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Global Position-Feedback Tracking Control of Flexible-joint Robots

We solve the open problem of global tracking control of 2nd-degree under-actuated lossless (without friction) Lagrangian systems via position measurements only. For flexible-joint robots, we design a dynamic controller which is based on measurements of link and joint positions only. Then, approximate differentiation is used for link velocities and a simple Luenberger observer for rotor velocities. The main results constitute a significant extension of recent work on observerless output-feedback control of Lagrangian systems. Strictly speaking, we establish uniform global asymptotic stability for the closed loop system.

I. INTRODUCTION

The tracking control problem by output-feedback for Euler-Lagrange systems has been widely discussed in the literature - [START_REF] Zergeroglu | On global output feedback tracking control of robot manipulators[END_REF], [START_REF] Nunes | Global tracking for robot manipulators using a simple causal PD controller plus feedforward[END_REF], [START_REF] Loría | Global tracking control of one degree of freedom Euler-Lagrange systems without velocity measurements[END_REF], [START_REF] Loría | Uniform global position feedback tracking control of mechanical systems[END_REF], [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], [START_REF] Romero | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF]. For the system D(q)q + C(q, q) q + g(q) = u

where q ∈ R n and q denotes the generalized positions and velocities (respectively), the maps D : R n → R n×n and C : R n × R n → R n×n corresponds to the inertia matrix and the Coriolis and centrifugal forces matrix, respectively, while g : R n → R n stands for the vector of forces derived from the potential energy function and u ∈ R n is the vector of control inputs. Assuming that only generalized positions are available for measurement, the problem consist in design an internally stable control law that ensures that lim t→∞ q(t) → q d (t), lim t→∞ q(t) → q d (t).

One of the first results on this line was reported in [START_REF] Nicosia | Robot control by using only joint position measurement[END_REF] where, in the context of robot tracking, the authors consider state feedback controllers with a nonlinear observer that reproduces the whole dynamic ensuring local asymptotic stability. A large number of articles were published (including those cited above) in which different stability properties are established: semiglobal asymptotic stability - [START_REF] Loría | On tracking control of rigid and flexible joints robots[END_REF], [START_REF] Burkov | Mechanical system stabilization via differential observer[END_REF], global asymptotic stability in part of the coordinates [START_REF] Zergeroglu | On global output feedback tracking control of robot manipulators[END_REF], global asymptotic stability - [START_REF] Nunes | Global tracking for robot manipulators using a simple causal PD controller plus feedforward[END_REF], [START_REF] Loría | Uniform global position feedback tracking control of mechanical systems[END_REF], global exponential stability - [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], [START_REF] Romero | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], etc. In [START_REF] Zergeroglu | On global output feedback tracking control of robot manipulators[END_REF], [START_REF] Nunes | Global tracking for robot manipulators using a simple causal PD controller plus feedforward[END_REF] however, it is assumed that the system has inherent dissipative forces (friction); for lossless systems, only [START_REF] Loría | Global tracking control of one degree of freedom Euler-Lagrange systems without velocity measurements[END_REF], [START_REF] Loría | Uniform global position feedback tracking control of mechanical systems[END_REF], [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], [START_REF] Romero | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF] establish uniform global asymptotic stability. In [START_REF] Loría | Global tracking control of one degree of freedom Euler-Lagrange systems without velocity measurements[END_REF], however, the result applies to one-degree-of-freedom systems. It is only in [START_REF] Loría | Uniform global position feedback tracking control of mechanical systems[END_REF], [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], [START_REF] Romero | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF] that the long-standing open problem of establishing uniform global asymptotic stability for the closed-loop system, was fully solved, independently. See also [START_REF] Loría | Observer-less output feedback global tracking control of lossless lagrangian systems[END_REF].

For flexible-joint robots, the output-feedback tracking control is even more complex since the relative degree with respect to link positions is augmented by two relative to [START_REF] Burkov | Mechanical system stabilization via differential observer[END_REF]. In [START_REF] Nicosia | A tracking controller for flexible joint robots using only link position feedback[END_REF] the authors presented a result based on a semi-global nonlinear observer for the unmeasured variables, which needs only the link positions. In [START_REF] Zhu | A cheap output feedback tracking controller with robustness: the rlfj problem[END_REF] the authors propose a robust output-feedback link position tracking control ensuring semi-global uniformly ultimately bounded link position tracking; and in the same spirit, in [START_REF] Lim | An adaptive link position tracking controller for rigid-link flexible-joint robots without velocity measurements[END_REF] based on a set of filters, removes the need of measuring link and actuator velocities, however the result relies on the restrictive assumption that the system is internally damped by viscous friction. In [START_REF] Stamnes | Global output feedback tracking control of Euler-Lagrange systems[END_REF] a nonlinear observer-based certaintyequivalence tracking controller for Euler Lagrange systems is presented; global conditions are obtained under the assumption that one disposes of a controller that can be bounded by an affine function in the position times a polynomial of the velocities.

In [START_REF] Loría | Output-feedback global tracking control of robot manipulators with flexible joints[END_REF] we presented a controller for flexible-joint robots which ensures uniform global asymptotic stability for the closed-loop system under the assumption that joint, but not link velocities, are measured. The controller in the latter is based on the more general results recently published in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF]. In the latter we established uniform global asymptotic stability for n degrees of freedom systems with arbitrarilyhigh-relative-degree (with respect to generalized positions), without measurements of link velocities, the last includes under-actuated systems as the flexible joint robots. The control law is implemented through a chain of integrators in which the derivatives of virtual control inputs are replaced by approximate differentiation filters so that the result states a theoretical foundation for the use of the "dirty" derivatives.

In this paper, we follow the control method of [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF], [START_REF] Loría | Output-feedback global tracking control of robot manipulators with flexible joints[END_REF] and derive a certainty-equivalence controller which employs a reduced-order observer, in order to relax the assumption that joint velocities are measured. That is, under the assumption that only positions are available, we establish, for lossless flexible-joint robots, uniform global asymptotic stability in closed loop. As far as we know, there exists no other article in the literature establishing all this property under similar assumptions.

The rest of the paper is organized as follows: in Section II we formulate the global tracking problem and present some preliminary recent results. In Section III we present our main result. In Section IV we illustrate our findings in simulation, before concluding with some final remarks, in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

According to [START_REF] Spong | Modeling and control of elastic joint robots[END_REF], [START_REF] Burkov | Dynamics of elastic manipulators with electric drives[END_REF] joint flexibility in robot manipulators may be modelled using linear torsional springs; hence, if we denote by K the joint stiffness (K = ∞ implying no elasticity) the Lagrangian model is given by the equations D(q 1 )q 1 + C(q 1 , q1 ) q1 + G(q 1 ) = K(q 2 -q 1 ) (2a)

J q2 + K(q 2 -q 1 ) = τ (2b)
where q 1 ∈ R n denote the under-actuated coordinates related to the links positions while q 2 ∈ R n represents the vector of motor shafts angles. The matrix D(q 1 ) = D (q 1 ) > 0 corresponds to the link-inertia matrix, J stands for the diagonal rotor-inertia matrix, C(q 1 , q1 ) q1 contains the terms due to the Coriolis and centrifugal forces, G represents the gravitational forces vectors and τ corresponds to the physical control input. As it is customary, we make the following hypothesis on the model (2). Assumption 1:

1) The inertia matrix D(q 1 ) is positive definite and uniformly bounded; there exist positive real numbers d m and d M such that

d m ≤ |D(q 1 )| ≤ d M
2) The matrix C(x, y) is bounded in x and linear in y.

More precisely, there exists a saturation function : R → R such that, for all x, y, z ∈ R n ,

|C(x, y) -C(z, y)| ≤ k c sat(|x -z|)|y|, |sat(s)| ≤ 1, C(x, y)z = C(x, z)y,
3) The matrix Ḋ(q 1 ) -2C(q 1 , q1 ) is skew symmetric for all q 1 ∈ R n . 4) There exists k v such that function that represents the potential-energy forces, G, satisfies

∃k v > 0 : ∂G ∂q 1 ≤ k v (3) 
Under these conditions, we solve the global tracking control problem via position measurements only. More precisely, for any given reference trajectory t → q d , twice continuously differentiable and bounded, i.e., such that k δ > 0 such that max sup

t≥0 |q d (t)|, sup t≥0 | qd (t)|, sup t≥0 |q d (t)| ≤ k δ (4)
for some k δ > 0, it is required to construct an outputfeedback dynamic controller

ẋc = f (t, q 1 , q 2 , x c ) (5) u = u(t, q 1 , q 2 , x c ) (6) 
(that is, x c ∈ R m corresponds to the state of the controller) such that the origin of the closed-loop system is uniformly globally asymptotically stable. In order to solve this problem we follow the method of [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] which relies on the use of approximate differentiators to replace unavailable derivatives, such as velocity measurements.

For the sake of clarity, we first recall the main streamlines of the control method proposed in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF]. It concerns Lagrangian systems augmented by a chain of integrators; for the purposes of this paper we consider the case of two additional states, i.e.,

D(q 1 )q 1 + C(q 1 , q1 ) q1 + g(q 1 ) = ξ 1 (7a) ξ1 = ξ 2 (7b) ξ2 = u. ( 7c 
)
We remark that the model ( 2) may be transformed into (7) via a preliminary feedback and a change of variable. Indeed, this follows after a direct calculation, defining g(q 1 ) = G(q 1 ) + Kq 1 , ξ 1 = Kq 2 , ξ 2 = K q2 and setting the input torque to

τ = ξ 1 -Kq 1 + JK -1 u. (8) 
Thus, the output-feedback tracking control problem boils down to stabilizing (q 1d , q1d , 0, 0) without measurement of q1 and ξ 2 .

In [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] a controller that depends on all motor variables (q 2 and q2 ) but not on link velocity measurements, q1 is proposed. In this paper, we relax the assumption that q2 is measurable. The output-feedback control design method proposed in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] follows the rationale of backstepping control, in which unavailable derivatives are replaced by approximate differentiation. Hence, the starting point is to consider ξ 1 as a virtual control input in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] and to design a virtual control law ξ 1 which is set as reference for the integrator (7b) variable ξ i , i.e.,

ξ 1 = -k p0 q1 -k d0 ϑ 0 + D(q 1 )q 1d + C(q 1 , q1d ) q1d + g(q 1 ), (9) 
with q1 := q 1 -q 1d (t), whereas ϑ 0 corresponds to the approximate differentiation of q1 that is,

qc0 = -a 0 ϑ 0 (10a) ϑ 0 = q c0 + b 0 q1 . (10b)
Then, considering ξ 2 as a control input in (7b) we define

ξ 2 = -k p1 ξ1 + k d1 ϑ 1 + ξ 10 , ϑ i = q ci + b i ξ i + ζ i qci = -a i ϑ i ζi = -(k di -σ i ) ξi -b i ξ i0    ∀i ∈ [1, 2] (11a) u = -k p2 ξ2 + k d2 ϑ 2 + ξ 20 ( 11b 
)
where ξi := ξ i -ξ i , with σ 1 = 0 and

σ 2 = b 2 k p1 .
It is proved in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] that the origin {z = 0}, with z = q 1 q 1 ϑ 0 ξ 1 ξ 2 ϑ 1 ϑ 2 and q1 := q1 -q1d (t), is uniformly globally asymptotically stable. Nevertheless, the controller ( 11) is based on the measurement of ξ 1 and ξ 2 , which involves the measurement of motor shaft angular velocity, q2 , since ξ 2 = K q2 .

We remark that the dynamic controller [START_REF] Nicosia | A tracking controller for flexible joint robots using only link position feedback[END_REF] is designed on the basis of a backstepping design however, notice that the derivatives of ξ 1 and ξ 2 depend on unmeasurable variables such as velocities and accelerations hence, in place of ξ 1 and ξ 2 , we employ approximate differentiation. This is implemented via the filters defined by (11a). To see this more clearly notice that these equations are equivalent to the Laplace representations:

ϑ i = b i s + a i ψi ⇔ ϑ i = b i s s + a i ψ i (12) 
with input ψi = ξ i + ζi /b i and ψ 0 = q. This filter defines an output-strictly proper passive map ϑ i → ψi that is internally stable and input to state stable with respect to the input ψi . However, it does not constitute an observer in the sense that one does not have ϑ i → ψi , in particular, ϑ 0 → q III. MAIN RESULT Our main statement (Proposition 1 below) is to establish a separation principle via position-feedback control of robot manipulators with flexible joints. We use a certaintyequivalence controller based on [START_REF] Nicosia | A tracking controller for flexible joint robots using only link position feedback[END_REF] and a simple reducedorder Luenberger observer. The latter is possible since the observer is designed only to estimate the unavailable state ξ 2 , while other unmeasured variables such as link velocities, are "estimated" via dirty derivatives. While the design may be considered as naive, we remark that, as far as we know, there does not exist in the literature, a statement of uniform global asymptotic stability.

We define the reduced-order observer

ξ1 = ξ2 + λ 1 (ξ 1 -ξ1 ), ( 13a 
) ξ2 = u + λ 2 (ξ 1 -ξ1 ) (13b) 
where λ 1 and λ 2 are positive constant observer gains. Now, let the observer error e = e 1 e 2 ∈ R 2n be defined as e = ξ -ξ which, along [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] and [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF], satisfies

ė1 = e 2 -λ 1 e 1 (14a) ė2 = -λ 2 e 1 (14b) 
Then, defining ξ = ξ -ξ , consider the certainty equivalent controller

ξ 2 = -k p1 ξ1 + k d1 ϑ 1 + ξ 10 , (15a) 
ϑ i = q ci + b i ξ i + ζ i qci = -a i ϑ i ζi = -(k di -σ i ) ξi -b i ξ i0      ∀i ∈ {1, 2} (15b) 
u = -k p2 ξ2 + k d2 ϑ 2 + ξ 20 ( 15c 
)
where k pi and k di , which denote "proportional" and "derivative" control gains respectively, are positive constants. Then, we have the following. Proposition 1: Let q 1d be given as in (4). Consider the system (2) under Assumption 1 in closed loop with the controller defined by Equations ( 8), ( 9) and [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF]. Then, the origin of the closed-loop system is uniformly globally asymptotically stable for sufficiently large control gains. Moreover, this holds for any positive observer gains λ 1 , λ 2 , independently of the control gains.

The proof is constructive, we derive explicit conditions on the control gains that imply uniform global asymptotic stability. It is organized in the following logical steps: first, we derive the closed-loop equations; then, we recognize that the closedloop dynamics has a cascaded form which stems from the application of certainty equivalence principle. The latter allows to invoke a cascades argument. Namely, that for a nonlinear time-varying system

ẋ1 = f 1 (t, x 1 ) + g(t, x)x 2 (16a) ẋ2 = f 2 (t, x 2 ) (16b)
where

x 1 ∈ R n , x 2 ∈ R m , x := col [x 1 , x 2 ] with f 1 , f 2
and g continuous and locally Lipschitz in x, uniformly in t, and f 1 continuously differentiable, it holds that if the respective origins of the subsystems (16b) and ẋ1 = f 1 (t, x 1 ) are uniformly globally asymptotically stable, it is sufficient and necessary for the origin of the overall system to possess the same property, that the solutions of ( 16) be uniformly globally bounded. This property is established along the proof-lines of [7, Theorem 5].

A. The closed-loop equations

The first error equation is obtained using the identity ξ 1 = ξ1 + ξ * 1 , by replacing ξ 1 from ( 9) in (7a) and adding -C(q 1 , q1d ) q1 + C(q 1 , q1 ) q1d = 0 to the right-hand side of (15c). Then, we differentiate on both sides of (10b) and we use (10a) to obtain

D(q 1 ) q1 + [C(q 1 , q1 ) + C(q 1 , q1 d )] q1 + k p0 q1 + k d0 ϑ 0 = ξ1 (17a) θ0 = -a 0 ϑ 0 + b 0 q1 . ( 17b 
)
On the other hand, note that the equations (7b)-(7c) are equivalent to

ξ1 = ξ 2 -ξ 1 + ξ2 (18) ξ2 = u -ξ 2 (19)
so, using the identity ξi = ξi -e i for i ∈ {1, 2} as well as [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF], we obtain

ξ1 = -k p1 ξ1 + k d1 ϑ 1 + ξ2 + k p1 e 1 -( ξ 1 -ξ 10 ) (20a) ξ2 = -k p2 ξ2 + k d2 ϑ 2 + k p2 e 2 -( ξ 2 -ξ 20 ) (20b) θi = -a i ϑ i -(k di -σ i ) ξi + (k di -σ i )e i + b i ( ξ i -ξ i0 ) (20c) 
where σ 1 = 0.

Next, to compact the notation, we define

A := diag {a 1 , a 2 } ⊗ I n , B := diag {b 1 , b 2 } ⊗ I n , K d := diag {k d1 , k d2 } ⊗ I n , K p := diag {k p1 , k p2 } ⊗ I n , K d := diag {k d1 , k d2 -σ 2 } ⊗ I n , K p = k p1 -1 0 k p2 , L = λ 1 -1 λ 2 0
and defining ϑ = ϑ 1 ϑ 2 , then Equations (20) take the form

ξ = -K p ξ + K d ϑ + K p e -ξ -ξ 0 (21a) θ = -Aϑ -K d ξ + K d e + B ξ -ξ 0 (21b) ė = -Le (21c)
where the matrix -L is Hurwitz.

These equations have a convenient structure. Firstly, the terms in brackets, ξξ 0 , vanish at the origin. This follows, on one hand, from the identity

ξ 2 -ξ 20 = -k p1 ξ2 + η ξ1 -µϑ 1 + β ξ 1 -ξ 10 -λ 1 e 1 ( 22 
)
where

µ = k d1 (k p1 + a 1 ), η = k 2 p1 -k 2 d1
, and β = k p1 + b 1 k d1 and ξ = ξ -e. On the other hand, Assumption 1, together with (4), guarantees that ξ 1 (t, q, q, ϑ 0 ) is globally Lipschitz in the last two arguments, uniformly in t and that is bounded in the first two arguments, so there exist nonnegative real numbers η 1 , η 2 and η 3 as well as continuous saturation function sat : R → R such that ysat(y) > 0 for all y = 0 and |sat(y) ≤ 1|, and

ξ 1 -ξ 10 ≤ η 1 sat(|q|) + η 2 | q2 | + η 3 |ϑ 0 |. ( 23 
)
Furthermore, the variable ξ 2 can be written as a function of ξ, ϑ, e and ξ 1 ; therefore, in view of (15a) and (20) we have

ξ 2 = η ξ1 -µϑ 1 -(η + k p1 λ 1 ) e 1 ( 24 
) -k p1 ξ2 + k p1 e 2 + β ξ 1 -ξ 10 + ξ 10
So that equations (21) take the form ξ = -

(K p + Γ 1 ) ξ + (K d -Γ 2 )ϑ + (K p + Γ 4 )e -Γ 3 ξ 1 -ξ 10 (25a) θ = -(K 2 -BΓ 1 ) ξ -(A -BΓ 2 )ϑ + (K 2 -BΓ 4 )e + (BΓ 3 ) ξ 1 -ξ 10 (25b) ė = -Le (25c) 
where we defined

Γ 1 = 0 0 η -k p1 ⊗ I n , Γ 2 = 0 0 -µ 0 ⊗ I n , Γ 3 = 1 β ⊗ I n , Γ 4 = 0 0 k p1 λ 1 + η -k p1 ⊗ I n , K 2 = k d1 0 0 k d2 -σ 2 ⊗ I n
Now, if we define x 1 := ξ ϑ and x 2 := e the system (25) becomes

ẋ1 = Ax 1 + B ξ 1 -ξ 10 + K x 2 (26a) ẋ2 = -Lx 2 (26b) 
where

A = -(K p + Γ 1 ) K d -Γ 2 -(K 2 -BΓ 1 ) -(A -BΓ 2 ) , B = -Γ 3 BΓ 3 K = K p + Γ 4 K 2 -BΓ 1 .
This system has a convenient cascaded form, as [START_REF] Spong | Modeling and control of elastic joint robots[END_REF]. Moreover, since L is Hurwitz by design, the origin of system (26b) is uniformly globally exponentially stable. Furthermore, after [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF], the origin of

ẋ1 = Ax 1 + B ξ 1 -ξ 10
is uniformly globally asymptotically stable for appropriate values of the control gains. In order to invoke the cascades argument, more precisely, [13, Lemma 2], it is left to prove that the solutions of (26a) are uniformly globally bounded.

B. Boundedness of solutions

Proposition 2: Let L be Hurwitz, k p1 = k d1 and assume that

min k p1 , [kp 2 -kp 1 ] β 2 , a1 b 2 1 , a2 b 2 2 β 2 > η 2 2 + η 2 3 ] (27) [k p2 -k p1 ] ≥ max 2 kp 1 , 4µ 2 a1 , a 1 a 2 ≥ 2b 2 2 µ 2 . (28)
Then, the solutions of the closed-loop system ( 17), (26) are uniformly globally bounded.

Proof. Let the Hurwitz property of L generate positive definite matrices P L , Q L , satisfying -Q L := (L P L +P L L) and let κ > 0 be a real constant. Then, consider the function W : R 10n → R ≥0 , defined as

W (x) = κ x 1 2 + x 2 P L x 2 ; (29) 
a direct computation shows that its total derivative along the trajectories of (26) yields

Ẇ (x) =κ x 1 (A + A )x 1 + 2x 1 B ξ 1 -ξ 10 + + 2x P K x 2 -x 2 Q L x 2 . Now, let Q = -(A + A); we see that, since k p1 = k d1 , Q =     2k p1 -1 0 0 -1 2 [k p2 -k p1 ] -µ 0 0 -µ 2a 1 -b 2 µ 0 0 -b 2 µ 2a 2     ⊗ I n . ( 30 
)
Hence, defining c := |K |, λ := |L|, using the Cauchy-Schwartz and the triangle inequalities, we obtain

Ẇ ≤ -κx 1 Qx 1 + 2κx 1 B ξ 1 -ξ 10 + 2κc|x 1 ||x 2 | -λ|x 2 | 2 ≤ -κx 1 Qx 1 + 2κx 1 B ξ 1 -ξ 10 + κc |x 1 | 2 -(λ -κc )|x 2 | 2
Now, notice that the matrix Q -½ diag{Q} is positive semidefinite if so are

k p1 -1 -1 ½[k p2 -k p1 ]
,

½[k p2 -k p1 ] -µ -µ ½a 1 , ½a 1 -b 2 µ -b 2 µ a 2 ,
which hold in view of (28). Therefore, under these conditions, we see that

Ẇ ≤ -κx 1 1 2 diag {Q} - c I x 1 + 2κx 1 B ξ 1 -ξ 10 -(λ -κc )|x 2 | 2 (31) 
Notice that the factors of |x 1 | 2 and |x 2 | 2 are negative for any λ > 0, sufficiently large values of and κ := 1/ 2 . On the other hand, under Assumption 1, from Inequality (23) and the triangle inequality, it follows that

x 1 B ξ 1 -ξ 10 ≤ η 1 (| ξ1 | + β 1 | ξ2 | + b 1 |ϑ 1 | + b 2 β 1 |ϑ 2 |) + 1 2 (η 2 2 + η 2 3 )(| ξ1 | 2 + β 2 1 | ξ2 | 2 + b 2 1 |ϑ 2 1 | + b 2 2 β 2 1 |ϑ 2 | 2 ) +2| q1 | 2 + 2|ϑ 0 | 2 . ( 32 
)
Next, let V : R ≥0 × R 13n → R ≥0 be defined as V (t, q1 , q1 , ϑ 0 ) + W (x), where

V = κ 2 q 1 D(q 1 + q 1d (t)) q1 + k p0 |q 1 | 2 + k d0 b 0 |ϑ 0 | 2 (33) 
The total derivative of V := V + W along the trajectories of ( 17) and ( 26) yields

V ≤ - a 0 k d0 κ b 0 |ϑ 0 | 2 + k c k δ κ| q1 | 2 + κ q 1 ξ1 -(λ -κc )|x 2 | 2 -κ q1 e 1 -κx 1 1 2 diag {Q} - c I x 1 + 2κx 1 B ξ 1 -ξ 10
that in view of (32) can be expressed as

V ≤ -κx 1 1 2 diag {Q} - c I x 1 -λ - κ 2 -κc |x 2 | 2 + κ 2 | ξ1 | 2 + 2κη 1 | ξ1 | + β 1 | ξ2 | + b 1 |ϑ 1 | + b 2 β 1 |ϑ 2 | + κ(η 2 2 + η 2 3 ) | ξ1 | 2 + β 2 1 | ξ2 | 2 + b 2 1 |ϑ 2 1 | + b 2 2 β 2 1 |ϑ 2 | 2 + κ 7 2 + k c k δ | q1 | 2 -κ a 0 k d0 b 0 -2 |ϑ 0 | 2 (34) 
By assumption, the quadratic term in x 1 is negative definite and dominates over all positive terms, except on that involving | q1 | 2 .

The rest of the proof of boundedness follows as for Theorems 5 and 6 of [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF]. Roughly speaking in the latter it is established that, even though ϑ 0 → q1 , the outputinput gain of the filter (12) is finite. More precisely, to any monotonically increasing sequence {

[ | q1 | 2 ] i } where [| q1 | 2 ] i = | q1 (t i )| 2 , corresponds a sequence {[ |ϑ 0 | 2 ] i }
which increases at the same rate. Therefore, if {| q1 (t)| 2 } grows unboundedly so does {|ϑ 0 (t)| 2 } hence, sequentially, V(t i ) becomes non-positive and {V(t i )} is bounded. Rigorous proof along these arguments is provided in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF].

Finally, the statement of Proposition 1 follows invoking [13, Lemma 2].

IV. SIMULATIONS RESULTS

In order to evaluate the global characteristic of the controller [START_REF] Romero-Velázquez | A globally exponentially stable tracking controller for mechanical systems using position feedback[END_REF] we present some numerical simulations. To this end, we consider a two-degrees-of-freedom planar flexible joint robot whose model is given by D(q 1 ) = 8.77 + 1.02c 12 0.76 + 0.51c 12 0.76 + 0.51c 12 0.62 C(q 1 , q1 ) = -0.51s 12 q12 -0.51s 12 ( q11 + q12 ) 0.51s 12 q11 0 where c 12 and s 12 denotes the cos(q 12 ) and sin(q 12 ) respectively. Furthermore, the joint stiffness matrix is K =diag{10000, 10000} while the rotor inertia matrix is J = diag{0.1, 0.1}. The gravitational forces vector g(q 1 ) = 9.81(7.6s 11 + 0.63s 11,12 9.81(0.63s 11,12 ) with s 11,12 = sin(q 11 + q 12 ). And we have set the desired value of the under-actuated coordinates to q 1d (t) := sin(ωt) rad, with ω 1 = 2 rad/s.

With the aim at illustrating the global character of the stability enhanced by our controller, we purposefully performed a simulation test with an unrealistic 5000% of initial error. The control parameters for the filters were set to a 0 = 500, b 0 = 500 a 1 = 2500, b 1 = 5, a 2 = 5000, b 2 = 5, the control gains were fixed in k p0 = 400 , k p1 = 1, k p2 = 8000 and k d0 = 35, k d1 = 500, k d2 = 10, while the observer parameters λ 1 = 10 and λ 2 = 20. In Figures 1 and2 we show the position and the velocity of the under-actuated coordinates q 1 and q1 respectively. These graphs show the proper functioning of the controller and its global property. In Figure 3 we depict the observer performance. 

V. CONCLUSIONS

In this paper we make an extension of the results in [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF] in a way that the output-feedback problem can be solved based only in the measurement of the link position preserving the uniformly globally asymptotic stability property for the closed-loop system. The result is based on the use of a Luenberger observer and in particular, solves the problem for the flexible joint robots under the conditions: the system is lossless and motor velocities are unmeasured. 
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 1 Fig. 1. Link angular positions and reference
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 23 Fig. 2. Link angular velocities and reference
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