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Global Position-Feedback Tracking Control of Flexible-joint Robots

Sofia Avila-Becerril Antonio Lorı́a Elena Panteley

Abstract— We solve the open problem of global tracking
control of 2nd-degree under-actuated lossless (without fric-
tion) Lagrangian systems via position measurements only. For
flexible-joint robots, we design a dynamic controller which
is based on measurements of link and joint positions only.
Then, approximate differentiation is used for link velocities
and a simple Luenberger observer for rotor velocities. The
main results constitute a significant extension of recent work
on observerless output-feedback control of Lagrangian systems.
Strictly speaking, we establish uniform global asymptotic sta-
bility for the closed loop system.

I. INTRODUCTION

The tracking control problem by output-feedback for
Euler-Lagrange systems has been widely discussed in the
literature –[18], [12], [4], [6], [15], [14]. For the system

D(q)q̈ + C(q, q̇)q̇ + g(q) = u (1)

where q ∈ Rn and q̇ denotes the generalized positions and
velocities (respectively), the maps D : Rn → Rn×n and
C : Rn×Rn → Rn×n corresponds to the inertia matrix and
the Coriolis and centrifugal forces matrix, respectively, while
g : Rn → Rn stands for the vector of forces derived from
the potential energy function and u ∈ Rn is the vector of
control inputs. Assuming that only generalized positions are
available for measurement, the problem consist in design an
internally stable control law that ensures that

lim
t→∞

q(t)→ qd(t), lim
t→∞

q̇(t)→ qd(t).

One of the first results on this line was reported in [10]
where, in the context of robot tracking, the authors consider
state feedback controllers with a nonlinear observer that
reproduces the whole dynamic ensuring local asymptotic sta-
bility. A large number of articles were published (including
those cited above) in which different stability properties are
established: semiglobal asymptotic stability –[9], [1], global
asymptotic stability in part of the coordinates [18], global
asymptotic stability –[12], [6], global exponential stability
–[15], [14], etc. In [18], [12] however, it is assumed that the
system has inherent dissipative forces (friction); for lossless
systems, only [4], [6], [15], [14] establish uniform global
asymptotic stability. In [4], however, the result applies to
one-degree-of-freedom systems. It is only in [6], [15], [14]
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that the long-standing open problem of establishing uniform
global asymptotic stability for the closed-loop system, was
fully solved, independently. See also [5].

For flexible-joint robots, the output-feedback tracking con-
trol is even more complex since the relative degree with
respect to link positions is augmented by two relative to
(1). In [11] the authors presented a result based on a
semi-global nonlinear observer for the unmeasured variables,
which needs only the link positions. In [19] the authors
propose a robust output-feedback link position tracking
control ensuring semi-global uniformly ultimately bounded
link position tracking; and in the same spirit, in [3] based
on a set of filters, removes the need of measuring link
and actuator velocities, however the result relies on the
restrictive assumption that the system is internally damped by
viscous friction. In [17] a nonlinear observer-based certainty-
equivalence tracking controller for Euler Lagrange systems is
presented; global conditions are obtained under the assump-
tion that one disposes of a controller that can be bounded by
an affine function in the position times a polynomial of the
velocities.

In [8] we presented a controller for flexible-joint robots
which ensures uniform global asymptotic stability for the
closed-loop system under the assumption that joint, but not
link velocities, are measured. The controller in the latter
is based on the more general results recently published in
[7]. In the latter we established uniform global asymptotic
stability for n degrees of freedom systems with arbitrarily-
high-relative-degree (with respect to generalized positions),
without measurements of link velocities, the last includes
under-actuated systems as the flexible joint robots. The
control law is implemented through a chain of integrators in
which the derivatives of virtual control inputs are replaced
by approximate differentiation filters so that the result states
a theoretical foundation for the use of the “dirty” derivatives.

In this paper, we follow the control method of [7], [8] and
derive a certainty-equivalence controller which employs a
reduced-order observer, in order to relax the assumption that
joint velocities are measured. That is, under the assumption
that only positions are available, we establish, for lossless
flexible-joint robots, uniform global asymptotic stability in
closed loop. As far as we know, there exists no other article
in the literature establishing all this property under similar
assumptions.

The rest of the paper is organized as follows: in Section II
we formulate the global tracking problem and present some
preliminary recent results. In Section III we present our main
result. In Section IV we illustrate our findings in simulation,



before concluding with some final remarks, in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

According to [16], [2] joint flexibility in robot manipula-
tors may be modelled using linear torsional springs; hence,
if we denote by K the joint stiffness (K =∞ implying no
elasticity) the Lagrangian model is given by the equations

D(q1)q̈1 + C(q1, q̇1)q̇1 +G(q1) = K(q2 − q1) (2a)
Jq̈2 +K(q2 − q1) = τ (2b)

where q1 ∈ Rn denote the under-actuated coordinates related
to the links positions while q2 ∈ Rn represents the vector
of motor shafts angles. The matrix D(q1) = D>(q1) >
0 corresponds to the link-inertia matrix, J stands for the
diagonal rotor-inertia matrix, C(q1, q̇1)q̇1 contains the terms
due to the Coriolis and centrifugal forces, G represents the
gravitational forces vectors and τ corresponds to the physical
control input. As it is customary, we make the following
hypothesis on the model (2).

Assumption 1:

1) The inertia matrix D(q1) is positive definite and uni-
formly bounded; there exist positive real numbers dm
and dM such that

dm ≤ |D(q1)| ≤ dM

2) The matrix C(x, y) is bounded in x and linear in y.
More precisely, there exists a saturation function sat :
R→ R such that, for all x, y, z ∈ Rn,

|C(x, y)−C(z, y)| ≤ kcsat(|x−z|)|y|, |sat(s)| ≤ 1,

C(x, y)z = C(x, z)y,

3) The matrix Ḋ(q1)− 2C(q1, q̇1) is skew symmetric for
all q1 ∈ Rn.

4) There exists kv such that function that represents the
potential-energy forces, G, satisfies

∃kv > 0 :

∣∣∣∣ ∂G∂q1
∣∣∣∣ ≤ kv (3)

Under these conditions, we solve the global tracking con-
trol problem via position measurements only. More precisely,
for any given reference trajectory t 7→ qd, twice continuously
differentiable and bounded, i.e., such that kδ > 0 such that

max

{
sup
t≥0
|qd(t)|, sup

t≥0
|q̇d(t)|, sup

t≥0
|q̈d(t)|

}
≤ kδ (4)

for some kδ > 0, it is required to construct an output-
feedback dynamic controller

ẋc = f(t, q1, q2, xc) (5)
u = u(t, q1, q2, xc) (6)

(that is, xc ∈ Rm corresponds to the state of the controller)
such that the origin of the closed-loop system is uniformly
globally asymptotically stable. In order to solve this problem

we follow the method of [7] which relies on the use of
approximate differentiators to replace unavailable derivatives,
such as velocity measurements.

For the sake of clarity, we first recall the main streamlines
of the control method proposed in [7]. It concerns Lagrangian
systems augmented by a chain of integrators; for the purposes
of this paper we consider the case of two additional states,
i.e.,

D(q1)q̈1 + C(q1, q̇1)q̇1 + g(q1) = ξ1 (7a)
ξ̇1 = ξ2 (7b)
ξ̇2 = u. (7c)

We remark that the model (2) may be transformed into (7)
via a preliminary feedback and a change of variable. Indeed,
this follows after a direct calculation, defining g(q1) =
G(q1) + Kq1, ξ1 = Kq2, ξ2 = Kq̇2 and setting the input
torque to

τ = ξ1 −Kq1 + JK−1u. (8)

Thus, the output-feedback tracking control problem boils
down to stabilizing (q1d, q̇1d, 0, 0) without measurement of
q̇1 and ξ2.

In [7] a controller that depends on all motor variables
(q2 and q̇2) but not on link velocity measurements, q̇1 is
proposed. In this paper, we relax the assumption that q̇2
is measurable. The output-feedback control design method
proposed in [7] follows the rationale of backstepping control,
in which unavailable derivatives are replaced by approximate
differentiation. Hence, the starting point is to consider ξ1 as a
virtual control input in (7) and to design a virtual control law
ξ?1 which is set as reference for the integrator (7b) variable
ξi, i.e.,

ξ?1 = −kp0 q̃1 − kd0ϑ0 +D(q1)q̈1d + C(q1, q̇1d)q̇1d + g(q1),
(9)

with q̃1 := q1 − q1d(t), whereas ϑ0 corresponds to the
approximate differentiation of q̃1 that is,

q̇c0 = −a0ϑ0 (10a)
ϑ0 = qc0 + b0q̃1. (10b)

Then, considering ξ2 as a control input in (7b) we define

ξ?2 = −kp1 ξ̃1 + kd1ϑ1 + ξ̇?10,

ϑi = qci + biξ
?
i + ζi

q̇ci = −aiϑi
ζ̇i = −(kdi − σi)ξ̃i − biξ̇?i0

∀i ∈ [1, 2] (11a)

u = −kp2 ξ̃2 + kd2ϑ2 + ξ̇?20 (11b)

where ξ̃i := ξi − ξ?i , with σ1 = 0 and σ2 = b2kp1 .
It is proved in [7] that the origin {z = 0}, with z =[
q̃>1 ˙̃q>1 ϑ>0 ξ̃>1 ξ̃>2 ϑ>1 ϑ>2

]>
and ˙̃q1 := q̇1 −

q̇1d(t), is uniformly globally asymptotically stable. Never-
theless, the controller (11) is based on the measurement of
ξ1 and ξ2, which involves the measurement of motor shaft
angular velocity, q̇2, since ξ2 = Kq̇2.



We remark that the dynamic controller (11) is designed on
the basis of a backstepping design however, notice that the
derivatives of ξ?1 and ξ?2 depend on unmeasurable variables
such as velocities and accelerations hence, in place of ξ̇?1
and ξ̇?2 , we employ approximate differentiation. This is
implemented via the filters defined by (11a). To see this
more clearly notice that these equations are equivalent to
the Laplace representations:

ϑi =
bi

s+ ai
ψ̇i ⇔ ϑi =

bis

s+ ai
ψi (12)

with input ψ̇i = ξ̇?i + ζ̇i/bi and ψ0 = q̃. This filter defines an
output-strictly proper passive map ϑi 7→ ψ̇i that is internally
stable and input to state stable with respect to the input ψ̇i.
However, it does not constitute an observer in the sense that
one does not have ϑi → ψ̇i, in particular, ϑ0 → ˙̃q

III. MAIN RESULT

Our main statement (Proposition 1 below) is to estab-
lish a separation principle via position-feedback control of
robot manipulators with flexible joints. We use a certainty-
equivalence controller based on (11) and a simple reduced-
order Luenberger observer. The latter is possible since the
observer is designed only to estimate the unavailable state
ξ2, while other unmeasured variables such as link velocities,
are “estimated” via dirty derivatives. While the design may
be considered as naive, we remark that, as far as we know,
there does not exist in the literature, a statement of uniform
global asymptotic stability.

We define the reduced-order observer
˙̂
ξ1 = ξ̂2 + λ1(ξ1 − ξ̂1), (13a)
˙̂
ξ2 = u+ λ2(ξ1 − ξ̂1) (13b)

where λ1 and λ2 are positive constant observer gains. Now,
let the observer error e =

[
e>1 e>2

]> ∈ R2n be defined
as e = ξ − ξ̂ which, along (7) and (13), satisfies

ė1 = e2 − λ1e1 (14a)
ė2 = −λ2e1 (14b)

Then, defining ξ̄ = ξ̂ − ξ?, consider the certainty equivalent
controller

ξ?2 = −kp1 ξ̄1 + kd1ϑ1 + ξ̇?10, (15a)
ϑi = qci + biξ

?
i + ζi

q̇ci = −aiϑi
ζ̇i = −(kdi − σi)ξ̄i − biξ̇?i0

∀i ∈ {1, 2} (15b)

u = −kp2 ξ̄2 + kd2ϑ2 + ξ̇?20 (15c)

where kpi and kdi, which denote “proportional” and “deriva-
tive” control gains respectively, are positive constants. Then,
we have the following.

Proposition 1: Let q1d be given as in (4). Consider the
system (2) under Assumption 1 in closed loop with the
controller defined by Equations (8), (9) and (15). Then,

the origin of the closed-loop system is uniformly globally
asymptotically stable for sufficiently large control gains.
Moreover, this holds for any positive observer gains λ1, λ2,
independently of the control gains.
The proof is constructive, we derive explicit conditions on the
control gains that imply uniform global asymptotic stability.
It is organized in the following logical steps: first, we derive
the closed-loop equations; then, we recognize that the closed-
loop dynamics has a cascaded form which stems from the
application of certainty equivalence principle. The latter
allows to invoke a cascades argument. Namely, that for a
nonlinear time-varying system

ẋ1 = f1(t, x1) + g(t, x)x2 (16a)
ẋ2 = f2(t, x2) (16b)

where x1 ∈ Rn, x2 ∈ Rm, x := col [x1, x2] with f1, f2
and g continuous and locally Lipschitz in x, uniformly in
t, and f1 continuously differentiable, it holds that if the
respective origins of the subsystems (16b) and ẋ1 = f1(t, x1)
are uniformly globally asymptotically stable, it is sufficient
and necessary for the origin of the overall system to possess
the same property, that the solutions of (16) be uniformly
globally bounded. This property is established along the
proof-lines of [7, Theorem 5].

A. The closed-loop equations

The first error equation is obtained using the identity
ξ1 = ξ̃1 + ξ∗1 , by replacing ξ?1 from (9) in (7a) and adding
−C(q1, q̇1d)q̇1 + C(q1, q̇1)q̇1d = 0 to the right-hand side of
(15c). Then, we differentiate on both sides of (10b) and we
use (10a) to obtain

D(q1)¨̃q1 + [C(q1, q̇1) + C(q1, q̇1d)] ˙̃q1 + kp0 q̃1 + kd0ϑ0 = ξ̃1
(17a)

ϑ̇0 = −a0ϑ0 + b0 ˙̃q1. (17b)

On the other hand, note that the equations (7b)–(7c) are
equivalent to

˙̃
ξ1 = ξ?2 − ξ̇?1 + ξ̃2 (18)
˙̃
ξ2 = u− ξ̇?2 (19)

so, using the identity ξ̄i = ξ̃i − ei for i ∈ {1, 2} as well as
(15), we obtain

˙̃
ξ1 = −kp1ξ̃1 + kd1ϑ1 + ξ̃2 + kp1e1 − (ξ̇?1 − ξ̇?10) (20a)
˙̃
ξ2 = −kp2ξ̃2 + kd2ϑ2 + kp2e2 − (ξ̇?2 − ξ̇?20) (20b)

ϑ̇i = −aiϑi − (kdi − σi)ξ̃i + (kdi − σi)ei + bi(ξ̇
?
i − ξ̇?i0)

(20c)

where σ1 = 0.
Next, to compact the notation, we define A :=

diag {a1, a2} ⊗ In, B := diag {b1, b2} ⊗ In, Kd :=
diag {kd1 , kd2} ⊗ In, Kp := diag {kp1 , kp2} ⊗ In, K ′d :=
diag {kd1 , kd2 − σ2} ⊗ In,

K ′p =

[
kp1 −1
0 kp2

]
, L =

[
λ1 −1
λ2 0

]



and defining ϑ> =
[
ϑ>1 ϑ>2

]
, then Equations (20) take

the form
˙̃
ξ = −K ′pξ̃ +Kdϑ+Kpe−

[
ξ̇? − ξ̇?0

]
(21a)

ϑ̇ = −Aϑ−K ′dξ̃ +K ′de+B
[
ξ̇? − ξ̇?0

]
(21b)

ė = −Le (21c)

where the matrix −L is Hurwitz.
These equations have a convenient structure. Firstly, the

terms in brackets,
[
ξ̇?−ξ̇?0

]
, vanish at the origin. This follows,

on one hand, from the identity

ξ̇?2− ξ̇?20 = −kp1 ξ̄2 +ηξ̄1−µϑ1 +β
[
ξ̇?1 − ξ̇?10

]
−λ1e1 (22)

where µ = kd1(kp1 + a1), η = k2p1 − k
2
d1

, and β = kp1 +

b1kd1 and ξ̄ = ξ̃ − e. On the other hand, Assumption 1,
together with (4), guarantees that ξ̇?1(t, q, q̇, ϑ0) is globally
Lipschitz in the last two arguments, uniformly in t and that
is bounded in the first two arguments, so there exist non-
negative real numbers η1, η2 and η3 as well as continuous
saturation function sat : R → R such that ysat(y) > 0 for
all y 6= 0 and |sat(y) ≤ 1|, and∣∣∣[ξ̇?1 − ξ̇?10]∣∣∣ ≤ η1sat(|q̃|) + η2| ˙̃q2|+ η3|ϑ0|. (23)

Furthermore, the variable ξ̇?2 can be written as a function of
ξ̃, ϑ, e and ξ̇?1 ; therefore, in view of (15a) and (20) we have

ξ̇?2 = ηξ̃1 − µϑ1 − (η + kp1λ1) e1 (24)

− kp1 ξ̃2 + kp1e2 + β
[
ξ̇?1 − ξ̇?10

]
+ ξ̈?10

So that equations (21) take the form
˙̃
ξ =− (K ′p + Γ1)ξ̃ + (Kd − Γ2)ϑ+ (Kp + Γ4)e

− Γ3

[
ξ̇?1 − ξ̇?10

]
(25a)

ϑ̇ =− (K2 −BΓ1)ξ̃ − (A−BΓ2)ϑ+ (K2 −BΓ4)e

+ (BΓ3)
[
ξ̇?1 − ξ̇?10

]
(25b)

ė =− Le (25c)

where we defined

Γ1 =

[
0 0
η −kp1

]
⊗ In,

Γ2 =

[
0 0
−µ 0

]
⊗ In,

Γ3 =

[
1
β

]
⊗ In,

Γ4 =

[
0 0

kp1λ1 + η −kp1

]
⊗ In,

K2 =

[
kd1 0
0 kd2 − σ2

]
⊗ In

Now, if we define x1 :=
[
ξ̃> ϑ>

]>
and x2 := e the

system (25) becomes

ẋ1 = Ax1 + B
[
ξ̇?1 − ξ̇?10

]
+K ′x2 (26a)

ẋ2 = −Lx2 (26b)

where

A =

[
−(K ′p + Γ1) Kd − Γ2

−(K2 −BΓ1) −(A−BΓ2)

]
, B =

[
−Γ3

BΓ3

]
K ′ =

[
Kp + Γ4

K2 −BΓ1

]
.

This system has a convenient cascaded form, as (16).
Moreover, since L is Hurwitz by design, the origin of
system (26b) is uniformly globally exponentially stable.
Furthermore, after [7], the origin of

ẋ1 = Ax1 + B
[
ξ̇?1 − ξ̇?10

]
is uniformly globally asymptotically stable for appropriate
values of the control gains. In order to invoke the cascades
argument, more precisely, [13, Lemma 2], it is left to prove
that the solutions of (26a) are uniformly globally bounded.

B. Boundedness of solutions

Proposition 2: Let L be Hurwitz, kp1 = kd1 and assume
that

min

{
kp1 ,

[kp2− kp1 ]

β2
,
a1
b21
,
a2
b22β

2

}
>
[
η22 + η23 ] (27)

[kp2 − kp1 ] ≥ max

{
2

kp1
,

4µ2

a1

}
, a1a2 ≥ 2b22µ

2. (28)

Then, the solutions of the closed-loop system (17), (26) are
uniformly globally bounded.
Proof. Let the Hurwitz property of L generate positive
definite matrices PL, QL, satisfying −QL := (L>PL+PLL)
and let κ > 0 be a real constant. Then, consider the function
W : R10n → R≥0, defined as

W (x) = κ‖x1‖2 + x>2 PLx2; (29)

a direct computation shows that its total derivative along the
trajectories of (26) yields

Ẇ (x) =κ
[
x>1 (A+A>)x1 + 2x>1 B

[
ξ̇?1 − ξ̇?10

]
+

+ 2x>PK ′x2

]
− x>2 QLx2.

Now, let Q = −(A> +A); we see that, since kp1 = kd1 ,

Q =


2kp1 −1 0 0
−1 2 [kp2 − kp1 ] −µ 0
0 −µ 2a1 −b2µ
0 0 −b2µ 2a2

⊗ In. (30)

Hence, defining c := |K ′|, λ := |L|, using the Cauchy–
Schwartz and the triangle inequalities, we obtain

Ẇ ≤ −κx>1 Qx1 + 2κx>1 B
[
ξ̇?1 − ξ̇?10

]
+ 2κc|x1||x2| − λ|x2|2

≤ −κx>1 Qx1 + 2κx>1 B
[
ξ̇?1 − ξ̇?10

]
+
κc

ε
|x1|2

− (λ− κcε)|x2|2

Now, notice that the matrix Q−½ diag{Q} is positive
semidefinite if so are[

kp1 −1
−1 ½[kp2− kp1 ]

]
,



[
½[kp2− kp1 ] −µ
−µ ½a1

]
,

[
½a1 −b2µ
−b2µ a2

]
,

which hold in view of (28). Therefore, under these condi-
tions, we see that

Ẇ ≤− κx>1
(

1

2
diag {Q} − c

ε
I

)
x1 + 2κx>1 B

[
ξ̇?1 − ξ̇?10

]
− (λ− κcε)|x2|2 (31)

Notice that the factors of |x1|2 and |x2|2 are negative for any
λ > 0, sufficiently large values of ε and κ := 1/ε2. On the
other hand, under Assumption 1, from Inequality (23) and
the triangle inequality, it follows that

x>1 B
[
ξ̇?1 − ξ̇?10

]
≤ η1(|ξ̃1|+ β1|ξ̃2|+ b1|ϑ1|+ b2β1|ϑ2|)

+
1

2
(η22 + η23)(|ξ̃1|2 + β2

1 |ξ̃2|2 + b21|ϑ21|+ b22β
2
1 |ϑ2|2)

+2| ˙̃q1|2 + 2|ϑ0|2. (32)

Next, let V : R≥0 × R13n → R≥0 be defined as
V (t, q̃1, ˙̃q1, ϑ0) +W (x), where

V =
κ

2

(
˙̃q>1 D(q̃1 + q1d(t)) ˙̃q1 + kp0 |q̃1|2 +

kd0
b0
|ϑ0|2

)
(33)

The total derivative of V := V +W along the trajectories of
(17) and (26) yields

V̇ ≤ −a0kd0κ
b0

|ϑ0|2 + kckδκ| ˙̃q1|2 + κ ˙̃q>1 ξ̃1 − (λ− κcε)|x2|2

− κ ˙̃q1e1 − κx>1
(

1

2
diag {Q} − c

ε
I

)
x1 + 2κx>1 B

[
ξ̇?1 − ξ̇?10

]
that in view of (32) can be expressed as

V̇ ≤ −κx>1
(

1

2
diag {Q} − c

ε
I

)
x1 −

(
λ− κ

2
− κcε

)
|x2|2

+
κ

2
|ξ̃1|2 + 2κη1

(
|ξ̃1|+ β1|ξ̃2|+ b1|ϑ1|+ b2β1|ϑ2|

)
+ κ(η22 + η23)

(
|ξ̃1|2 + β2

1 |ξ̃2|2 + b21|ϑ21|+ b22β
2
1 |ϑ2|2

)
+ κ

(
7

2
+ kckδ

)
| ˙̃q1|2 − κ

(
a0kd0
b0
− 2

)
|ϑ0|2 (34)

By assumption, the quadratic term in x1 is negative defi-
nite and dominates over all positive terms, except on that
involving | ˙̃q1|2.

The rest of the proof of boundedness follows as for
Theorems 5 and 6 of [7]. Roughly speaking in the latter
it is established that, even though ϑ0 6→ ˙̃q1, the output-
input gain of the filter (12) is finite. More precisely, to
any monotonically increasing sequence {[ | ˙̃q1|2]i} where
[| ˙̃q1|2]i = | ˙̃q1(ti)|2, corresponds a sequence {[ |ϑ0|2]i} which
increases at the same rate. Therefore, if {| ˙̃q1(t)|2} grows
unboundedly so does {|ϑ0(t)|2} hence, sequentially, V̇(ti)
becomes non-positive and {V(ti)} is bounded. Rigorous
proof along these arguments is provided in [7].

Finally, the statement of Proposition 1 follows invoking
[13, Lemma 2].

IV. SIMULATIONS RESULTS

In order to evaluate the global characteristic of the con-
troller (15) we present some numerical simulations. To this
end, we consider a two-degrees-of-freedom planar flexible
joint robot whose model is given by

D(q1) =

[
8.77 + 1.02c12 0.76 + 0.51c12
0.76 + 0.51c12 0.62

]

C(q1, q̇1) =

[
−0.51s12q̇12 −0.51s12(q̇11 + q̇12)
0.51s12q̇11 0

]
where c12 and s12 denotes the cos(q12) and sin(q12)
respectively. Furthermore, the joint stiffness matrix is
K =diag{10000, 10000} while the rotor inertia matrix is
J = diag{0.1, 0.1}. The gravitational forces vector g(q1)> =[
9.81(7.6s11 + 0.63s11,12 9.81(0.63s11,12)

]
with s11,12 =

sin(q11 + q12). And we have set the desired value of the
under-actuated coordinates to q1d(t) := sin(ωt) rad, with
ω1 = 2 rad/s.

With the aim at illustrating the global character of the sta-
bility enhanced by our controller, we purposefully performed
a simulation test with an unrealistic 5000% of initial error.
The control parameters for the filters were set to a0 = 500,
b0 = 500 a1 = 2500, b1 = 5, a2 = 5000, b2 = 5, the control
gains were fixed in kp0 = 400 , kp1 = 1, kp2 = 8000
and kd0 = 35, kd1 = 500, kd2 = 10, while the observer
parameters λ1 = 10 and λ2 = 20. In Figures 1 and 2
we show the position and the velocity of the under-actuated
coordinates q1 and q̇1 respectively. These graphs show the
proper functioning of the controller and its global property.
In Figure 3 we depict the observer performance.
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Fig. 1. Link angular positions and reference

V. CONCLUSIONS

In this paper we make an extension of the results in [7]
in a way that the output-feedback problem can be solved
based only in the measurement of the link position preserving
the uniformly globally asymptotic stability property for the
closed-loop system. The result is based on the use of a
Luenberger observer and in particular, solves the problem
for the flexible joint robots under the conditions: the system
is lossless and motor velocities are unmeasured.
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