= Σ255

k=Bt
h(k), (15)

where n is the number of points to be selected and

G = |∇uI
∗ (w (P∗; I)) | + |∇vI

∗ (w (P∗; I)) |
h = histogram(G/2.0)

The value range is bounded to [0, 255] which fits
histogram256 method designed for NVIDIA video
cards [16]. The final n indices are collected into a
packed array. Packing is important because it allows
eliminating all non-interesting points from further pro-
cessing in the pipeline. Packing is implemented on a
GPU by assigning each thread a slice of the original in-
dex range to compress (Figure 6). Each thread stores the
interesting points into a temporary packed buffer with
the count. The counts must be collected from all threads
to determine the final output range of each thread. This
allows parallel point selection which scales into multi-
ple threads. Due to the discretization into bins, n pixels
may not match the bin boundary automatically. n should
be a multiple of 1024 to match the maximum amount of
threads on a GPU. This is why it is useful to classify
points into

Psemi = { |∇ck | = Bt | Pk ∈ P
∗ }

Pgood = { |∇ck | > Bt | Pk ∈ P
∗ },

wherePgood are all selected and the remaining points are
chosen from Psemi to obtain exactly n selected points.

4.6. Preprocessing RGB images
The preprocessor converts 640×480 Microsoft Kinect

Bayer images into a pyramid of 320 × 240, 160 × 120,
and 80 × 60. A 5 × 5 Gaussian filter is used with down-
sampling of the high resolution images. Downsampling
is almost lossless, because the Bayer images are redun-
dant. 2 × 2 block averaging is used to produce the rest
of the layers. The lower resolution x and y coordinates
are obtained by xL = 1

2L x + 1
2L+1 −

1
2 , where L is the

thread 1 thread 2 thread 3 thread 4

Figure 6: Index buffer packing illustrated. Each thread selects points
from a sub-range. The sub-counts are shared between the threads and
the output buffer written.

amount of layers in-between. The RGB pre-processing
steps are per-pixel operations which are executed in sep-
arate threads on a GPU.

4.7. Microsoft Kinect Calibration

Microsoft Kinect is conveniently calibrated using a
specialized toolbox by Herrera et al., which jointly es-
timates all calibration parameters [18]. A chessboard
pattern is printed and a set of matching raw dispar-
ity images and RGB images are captured and loaded
into the toolbox. The toolbox then semi-automatically
provides the intrinsic matrices KIR, KRGB, the baseline
transform Tb between the views, reconstruction param-
eters (c0, c1) ∈ R2 and distortion coefficients αRGB, α0,
α1 and β. The raw disparity map D(u, v) is then undis-
torted by

u(d, α0, α1,β) = d + β(u, v) exp (α0 − α1d), (16)

and converted into depth values by

z(d) =
1

c0 + c1u(d)
. (17)

The disparity undistortion model corrects exponential
decay of accuracy, but also models per pixel distor-
tions using a map β(u, v). The RGB image lens distor-
tion is modeled using the standard Caltech parameters
αRGB ∈ R5, which models radial distortions using three
coefficients and tangential distortions using two coeffi-
cients [19]. Typically only the first two radial compo-
nents are necessary, and the rest can be fixed to zero to
speed up computation. The toolbox allows fixing dis-
tortion parameters prior to calibration.

4.8. Generating point cloud from raw disparity map

The 3D points are generated in parallel by a baseline
transform

Pk = Tbz(dk)K−1
IR (pk 1)T , (18)
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Figure 7: RGB and disparity images, and distortion pattern β [18]

where pk = (uk, vk) are the pixel coordinates in the
IR view, K is the intrinsic matrix of the IR view, and
the 4 × 4 baseline matrix Tb maps points from the IR
view into the RGB view. Each cloud P has storage
for 320 × 240 points which are processed in parallel
and stored in a linear array. Further compressing of
point clouds is done through point selection procedure
(sec. 4.5). The intensity vector c∗ matching with the 3D
points Pk ∈ P is produced by bi-linear interpolation, be-
cause the points do not match with RGB image pixels.

4.9. Results
The minimization algorithm is implemented on a

low-end NVIDIA NVS4200m GPU using CUDA. The
GPU has 48 CUDA cores and it allows executing 1024
parallel threads on a single multi-streaming processor.
Because our implementation divides the computational
task into n threads, it is scalable and benefits from GPU
hardware development. Currently the most powerful
video cards, such as the NVIDIA Tesla K10, have 3072
CUDA cores. The computation time of the processing
phases is illustrated in Figure 8. The green bars repre-
sent the minimization phases which directly scale into
n threads and therefore become faster with more power-
ful GPU. 8192 points are selected and the minimization
uses three multi-resolution layers 80×60, 160×120 and
320 × 240. The corresponding iteration counts are 2, 3,
and 10. In effect, the system operates at 30Hz and the
computation takes 26ms which leaves 7ms for rendering
the augmented graphics.

5. Incremental Dense Tracking Experiments

The incremental dense tracking is sketched in Algo-
rithm 2. In this section the dense tracking accuracy
is evaluated using the RGB-D SLAM benchmark pro-
vided by Technical University of Münich [20]. Kinfu
is the open source implementation of KinectFusion [21]
which is a recent technique for low-cost camera track-
ing and reconstruction. The proposed dense RGB-D
tracking accuracy is compared with Kinfu (Figure 9).
Kinfu experiments were executed on a powerful work-
station GPU (NVIDIA Quadro 2000, 1024MB, 192
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Figure 8: GPU computation time for one frame. Green bars represent
phases which are scalable to n threads. The red bar must be executed
on a single thread. The gray bar represents the CUDA interop delay of
buffer locking which is required for visualization only. d2z is the dis-
parity map to zmap conversion, layers is the conversion to grayscale
multi-resolution format, pcloud is the 3D reconstruction, warp con-
tains the cost function evaluations, mest is the M-estimation, reduct
is the reduction of the linear system, and minc contains the delay of
solving the motion parameters and evaluating the matrix exponential.

CUDA cores) almost in real-time whereas our approach
was executed in real-time on a low-end laptop GPU
(NVIDIA NVS4200m, 1024MB, 48 CUDA cores). At
this point, keyframes are not used and time-evolving
drift is present in both systems. Incremental dense
tracking uses recent RGB-D measurements as motion
reference whereas Kinfu incrementally reconstructs a
voxel-based 3D model of the scene which is used as mo-
tion reference. Kinfu uses ICP to estimate camera pose,
which is based on a fully geometrical distance function.

Algorithm 2 Incremental dense tracking algorithm
Require: {P∗, c∗} ⇐Select the best points from 1st RGB-D.
Input: Tcur = Tre f = I
Output: Trajectory {I,T1

cur, . . . ,Tn
cur}.

1: for each RGB-D measurement do
2: T̂⇐Minimize(I,P∗, c∗,Icur)
3: Tcur ⇐ T̂Tre f

4: if reference update signaled then
5: {P∗, c∗} ⇐ Select the best points
6: Precompute Jacobian
7: Tre f = Tcur

8: end if
9: end for

Table 5 shows the comparison between our method
and Kinfu numerically using two Freiburg sequences
with known ground truth trajectory. Our dense tracking
drifts 1.08cm/s with the slower freiburg2/desk se-
quence and 2.60cm/s with the faster freiburg1/desk
sequence. Kinfu has smaller drift with small voxel vol-
umes (such as (3m)3) when the scene geometry is ver-
satile, but seems to suffer from gross tracking failures
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with bigger volumes such as (5m)3 and (8m)3. Opera-
tion volume is limited because 5123 voxel grid becomes
too coarse and bigger grids not not fit into GPU mem-
ory. Also ICP breaks down easily when the scene con-
tains mostly planar surface (e.g. floor) 1. Drift was mea-
sured by dividing the input frames into subsegments of
several seconds (10 and 2 correspondingly) whose me-
dian error was measured against the ground truth. One
second average error was computed from the subseg-
ment with median error to average out random pertur-
bations and to neglect Kinfu tracking failures, which
occurred in all cases except on freiburg2/desk using
(3m)3 volume. Our incremental dense tracking has gen-
erally smaller drift with the faster freiburg1/desk se-
quence, but both Kinfu (with the most compatible grid)
and our method lost track once during the sequence. In
this case (3m)3 grid does not contain versatile geome-
try and the result is worse than with bigger volumes.
Re-localization issues are discussed later in the paper.
Our method has more delay than previously because
the reference frames must be updated more frequently
with the faster sequence. Kinfu’s dependency on care-
ful setting of volume size, and dependency on geomet-
rical variations makes it unsuitable to be used in our ap-
plication. In television production studios, scenes can
easily be larger than (3m)3 and sufficient geometrical
variation is more difficult to guarantee than sufficient
texturing. Our dense tracking operates without failures
even when planar surfaces are present, because our cost
function matches also texturing. Memory consumption
can be low even in larger operating volumes, because
the keyframe placement can be optimized based on the
camera motion zones.

Dataset Our drift Kinfu(3) Kinfu(8) Motion

freiburg1/desk 2.60cm/s 8.40cm/s 3.97cm/s 41.3cm/s
52.2ms 135ms 135ms

freiburg2/desk 1.08cm/s 0.64cm/s 1.30cm/s 19.3cm/s
35.5ms 135ms 135ms

Table 1: Drift and delay compared to Kinfu with (3m)3 and (8m)3

operating volume.

6. Dense RGB-D tracking using keyframes

Despite that our dense tracker works in cases where
KinectFusion fails, the tracking suffers from time-
evolving drift, which is not acceptable in studio use, be-
cause it causes virtual items to move away from their

1 Video: http://youtu.be/tNz1p1sdTrE

Figure 9: Kinfu performance compared with incremental dense track-
ing using freiburg desk2 sequence with motion capture ground
truth (green trajectory). Kinfu is executed with (3m)3, (5m)3 and
(8m)3 voxel volumes. The red trajectories on the left are output from
from Kinfu. Kinfu gains lower drift due to structure integration, but
planar surfaces cause tracking failures. (3m)3 volume does not con-
tain floor and therefore Kinfu works well. On the right, the yellow tra-
jectory is the proposed incremental RGB-D tracking result. Problems
with planar surfaces do not exist, and the method allows larger operat-
ing volumes due to lower memory consumption. By using keyframes,
the drift can be completely eliminated. The green dots reveal the se-
lected points.

Algorithm 3 Keyframe tracking algorithm.
Require: Keyframe database available
Input: Tcur = I
Output: Trajectory {I,T1

cur, . . . ,Tn
cur}.

1: for each RGB-D measurement do
2: {P∗, c∗,T∗} ⇐FindKeyframe(Tcur)
3: T̂⇐Minimize(Tcur(T∗)−1,P∗, c∗,Icur)
4: Tcur ⇐ T̂T∗
5: end for

correct pose [4]. A fixed 3D model is required to avoid
drift (Figure 1). A keyframe model can be generated
with various offline/online techniques prior to broad-
casting [2, 22]. The keyframe tracking is sketched in
Algorithm 3. Tracking is initialized at the first keyframe
whose T̂ = I. The cost function (eq. 1) is then mini-
mized in each frame to obtain 3D camera pose. The ref-
erence keyframe is switched when the current pose be-
comes closer to another keyframe. Keyframe tracking is
driftless and very fast due to keyframe pre-computations
and the utilization of GPU.

6.1. Keyframe model generation

In a studio environment, online structure correction
mechanism is an unnecessary because the correct 3D
model can be fixed prior to a broadcast. We are in-
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terested in rapid and semi-automatic reconstruction ap-
proaches, which allow verifying and editing the 3D
model prior to broadcasting. We sweep the scene using
RGB-D sensor and concurrently store the pose parame-
ters and depth maps using our real-time dense tracking
approach (Algorithm 2). At this time, the studio scene
must not contain moving actors but merely static geom-
etry. The final keyframes are incrementally chosen from
the RGB-D stream by discarding the frames which are
too close to the existing database (Section 6.2). A loop-
closing mechanism could be used with more complex
sweeps where the camera re-enters same view points.
Loop closure can be implemented by alternating be-
tween Algorithms 2 and 3 and adding a keyframe only
when necessary. Both methods are rapid and they pro-
duce a sub-optimal set of keyframes, which can be fur-
ther refined in offline when necessary.

A simple keyframe model generation process is

• Incremental dense tracking (short sweep)

Followed by the optional offline refinement phases

• Depth map fusion

• Sparse bundle adjustment (semi-automatic annota-
tion of keypoints)

Because the keyframes are sparsely selected from the
stream of RGB-D measurements, they do not utilize all
information available. The intermediate point clouds,
which are not selected as keyframes, are warped into a
nearest keyframe and the final maps are filtered in post-
processing. In effect, this improves depth map accuracy
and fills holes. A large portion of the outlier points can
be neglected based on color deviation to the keyframe
pixels. The initial depth map is obtained as the median
of the warped depths similar to Hirschmüller [23]. The
inverse depth samples within zm ± δ are averaged to find
the robust estimate (Figure 10). Inverse depths typically
have Gaussian distribution in stereo based settings. δ
is the depth sample window, which is user-specified. δ
depends on the RGB-D sensor depth noise level. This
procedure is comparable to the weighted sum of Trun-
cated Signed Distance Functions [3], but the surface will
always appear near the median distance, and therefore
does not depend on the grid density.

Figure 10: Robust depth estimation near median depth illustrated.

Sparse bundle adjustment can be used to remove the
small global error at the end of estimated camera trajec-
tory [24]. SBA does not converge without a good initial
guess. Sometimes an initial guess can be succesfully ex-
tracted from an unordered image set by extracting and
matching feature points and initializing camera config-
uration using their geometrical relations. The process
is error-prone because image content such as homoge-
neous texturing and repetitive patterns prevents reliable
extraction/matching. The studio scenes in our case do
not contain much texture variations, and therefore au-
tomatic feature extraction fails. In this case, however,
dense tracking provides very good initial guess of the
pose configuration. To be able to execute SBA, few 3D
points and their 2D correspondence are required from
the user. An easy-to-use interactive editor was imple-
mented for this purpose. Multiple geometries disappear
when executing SBA (Figure 11).

Figure 11: The effect of sparse bundle adjustment illustrated. Minor
error at the end of the trajectory is corrected in the right side image.
The dense scene geometry becomes precise with correct poses. Notice
especially the sofa shape before and after the correction.

6.2. Finding nearest keyframe

A similarity metric is required to find the nearest key
pose Tk. The challenge is to unify rotation and transla-
tion differences, because they are expressed in different
units. First, we define the relative transformation

∆Tk = TcurT−1
k ⇒ (θk, vk,dk), (19)

where Tcur is the current camera pose. The relative rota-
tion is decomposed into angle-axis representation (θ, v)
based on the Euler’s rotation theorem. The translation
between the poses is expressed as the vector d between
the origins. We define a potential keyframe index set as

Ω = { |θk | < θmax, ||dk || < dmax || k ∈ [1, n] }, (20)

where n is the number of keyframes in the database.
ThusΩ contains a subset of keyframe indices whose an-
gle and distance are below user defined thresholds θmax
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Figure 12: The 3D test point set P used to compare camera poses is
illustrated. P approximates the view frustum by three 2D point grids.
The projection error ofP between the current view and each keyframe
view is compared to find the nearest keyframe.

and dmax. This pre-selection prunes out distant poses ef-
ficiently. Thresholds are easy to set based on keyframe
density in a 3D volume. The best keyframe is chosen
by transforming the view frustum, represented by a set
of 3D points, from the keyframe into the current frame
and observing the 2D point discrepancy. This unifies
rotation and translation errors into a single metric

s = argmin
k ∈ Ω

||w(P; ∆Tk) − w(P; I)||, (21)

whereKs is the nearest keyframe. In contrast to frustum
intersection, this metric works also when the camera is
rotating around z-axis. The test point set P is a sparse
representation of the view frustum (Figure 12). In par-
ticular, the frustum is approximated by three sparse 2D
grids, each having uniformly sampled depth coordinates
in the overall depth range of the RGB-D sensor. The 3D
points at different layers are generated by discrete steps
along the viewing rays.

7. Dense keyframe tracking experiments

In Figure 13, it is shown how the drift increases with
dense tracking when moving back and forth along a
fixed rail in a studio environment. We measure distance
to the ground truth in every frame as error metric. The
ground truth is generated without bundle adjustment,
simply by fitting a line based on the first sweep (alg.
2). Incremental tracking collects pose error from two
different sources: 1) numerical inaccuracies in the pose
estimation, 2) moving objects in the reference view. The
drift problem is solved by tracking relative to keyframes
which contain merely static background geometry (alg.
3). The demonstration video shows the difference be-
tween dense tracking with and without keyframes 3.

3http://youtu.be/zfKdZSkG4LU
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Figure 13: Camera moving forward and backward along a fixed
3.30m studio rail. The top figure shows three images taken from the
beginning, middle and the end of the rail. Green region represents
the selected points. On the bottom, the comparison between incre-
mental tracking and keyframe tracking. In incremental tracking drift
increases in time, but keyframe tracking maintains small bounded er-
ror. A person is moving in the scene during the last cycles.

Figure 14 shows how the online tracking accuracy de-
pends on the number of keyframes. The sequence is il-
lustrated in Figure 1, but we measure keyframe switch-
ing error in an empty scene for eliminating occlusion
effects. The ground truth is generated by applying bun-
dle adjustment to 27 keyframes which are initialized by
dense tracking. Keyframe tracking is then executed with
a sparsified number of ground truth keyframes (14, 9,
7, 5) and the camera pose is compared in each frame
to the corresponding ground truth pose. In long-term
use, even a small number of keyframes eventually out-
performs the dense tracking due to drift. However, a
small keyframe number produces local drift which ap-
pears as error ramps at keyframe switching points. This
can be visually disturbing. With sufficient number of
keyframes, the error remains small. Keyframe pose con-
sistency finally depends on the on the accuracy of bun-
dle adjustment. In this experiment, we obtain larger
keyframe switching effects due to bundle adjustment
phase. Bundle adjustment removes global error but can
introduce local variance to the keyposes if the 2D point
correspondencies are not precise. With the demonstra-
tion video, 14 keyframes produces small switching ef-
fects.

7.1. Rejecting dynamic foreground in studio

During broadcasting, the scene will contain moving
actors. The pose estimation should only use static back-
ground in order to avoid estimation bias. After the static
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Figure 14: The translation and rotation error as a function of keyframe
count. The sequence is illustrated in Figure 1. Keyframe switching
error depends on the amount of keyframes. Over 14 keyframes are
required to obtain sufficiently small keyframe switching error.

keyframe model has been captured, the scene can be
segmented into static and dynamic components based
on the current depth and intensity difference to the static
keyframe. The weighting computed in section 3.3 en-
forces the estimation to use static background. The
weighting is illustrated in Figure 15. When relying
on incremental tracking (alg. 2), the reference RGB-
D measurement may unfortunately contain also moving
objects which interfere tracking. The effect can be no-
ticed during the last cycles (Figure 13) where an actor is
moving in the scene. The estimation requires sufficient
amount of visible points and, therefore, foreground ac-
tors are not allowed to occlude more than a fraction of
the selected points. Figure 13 illustrates how the mov-
ing actor does not disturb camera tracking when relying
on keyframes.

7.2. Studio lighting conditions with Microsoft Kinect
In studio environments, the color constancy assump-

tion works well, because lighting can be fixed and
specular surfaces avoided. This implies that keyframe
database is valid as long as the scene configuration is
fixed. Interfering IR light which is not originated from
the RGB-D sensor can easily be cut-off in studio envi-
ronments. One problem, however, is that the Microsoft
Kinect RGB camera is of low quality and in standard

Figure 15: The points which currently participate in pose estimation
are selected based on the image gradient magnitude. The dynamic
foreground is given zero weighting in the estimation based on large
depth and intensity difference to the static keyframe. The weight 1.0
is assigned to the green points and 0.0 to the red points.

lighting conditions the colors can saturate (see Fig. 16).
With professional HD cameras this is not the case since
they have remarkably better dynamic range. To cir-
cumvent this limitation, the RGB-D sensor depth maps
should be directly calibrated with a HD camera [18].

Figure 16: HD camera (left) and Microsoft Kinect RGB image (right)
in typical studio lighting conditions.

7.3. Constraints

If the camera is moving too quickly, the minimization
may not converge, because a local optimization strat-
egy is used. Global minimization strategies of the cost
function are not discussed in this paper because they are
computationally too expensive to operate in real-time.
Motion capture systems, on the otherhand, are expen-
sive but could be used to provide initial guess for a pose.
To avoid re-localization needs completely, we operate
with limited camera speed, sufficient scene texturing,
sufficient keyframe density, and ensure that sufficient
amount of selected keyframe points are visible despite
the occluding actors.
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8. Conclusions
In this work, an affordable real-time matchmoving

solution has been developed, which can be used to
produce broadcasts with interactive digital components,
such as virtual characters and stage items. The solu-
tion performs in real-time using a RGB-D sensor, and a
laptop with a low-end GPU. This system was able to ac-
curately and robustly track camera in broadcasting stu-
dio sized operating volumes where the state-of-the-art
approach fails. Time-evolving drift problem is solved
by tracking the camera relative to the nearest keyframe.
The keyframes were generated using incremental dense
tracking, and fine-tuned using sparse bundle adjust-
ment. M-estimator was enhanced by segmentation-
based weights, which allows actors to move in the fore-
ground while tracking the camera. When operating in
the RGB-D sensor range, our pose estimation accuracy
depends mostly on texturing, which is trivial to manipu-
late/add in studio environments. Therefore the proposed
method is easily adaptable to different types of studio
scene settings, whereas KinectFusion is constrained by
the amount of geometrical variations in the scene. Cam-
era tracking has been demonstrated in a real broadcast
studio with and without dynamic components. Drift and
keyframe switching errors have also been quantified.
Future work will address the practical issues of how
studio staff and cameramen can use this computer vi-
sion system in live broadcasts. We will calibrate RGB-D
sensor with a professional HD camera for better image
quality. Moreover, combination of the best properties of
our approach and KinectFusion will be investigated.
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