
HAL Id: hal-01357293
https://hal.science/hal-01357293v1

Submitted on 29 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoAP over BP for a Delay-Tolerant Internet of Things
Maël Auzias, Yves Mahéo, Frédéric Raimbault

To cite this version:
Maël Auzias, Yves Mahéo, Frédéric Raimbault. CoAP over BP for a Delay-Tolerant Internet of
Things. 3rd International Conference on Future Internet of Things and Cloud (FiCloud 2015), Aug
2015, Roma, Italy. �10.1109/FiCloud.2015.33�. �hal-01357293�

https://hal.science/hal-01357293v1
https://hal.archives-ouvertes.fr


CoAP over BP for a Delay-Tolerant
Internet of Things

Maël Auzias, Yves Mahéo and Frédéric Raimbault
{Mael.Auzias,Yves.Maheo,Frederic.Raimbault}@univ-ubs.fr

IRISA, Université de Bretagne-Sud, France.

Abstract—With the advent of the Internet of Things (IoT) a
myriad of new devices will become part of our everyday life.
Constrained Application Protocol (CoAP), and its extensions,
are specifically designed to address the integration of these
constrained devices. However, due to their limited resources,
they are often unable to be fully connected and instead form
intermittently connected and sparse networks in which Delay
Tolerant Networking (DTN) is more appropriate, in particular
through the Bundle Protocol (BP). This paper addresses the
implementation of a BP binding for CoAP as a means to
enable Delay Tolerant IoT. After an overview of CoAP and
BP, we present a basic implementation of CoAP/BP that we
developed and some first experimentation results that validate
the feasibility of the approach. Several leads are then explored
regarding ways to take advantage of the BP features in order
to achieve an optimized CoAP/BP implementation.

Keywords—Constrained Application Protocol, Bundle Protocol,
Delay-Tolerant Networking, Internet of Things

I. INTRODUCTION

The recent evolution of the Internet is characterized by
a huge increase in the number of physical devices on the
network. The Internet is gradually switching from a network
of servers and people, online through their personal terminals,
to a populated network of sensors, actuators, receivers, RFID
and all the little new smart devices that are emerging at a
rapid pace. Their common characteristics are their limited
computing and storage capacity, their network interconnection
capability and their energy constraints. The emerging network
forms the so called Internet of Things (IoT). The diversity of
these things makes the network more heterogeneous, both in
terms of its components and its sub-networks. The extension
of existing protocols and sometimes new protocols have been
proposed in different layers of protocol stack by the IETF to
accompany this profound transformation. The work presented
in this article is part of the will to arrange existing protocols
into a conceptual framework, to revisit them when needed
and to enable the integration and the emergence of new
applications that exploit the IoT. Our work is based on the
Constrained Application Protocol (CoAP) and the Bundle
Protocol (BP).

We will take the example of a smart city to illustrate the
interest of these two protocols. The smart city is an emerging
concept for urban development in which physical resources,
infrastructures, information flows and services have to be
monitored, managed and optimized. A common solution is
based on the dissemination of a multitude of sensors within

Figure 1. Smart city in a connected IoT environment.

the city: traffic detectors, instruments for measuring the air
pollution, the noise level, the temperature, etc.; and also
actuators coupled with valves, gates, signs, etc. The resources
are monitored, their data are collected and forwarded to some
central structure, e.g. the city hall. These data then need to
be aggregated and analyzed to choose which action should
be performed in return. Figure 1 contains an architecture
diagram of a smart city based on a sensor network. In this
first version it is assumed that smart devices are connected
to some infrastructure (via Wi-Fi or cellular access points),
directly in the case of smart sensors and through a gateway
in the case of lightweight sensors. As far as we know, this
connectivity assumption is commonly made in many works
on Wireless Sensor Networks (WSN): when sensors are not in
standby mode, or off due to lack of energy, they are supposed
to always be accessible.

The application protocol CoAP was designed specifically
to address the integration of smart devices in such a context;
it uses the HTTP features that contributed to the success of
the WWW while taking into account the limited capacity
and energy constraints of small objects. Each smart device is
identifiable and addressable by a URI, just like any resource
on the Web. Smart objects may contain a lightweight server,
with a small memory footprint, and thus are able to respond
to a query and even to send queries to other devices. Lighter
objects can only send their measures to a gateway. The
advantage of using an HTTP-like protocol in applications for
smart cities lies in its ability to expose all these devices as
if they were regular web resources. It then becomes possible
to search and query the sensors scattered around the city, to
aggregate their data with those extracted from other sources



Figure 2. Smart city in a DTN IoT environment.

and, as a result, activate back actuators as data are updated to
the web. To limit the number of messages exchanged between
the client and the server and to allow for short disconnections
CoAP uses the UDP transport protocol in place of TCP on
which HTTP is based. However, this type of transport protocol
relies on the assumption that the network is stable, shows a
rather good reliability and is fully meshed; this assumption
is not so frequent in the world of the Internet of Things.
For example, in the context of the smart city many physical
and financial impediments arise when we try to connect all
sensors and actuators to a stable network infrastructure. The
subscription costs of cellular networks, the presence of walls
and electromagnetic interferences are among the most com-
mon barriers. In practice, short-range radio technologies (Wi-
Fi, Bluetooth, NFC) are best suited to meet the energy, size
and cost constraints of smart devices, as well as the network
scaling. In fact, a full mesh ensuring the flow of information
between the network of sensors, the actuators and the central
servers over an entire city at all times is unrealistic due to
network partitioning. The end-to-end connectivity assumption
on which CoAP relies may no longer be valid.

The intermittent connectivity is the fundamental assumption
in Delay Tolerant Networks (DTNs) for which a specific
protocol was proposed: the BP. This kind of network was
initially proposed in the context of space telecommunications,
but the solutions have been proven useful in other areas, such
as military battlefield, the submarine, disaster areas and more
recently in sensors networks [1]. The principle is to leverage
contacts with mobile nodes to convey information when there
is no continuous end-to-end connection between two nodes.
The information is entrusted to mobile carriers, which will
deliver it to the destination or to other carriers susceptible to
reach the destination.

Figure 2 contains a second version of the architecture of a
smart city using a DTN network. The figure describes how
smart devices may respond to a query initiated by the city
hall. A bus passing nearby sensor gateways, or smart sensors,
collects their data and carries them through the town. When a
taxi intersects the bus, it stores and carries the data, forwarding
them until they finally reach the city hall. The BP supports
this so called store-carry-and-forward principle without any
assumption on the delay taken by messages.

Thus the example presented in this introduction shows how
the association of BP and CoAP protocols may help to provide
a solution for two problems present at two different levels in
the protocol stack of the IoT.

The remainder of this paper is structured as follows. In
Section II, a few works concerned by the DTN approach in the
context of IoT are introduced, as well as alternative transports
for CoAP. Section III gives an overview of both CoAP and
the BP, before describing the implementation of CoAP/BP
that we developed. A series of experiments based on this
implementation are then presented, as a proof of concept of
the approach of using the BP as a transport protocol for CoAP.
Section IV details several technical aspects of a BP binding for
CoAP and leads for optimization. Finally, Section V concludes
the paper.

II. RELATED WORK

A. DTN in IoT

Although it has been clear for several years that one of the
challenges of the IoT is being able to cope with the high level
of dynamism in the network [2], it is only very recently that the
DTN related research has been identified as potential enablers
for the IoT. For example, in [3], the authors acknowledge
the need to handle intermittent connectivity in the IoT and
propose a form of opportunistic communication to transmit
user interfaces between smart objects. Similarly in [4], delay-
tolerant communication is considered in the proposal of an
architecture and a routing scheme that form the basis of a
framework for integrated RFID sensor networks in the IoT;
and in [5], an architecture is proposed in order to interconnect
standard-based machine-to-machine platforms for DTNs.

However, there has been a large amount of research effort in
DTN that has targeted environments bearing similarities with
the IoT, and in particular in the domain of delay-tolerant WSN,
with a focus on routing algorithms [6]. Nevertheless, the vast
majority of the proposals do not exploit standard protocols. In-
stead, they design mechanisms dedicated to targeted sensors or
applications (e.g., works on underwater sensor networks [7]).
One noticeable exception is the work by Pöttner et al in [1]
that studies the use of the BP for WSN. The obtained results
on computational overhead and network capacity showed that
the BP is lightweight enough for WSN even on low-power
platforms, with an implementation adapted to a 802.15.4-based
underlying network as a replacement for layers 3 and 4 of the
IP stack.

B. CoAP bindings

UDP is the standard binding for CoAP. However, several
other bindings have been envisaged. The informational Internet
Draft [8] examines the requirement of several alternative trans-
port protocols for CoAP, and mentions the potential interest
in using the BP. To our knowledge, only the SMS binding has
led to an actual test implementation [9].



III. CONSTRAINED APPLICATION PROTOCOL AND THE
BUNDLE PROTOCOL

A. Constrained Application Protocol (CoAP)

CoAP [10] offers an application layer protocol that al-
lows resource-constrained devices to interact together asyn-
chronously. It is designed for machine-to-machine use cases
and is compliant with the Representational State Transfer
(REST) architecture style. CoAP defines a simple messaging
layer, with a compact format, that runs over UDP (or DTLS
when security is enabled). Its low header overhead and low
complexity simplify the processing of CoAP messages for
constrained nodes. On top of this message layer, CoAP uses
request/response interactions between clients and servers.

If a node needs to send a message in a reliable fashion, in
spite of UDP unreliability, then the node will send the message
and wait for an acknowledgment. If no acknowledgment is re-
ceived, the node will retransmit the message several times with
an exponential back-off. This retransmission mechanism aims
to overcome the unreliability. These messages are referred to
as CON (confirmable), in contrast to NON messages (non-
confirmable) that nodes can afford to lose.

CoAP applications and resources are identified by
URIs following the coap scheme (or coaps with DTLS),
defined as coap:// host [:port] / path-abempty [?query] (e.g.,
coap://zeus.foo.bar:7800/museum/outside-light?number=3).
The host part is compulsory, the path identifies the resource
within the scope of the host and port (5683 by default), and
the query part details the resource access. Group messaging
is also possible with CoAP, by specifying a multicast address
in the URI host part. This allows several resources to be
accessed with a single request.

CoAP requests are derived from the main HTTP methods
(GET, PUT, POST or DELETE) and the responses from HTTP
statuses. PUT creates a resource, GET retrieves it, POST updates
it and DELETE deletes it. If the resource happens to be large,
instead of uploading the complete resource with PUT, the
method PATCH is recommended as it only uploads a set of
changes, that is lighter than the resource itself [11]. As for
the responses, CoAP uses HTTP statuses with some slight
semantic differences. Informational and redirection HTTP
statuses are not used in CoAP.

In addition to its UDP binding, CoAP differs from HTTP
regarding its message options. Messages may have one or
more options. The list of options includes Content-Format,
Accept, Max-Age, Uri-Host, Uri-Path, Uri-Port, Uri-Query.
Content-Format informs of the representation format used
in the message payload. Accept indicates which Content-
Format is preferred by the client. Max-Age is the maximum
amount of time during which a response can be cached before
its freshness is out-dated. Uri-* options are used to target
the suitable resource(s). Some options are meaningful when
appearing only once in a request or response, while some
others are repeatable, e.g., Uri-Path or Uri-Query.

An interesting work in progress worth citing is the Observe
option, [12]. A client subscribes to resource updates by send-
ing a GET request with the Observe option so the server sends
notifications upon resource modifications.

B. Bundle Protocol (BP)

The BP is the de facto standard for the bundle-layer of
the DTN architecture [13]. The BP forms a message-based
overlay that follows the store-carry-and-forward principle. The
BP defines the format of the messages, called bundles, and the
logic layout to process them.

As a network overlay, the BP relies on subnet-specific
protocols called Convergence Layers (CL) to transport bundles
(e.g., TCP, UDP, LTP). Bundles have a lifetime and will be
deleted if it expires. In order to overcome network disruptions
and high delays, the BP uses a cache to store bundles. These
bundles are either processed by an application (if the destina-
tion is on the node), or forwarded to other nodes toward the
bundle destination. A bundle destination (or bundle endpoint)
is identified by an Endpoint Identification (EID) that takes the
form of a URI. A BP endpoint can either be a singleton or
a set of BP nodes that register themselves by an EID, thus
allowing multicast-like operations to be performed.

The BP bundles have to be routed from node to node. The
BP specification does not fix a routing method, and many
routing algorithms exist, each of them intended to be adapted
to a networking context (e.g. the mobility of the nodes) or to a
type of application. A key characteristic of a routing algorithm
is its choice to allow multiple copies of a bundle in the network
(e.g., as in the epidemic approach).

Bundles are constituted of one primary block (header), then
zero or more extension blocks, and one or more payload
blocks. The primary block carries options that influence the
treatment performed by the nodes that forward and receive
the bundle. For example, a Report-When-Bundle-Delivered
option will make the destination node emit an administrative
bundle when receiving the bundle. Extension blocks (called
Metadata Extension Blocks [14]) can be used to make specific
processing decisions regarding bundles, e.g., routing decisions.

The BP does not offer a reliable means of communication.
Nevertheless, a built-in mechanism, named “custody transfer”,
aims to enhance reliability. The custody transfer requests that
a BP node takes the responsibility for delivering a bundle
to its destination. The responsibility is released when the
node forwards the bundle to some other node accepting this
responsibility.

C. BoAP

There is at present no available implementation of CoAP
over the BP. A possibility to obtain one would be to modify
an existing UDP-based implementation. However, simply en-
capsulating CoAP UDP datagrams into bundles is not feasible
because datagram destinations are IP addresses. All BP nodes
should then be explicitly identifiable by an IP address, which is
not the case. Even in a Java COAP/UDP implementation with
a well structured layering, like Californium [15], replacing
the entire UDP-binding is neither an option: many layers are
too tightly coupled with the notions of IP address and port
to perform a straightforward adaptation for the BP, in which
these notions are irrelevant. The last solution, the one we
choose, is to develop our own implementation of CoAP, named
BoAP, with the objective to firstly include a BP binding, and



Figure 3. DTN connection between a BoAP Client and a BoAP server

then potentially test some future extensions or modifications
of CoAP that would be suited for DTN. The BP binding of
BoAP has been developed thanks to IBR-DTN [16]. Besides
the fact that it provides elements of a Java API, IBR-DTN is
well suited for constrained process-power nodes.

The architecture of a client-server connection through BoAP
is illustrated in Figure 3. The CoAP client and server use the
BoAP Java API to request or provide resources. BoAP uses
the IBR-DTN Java API to communicate with the IBR-DTN
BP daemon via a textual TCP socket. The IBR-DTN daemon
implements the BP, storing bundles and exchanging them with
other IBR-DTN BP daemons in the DTN network. This way of
implementing the BP in a separate daemon process (accessible
via a TCP socket or another IP-based communication facility)
is a versatile solution: the BP daemon could be detached from
a sensor node and placed on a more powerful gateway if the
sensor node is too constrained. On the down side, it induces
an evident additional delay.

D. Proof-of-concept Tests

In order to verify that a CoAP/BP implementation offers
reasonable performance when the connectivity is good while
supporting long disconnections, performance tests have been
conducted in two scenarios. The first one is when the client
node and the server node were directly connected with an
Ethernet link that was cut on demand, and second one when
the client and the server nodes were never directly connected,
but formed a DTN network. The speed of a request/response
exchange using respectively a CoAP/BP and a CoAP/UDP
implementation has been assessed by these tests.

The CoAP/BP tests were performed with BoAP (with a TCP
convergence layer but no custody) whereas the CoAP/UDP
used Californium (with a standard UDP binding). Note that the
implementation of UDP is a part of the kernel and is therefore
faster than an implementation of the BP that needs to run
above its convergence layer and consequently induces delay;
on the installation made for the tests, an ICMP ping is 50
times faster than a BP ping.

We measured the round-trip-time (RTT) in function of the
duration of disconnection. The RTT is, as usual, defined as

Disconnection (s)

0

100

200

300

400

0 100 200 300 400

R
T

T
 (

s
)

Disconnection (s)

CoAP/UDP 15

CoAP/UDP 30

CoAP/BP

(a) Intermittent direct connectivity (b) No end-to-end connectivity 

R
T

T
 (

s
)

0 100 200
0

200

400

300 400 500

600

800

1000

CoAP/BP

y = 3.5 ∆

Figure 4. Measures of the RTT obtained in the two tested scenarios

the duration between the time the client calls the send method
and the time when the response is received back.

1) Scenario 1 – Intermittently directly connected: In this
scenario the CoAP/BP client sends a NON request while the
CoAP/UDP sends a CON request just after the link between
the client and the server has been interrupted. This interruption
lasts for what is called the disconnection duration. CoAP/UDP
is therefore forced to use its retransmission mechanism, which
is triggered after a certain amount of time defined by the CoAP
parameter ACK TIMEOUT. Two values of ACK TIMEOUT were
tested (15 and 30 seconds). CoAP/BP do not retransmit the
request but wait for the reestablishment of the link to forward
the request.

The obtained RTTs are displayed in Figure 4a. The two
curves for CoAP/UDP (one for each value of ACK TIMEOUT)
exhibit a stair-like shape, as expected, due to the exponential
back-off. However, CoAP/BP is almost linear, with a slope
close to 1. CoAP/BP is slightly slower than CoAP/UDP
when disconnections are very short or when the disconnection
durations coincide with the retransmission back-off time, yet
CoAP/BP is definitely faster than CoAP/UDP when disconnec-
tions stop between two dates of retransmission. Indeed, BoaP
does not wait to transmit requests.

2) Scenario 2 – No end-to-end path: In this scenario there
is no end-to-end path, at any time, between the client and
the server. The client sends NON requests to the server
periodically (every 30 seconds). In this context, “sends” means
that requests were added locally to the BP queue every 30
seconds, whether the node was isolated or not. As shown in
Figure 3, a third node, I, is used as an intermediary relay node
(simulating a mule) that runs an IBR-DTN BP daemon so
that bundles can be transmitted between the client and the
server. A cycle of connections/disconnections is enforced in
the network, composed of four successive periods: (1) during
∆ seconds, only the link between the client node and node I
is active; (2) during ∆/2 seconds, both links are inactive; (3)
during ∆ seconds, only the link between I and the server node
is active; (4) during ∆/2 seconds, both links are inactive again.
The disconnection duration displayed in abscissa in Figure 4b
is the time during which a CoAP node (client or server) is
isolated, i.e., a period of 2∆ seconds. Of course, this scenario
has not been tested with CoAP/UDP as UDP datagrams cannot
be routed to the server and would be lost.

Figure 4b shows the obtained RTT values. When the emis-
sion dates are uniformly distributed and the two extreme values



are 2∆ and 5∆ then the expected average of the optimal
RTT is y = 3.5∆. In practice, the measured RTT is slightly
longer (around 4∆), due to the variable reconnection cost, and
the processing of BoAP messages. These results show that
CoAP/BP can perform reasonably even when the client and
the server never meet.

As a conclusion, it can be said that CoAP/UDP is fast and
can easily overcome short disconnections. However, if long
disconnections are to be expected or if an end-to-end path
between client and server is unlikely to exist, then, CoAP/BP
is a better alternative.

IV. TOWARD AN OPTIMIZED COAP/BP IMPLEMENTATION

As we did in BoAP, the first approach when implementing
a BP binding for CoAP is to put each CoAP message into a
BP bundle and preserve all the CoAP features that had been
designed for a UDP binding. However, the BP is actually
not a transport-layer protocol and offers richer capabilities
than UDP. Therefore several characteristics of the BP may be
exploited to simplify a CoAP/BP implementation or improve
its performance by delegating some tasks in the BP instead
of the CoAP level. We discuss below technical aspects raised
by the use of the BP as a CoAP binding and optimization
opportunities.

A. Multi-payload

CoAP suggests that each CoAP message should fit into a
single UDP datagram. However, the BP allows several payload
blocks to be included in the bundles, and it is common for a
node to stay isolated during a significant period, without the
possibility to forward messages. In a CoAP/BP implemen-
tation, it is thus recommended that all the CoAP messages
destined for the same endpoint be appended in a single bundle
(with each message in a different payload block) until the
bundle is ready to be forwarded. This avoids the transport of
several primary blocks. Note that adopting an intermediary
policy by dispatching the CoAP messages in more than one
bundle is generally not feasible because no information is
available on the actual convergence layers that will be used
along the path, information that would be necessary to ensure
a beneficial dispatching.

B. Addressing scheme

In CoAP, a URI is used to identify a server resource. The
host and the port number present in the URI serve as the
destination IP address and port number to be included in the
UDP datagram being sent, and CoAP options URI-Host, URI-
Port, URI-Path and URI-Query are inserted into the payload
of the UDP datagram to describe the specifically targeted
resource.

Contrary to IP networks, in networks running the BP, a BP
destination is identified by a URI. Therefore, in CoAP/BP, the
BP destination is already described as a URI, which is a part of
the bundle meta-data. The CoAP options URI-Host, URI-Port,
URI-Path, and URI-Query are therefore either meaningless or
redundant. Indeed, the URI-Port option does not have any use

in networks running the BP as the nodes do not have any ports.
As for the host, the path, and the query URI options, these are
redundant with the bundle meta-data and should not be added
into the bundle payload.

While the CoAP RFC specifies to use the URI scheme
coap when UDP is used (or coaps with DTLS), there is no
mention of alternative transport layers. As the registered dtn
scheme is not yet precisely defined, we suggest to use a CoAP-
compatible scheme in which host [:port] is replaced by any
alphanumeric string, that typically represents a node or a group
of nodes. This scheme could be named coap+dtn, as suggested
in [8].

C. Multicast

CoAP supports requests sent to a group of servers by using
an IP multicast address in the URI. In the BP, an EID can be a
group of different applications running on different nodes, in
other words a set of BP endpoints. This feature can be used as
a substitute to the IP multicast group, thus allowing requests
to be sent to several destinations at once. Note that it can also
be interesting to combine the multi-payload with the multicast.
In short, one bundle can carry several responses (or requests)
while being sent to a group EID.

D. Confirmable messages

In CoAP, NON messages are sent if no answer is required.
This type of message probably forms the majority of the
exchanges in a DTN as, in many cases, a DTN exhibits a
dynamic behavior that will induce long and often very variable
delays likely to be incompatible with a sufficient reliability.

However, CoAP CON messages may be useful in some
circumstances, i.e. when the sender of a request needs an
acknowledgment. Indeed, CON messages are used to ensure
two distinct things: a) the request packet has not been lost
during its transport, and b) the server was active, so it received
and treated the request. In a DTN, bundle losses are reduced
by the routing algorithm itself (for example by generating
redundant copies in the network) or via the use of the custody
mechanism (in the case of a single-copy routing). The BP
ensures the retransmissions of a bundle when necessary, as
long as the lifetime of this bundle has not expired. With a BP
binding, CoAP message retransmission is then harmful as it
would put an unnecessary load on the network. The important,
but challenging, thing is to correctly set the lifetime of the
bundles. At first, a default lifetime should be fixed to the upper
bound of the time required by a bundle to cross the network,
plus the time for a destination CoAP node to resume from its
potential sleep state. It is suggested that a CoAP option for
setting the lifetime of a CoAP message be added, so that a
specific lifetime, potentially shorter than the default one, can
be assigned to a request or a response.

The following BP mechanisms may also be examined:
• Report-When-Bundle-Acknowledged-By-Application op-

tion: this option requests that the BP daemon running
on the destination node generate an administrative bundle
once the bundle is received and taken in charge by the ap-
plication (in our case the CoAP layer). This administrative



bundle can be a substitute to the CoAP acknowledgment.
Setting this option for CON messages avoids taking care
of the acknowledgment at the CoAP level as it is sent
directly by the BP daemon. The similar option Report-
When-Bundle-Delivered is not so convenient because it
does not involve the BP application (i.e. CoAP in our
case) and therefore prevents CoAP from piggybacking the
acknowledgment to the response if it is quickly available.

• Expedited class of service: there are three classes of
service for bundles. The classes are, from the least to the
most important, bulk, normal and expedited. Higher-class
bundles are forwarded with priority over others, as long
as the source is the same. If bulk (or normal) is used for
NON messages, it is suggested that expedited be used for
CON messages in order to accelerate their transport, and,
hence, reduce the probability of their lifetime expiring.

E. Option Accept
The CoAP Accept option of a request can be used to indicate

which format is acceptable to the client regarding the content
of a response. At present, this option is not repeatable, in other
words only one format can be specified at a time. This leads
to several exchanges between client and server in order to find
a matching content format. Allowing the Accept option to be
repeatable could offer a significant benefit by avoiding these
exchanges for negotiation. The advantage is not specific to
CoAP/BP, but it is particularly important to avoid unnecessary
end-to-end transmissions in a DTN.

F. Caching
In CoAP, endpoints may cache responses of GET requests

in order to reduce the response time and network bandwidth
consumption on future, equivalent requests. The option Max-
Age is set on a response to assign a duration of freshness to
it. CoAP endpoints are allowed to provide a cached response
if it is sufficiently fresh. This caching mechanism is only
performed locally, that is, by the sender of the request, or
by a proxy (specified in the Proxy-URI option of the CoAP
message) that issues the request on behalf of this client.

In a DTN, this caching mechanism could be extended
so that relay nodes would also be allowed to provide a
cached response, as if these relay nodes were proxies. The
gain in response time could therefore be drastically reduced.
However, some cross-layering is necessary to implement this
mechanism: the BP relay node must pass the bundle payload
to a local CoAP proxy code in function of some CoAP-level
information. This information includes the URI but also the
method type and other CoAP options. These are normally only
available in the payload of the bundle, which should remain
opaque.

We propose using an extension of the BP called “Metadata
Extension Block” [14] to support this cross-layering. A Meta-
data Extension Block (MEB) is designed to carry additional
information used by DTN nodes to make processing decisions
regarding bundles. In our case, the MEB would contain all
the necessary data about the request so that the BP layer can
trigger a local CoAP Proxy code that will potentially send a
CoAP response.

V. CONCLUSION

This paper studied the replacement of UDP by the BP
as an underlying transport for CoAP, in order to enable a
delay-tolerant Internet of Things. A first implementation of
CoAP/BP, called BoAP, allowed us to perform some pre-
liminary tests that showed that the BP can be an effective
substitute to UDP as a CoAP binding: BoAP does not largely
degrade transmission delays when disconnections are short,
and, contrary to CoAP/UDP, it continues to play its role
when the connectivity is strongly intermittent. A number of
optimizations have been detailed that should permit a more
efficient BoAP implementation. In the future, we plan to
include these optimizations into BoAP and evaluate them.
Besides, some other CoAP and BP features still need some
attention, in particular resource discovery and security.

ACKNOWLEDGMENT

This work is supported by the French ANR (Agence Na-
tionale de la Recherche) grant number ANR-13-INFR-012.

REFERENCES

[1] W.-B. Pöttner, F. Büsching, G. von Zengen, and L. Wolf, “Data elevators:
Applying the Bundle Protocol in Delay Tolerant Wireless Sensor Net-
works,” in 9th International Conference on Mobile Adhoc and Sensor
Systems (MASS 2012). Las Vegas, NV, USA: IEEE, Oct. 2012, pp.
218–226.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] H. Wirtz, J. Rüth, M. Serror, J. A. Bitsch Link, and K. Wehrle,
“Opportunistic Interaction in the Challenged Internet of Things,” in 9th
Workshop on Challenged Networks (CHANTS 2014). Maui, Hawaii,
USA: ACM, Sep. 2014, pp. 7–12.

[4] F. M. Al-Turjman, A. E. Al-Fagih, W. M. Alsalih, and H. S. Hassanein,
“A delay-tolerant framework for integrated RSNs in IoT,” Computer
Communications, vol. 36, no. 9, pp. 998–1010, 2013.

[5] A. Elmangoush, R. Steinke, M. Catalan, A. Corici, T. Magedanz, and
J. Oller, “Interconnecting Standard M2M Platforms to Delay Tolerant
Networks,” in 2nd International Conference on Future Internet of Things
and Cloud (FiCloud 2014). Barcelona, Spain: IEEE, Aug. 2014, pp.
258–263.

[6] M. J. Khabbaz, A. Chadi M., and F. Wissam F., “Disruption-Tolerant
Networking: A Comprehensive Survey on Recent Developments and
Persisting Challenges,” IEEE Communications Surveys and Tutorials,
vol. 14, no. 2, pp. 607–640, 2012.

[7] H.-H. Cho, S. T. K. Chen, Chi-Yuan and, and H.-C. Chao, “Survey on
underwater delay/disruption tolerant wireless sensor network routing,”
Wireless Sensor Systems, vol. 4, no. 3, pp. 112–121, 2014.

[8] B. Silverajan and T. Savolainen, “CoAP Communication with Alterna-
tive Transports, v07,” IETF Internet Draft, Dec. 2014.

[9] N. Gligoric, T. Dimcic, D. Drajic, S. Krco, I. Dejanovic, N. Chu, and
A. Obradovic, “CoAP over SMS: Performance evaluation for machine to
machine communication,” in 20th Telecommunications Forum (TELFOR
2012). Belgrade, Serbia: IEEE CS, Nov. 2012, pp. 1–4.

[10] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” IETF RFC 7252, Jun. 2014.

[11] P. Van Der Stock and A. Sehgal, “Patch Method for Constrained
Application Protocol (CoAP), v00,” IETF Internet Draft, Mar. 2015.

[12] K. Hartke, “Observing Resources in CoAP, v16,” IETF Internet Draft,
Dec. 2014.

[13] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in Proc. of ACM SIGCOMM03, Aug. 2003.

[14] S. F. Symington, “Delay-Tolerant Networking Metadata Extension
Block,” IRTF RFC 6258, May 2011.

[15] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable Cloud
Services for the Internet of Things through CoAP,” in International
Conference on the Internet of Things (IoT 2014). Cambridge, MA,
USA: ACM Press, Oct. 2014.

[16] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: an
efficient implementation for embedded systems,” in 3rd ACM workshop
on Challenged networks. ACM, Sep. 2008, pp. 117–120.


