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INTRODUCTION

We revisit the stabilisation problem for non holonomic systems in chained form, defined by the equations:

   ẋ1 = u 2 ẋi = u 1 x i-1 , i ∈ [2, n -1] ẋn = u 1 .
(1)

Such systems are used to model a variety of kinematic constraints appearing in a number of mechanical systems such as autonomous multiple-trailer vehicles, multi-body spacecrafts, etc.. See the survey Kolmanovsky and Mc-Clamroch [1995] for more details. Ever since the seminal work [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] in which it is stated that chain-form systems cannot be stabilized at the origin by means of smooth time-invariant feedback, the stabilization problem attracted an exponentially-increasing interest in the community. Perhaps most of contributions in the field may be classified into discontinuous feedback controls, as in [START_REF] Astolfi | Discontinuous control of nonholonomic systems[END_REF], [START_REF] Sørdalen | Exponential stabilization of nonholonomic chained systems[END_REF], and smooth time-varying, as in [START_REF] Morin | Application of backstepping techniques to the time-varying exponential stabilisation of chained form systems[END_REF], [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF].

Notably, in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] the author proposed a class of smooth controllers which ensure global asymptotic stability. The controllers in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] rely on a simple but powerful idea: to use exogenous signals of time, called "heating functions" in this reference, in order to excite all modes of the system. Another crucial property of the controllers in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] is that they lead to a system in closed-loop with a so-called skew-symmetric structure, reminiscent of systems that appear in adaptive control via reference model.

The control design, as well as the underlying concepts used in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] inspired our so-called δ-persistently exciting controllers, originally proposed in [START_REF] Loría | A new persistencyof-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]. See also the more evolved work Loría et al. [2002] where we established, for the first time, uniform global asymptotic stability via smooth time-varying control. Indeed, the method of proof in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] does not allow to conclude uniformity of the origin's attractivity.

In this paper we revisit the stabilisation problem for non-holonomic systems in chain form, retracing the steps of [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF] and Loría et al. [2002]. As in these references, we use controllers with persistency of excitation (the term is not used in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF]). However, our main and novel contribution is to establish an estimate of the convergence rate in terms of the control parameters. Our analysis relies on constructing a strict Lyapunov function for skew-symmetric systems. Indeed, we have been able to locate in the literature strict Lyapunov functions for this type of systems.

PROBLEM STATEMENT AND MOTIVATION

To put our contributions in perspective we start by recalling the essential elements of the elegant control approach tailored in [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF]. We start with the observation that the chain-form system (1) may be rewritten in the general form of a driftless system,

      ẋ1 ẋ2 . . . ẋn-1 ẋn       =       0 x 1 . . . x n-2 1       g1(x) u 1 +       1 0 . . . 0 0       g2 u 2 . (2) 
Now, following [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF], let us consider the following change of coordinates, defined starting with the nth variable down to the first, that is,

xn-1 = x n-1 (3a) xn-2 = x n-2 (3b) xj = k j+2 xj+2 + L g1 xj+1 1 ≤ j ≤ n -3 (3c)
where k j+2 > 0 for 1 ≤ j ≤ n -3, and L g1 denotes the Lie derivative, that is,

L g1 xj+1 := ∂ xj+1 ∂x g 1 (x)
Remark that the last change of coordinate has the following explicit form:

xj =x j + φ j (x j+1 , • • • , x n-1 ) (4) 
where φ j (•) : R n-j-1 → R, is sufficiently smooth function.

We remark also that for j ≥ 1,

ẋj+1 = L g1 xj+1 u 1 + L g2 xj+1 u 2 (5)
Now, from (4), we have L g2 xj+1 u 2 = 0, for all j ≥ 1. Then, using (3) and ( 5), we obtain

ẋj+1 = u 1 xj -k j+2 u 1 xj+2 ∀ j ≥ 1 (6) and, for j = 1, ẋ1 = ẋ1 + φ1 (x 2 , • • • , x n-1 ) = u 2 + φ1 (x 2 , • • • , x n-1 ). (7) So, defining u 2 (t, x) = -k 1 x1 -k 2 x2 -φ1 (x 2 , • • • , x n-1 ), (8) with k 1 , k 2 > 0, the closed-loop dynamics takes the convenient cascaded form       ẋ1 ẋ2 . . . ẋn-1       =       -k 1 -k 2 u 1 • • • 0 u 1 0 . . . . . . . . . . . . . . . -k n-1 u 1 0 • • • u 1 0             x1 x2 . . . xn-1       (9) 
ẋn =u 1 (10) -cf. [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF], Loría et al. [2002].

Next, consider for (9) the Lyapunov function candidate

V 1 (x) = 1 2 x2 1 + n-1 i=2 i l=2 k l x2 i (11)
which is positive definite and radially unbounded. Actually,

min i∈[2,n]    1, i j=2 k j    |x| 2 ≤ 2V 1 (x) ≤ max i∈[2,n]    1, i j=2 k j    |x| 2 . (12)
Moreover, in view of the "skew-symmetry" of the matrix in (9)

V1 (x) = -k 1 x 2 1 . (13) 
Therefore, {x = 0} is uniformly globally stable for (9) that is, the solutions are uniformly globally bounded and the origin is uniformly stable. Moreover, this property holds with linear gain; this follows from integrating V (x(t)) ≤ 0 to obtain |x(t)| ≤ c|x(t 0 )| with

c := max i∈[2,n] 1, i j=2 k j min i∈[2,n] 1, i j=2 k j . ( 14 
)
The challenge, then, is to design a smooth time-varying control law u 1 (t, x) that guarantees uniform global attractivity of the origin (x, x n ) = (0, 0) for the overall system ( 9) and (10).

In Loría et al. [2002] it was showed that

u 1 (t, x) = -k n x n + h(t, x) (15 
) with h satisfying certain property of persistency of excitation, achieves the control goal. The central idea, which is inspired by [START_REF] Samson | Control of chained systems application to path following and time-varying point-stabilization of mobile robots[END_REF], is to design this function to render u 1 persistently exciting to render the origin {x = 0} of (9) uniformly globally attractive. Simultaneously, relative to the x n equation ( 10), h must be a bounded perturbation vanishing with x.

The property of persistency of excitation was coined in the context of systems identification. For the particular case of a locally integrable scalar function a : R ≥0 → R, it is defined as follows. Definition 1. (Persistency of Excitation). The function a is persistently exciting if there exist µ > 0 and T > 0 such that

t+T t |a(s)| ds > µ, ∀ t ≥ 0. ( 16 
)
For nonlinear functions of the system's state and time the following property was introduced in [START_REF] Loría | A new persistencyof-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. Definition 2. (Uniform δ-PE along trajectories). The continuous function a : R ≥0 × R → R is uniformly δpersistently exciting (uδ-PE) with respect to x, if for each δ > 0 there exist µ > 0, T > 0 such that min

s∈[t,t+T ] |x(s)| > δ ⇒ t+T t |a(s, x(s))|ds > µ ∀ t ≥ 0. (17) 
In [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF] it is showed that uδ-PE is a necessary and sufficient condition for uniform global asymptotic stability for a class of nonlinear time-varying systems which include (9

) for n = 2 that is, ẋ1 ẋ2 = -k 1 -k 2 u 1 (t, x) u 1 (t, x) 0 x1 x2 . ( 18 
)
The rationale to conclude uniform global attractivity of the origin for ( 18) is the following. First, we observe that the origin is uniformly globally stable; indeed, V 1 in (11) for this system corresponds to

V 1 (x) = 1 2 x2 1 + k 2 x2
2 . whose derivative satisfies (13) and, therefore,

V (x(t)) ≤ V (x(t 0 )) which implies that |x(t)| ≤ c|x(t 0 )| for all t ≥ t 0 with c := [max{1, k 2 }/ min{1, k 2 }]. It also follows that for any σ > 0, defining δ := σ/c, we have |x(t )| ≤ δ implies that |x(t + T )| ≤ σ ∀ T > 0. ( 19 
)
This holds for any t ≥ t 0 . The property (19) implies uniform global attractivity hence, to establish uniform global asymptotic stability, it is left to show that for any δ > 0 there exists t ≥ t 0 such that |x(t )| ≤ δ for any initial states |x 0 | ≤ r and any r > 0. To establish this consider u 1 along the trajectories x(t) that is, u 1 (t, x(t)). Then, the system (18) may be considered as linear timevarying with a(t) := u 1 (t, x(t)). It is well known that the origin of

ẋ1 ẋ2 = -k 1 -k 2 a(t) a(t) 0 x1 x2 (20) 
is exponentially stable if and only if a is persistently exciting. Therefore, for the nonlinear system (18), we may conclude that under the condition that u 1 (t, x) is uδ-PE in the sense of Definition 2 the trajectories converge exponentially fast to zero hence, there exists a finite time T δ , independent of t 0 such that |x(t 0 + T δ )| ≤ δ and ( 19) holds with t := t 0 + T δ .

In Loría et al. [2002] a similar argument is used to establish uniform global attractivity of the origin of ( 9) for any n ≥ 2. However, the proof is based on an inductive argument following an intricate trajectory-based analysis. In this paper, we give an estimate of the time of convergence T δ . Our analysis is constructive as it relies on an original strict Lyapunov function for linear "skew-symmetric" systems. This constitutes our first result.

LYAPUNOV ANALYSIS OF SKEW-SYMMETRIC SYSTEMS

The linear case

Fundamental to our main results is the following preliminary but original statement for so-called skew-symmetric systems,

        ẋ1 ẋ2 ẋ3 . . . ẋn-1         =         -k 1 -k 2 a(t) 0 • • • 0 a(t) 0 -k 3 a(t) 0 . . . 0 a(t) 0 . . . 0 . . . 0 . . . . . . -k n-1 a(t) 0 • • • 0 a(t) 0                 x 1 x 2 x 3 . . . x n-1         . ( 21 
)
Lemma 1. Consider the skew symmetric system (21), with

k i > 0 for all i ∈ [1, n -1].
For the function a : R ≥0 → R assume that there exist positive real constants ā, µ and T such that max sup

t≥0 |a(t)| , sup t≥0 | ȧ(t)| ≤ ā a.e. ( 22 
) t+T t |a(s)|ds ≥ µ ∀ t ≥ 0. ( 23 
)
Then, the origin is uniformly exponentially stable.

Furthermore, for each i ≤ n let us define (in reverse order),

α n = 1, α n-1 = 1 + α n + 9nT ā2 α 2 n µk n (24a) α i = 1 + α i+1 + 9nT ā2 α 2 i+1 µk i+1 + nT [k i+2 α i+1 + α i+2 k i+1 ] 2 µk i+1 k i+2 (24b)
as well as the constant

γ ≥ ā4 [α 2 + 1] k 1 + nT α 2 2 [3ā 3 + ā4 k 1 ] 2 µk 2 k 1 + nT ā8 [α 2 k 3 + k 2 α 3 ] 2 µk 2 k 3 k 1 +2 ā3 n-1 i=1 α i+1 i j=2 k j min 1, i j=2 k j (25)
and the function

Q a 4 (t) = 1 + ā4 T - 1 T t+T t m t a(s) 4 ds dm. (26) 
Then, there exist η 1 , η 2 and η 3 > 0 such that the Lyapunov function

V n (t, x) = Q a 4 (t) + γ V 1 (x) + a 3 n-1 i=1 α i+1   i j=2 k j   x i x i+1 , (27) 
where V 1 is defined in (11), satisfies

η 1 |x| 2 ≤ V n (t, x) ≤ η 2 |x| 2 (28) Vn (t, x) ≤ - µ 2T |x| 2 . ( 29 
)
Proof. We first show the existence of η 1 and η 2 . To that end, note that 1 ≤ Q a 4 (t) ≤ 1 + ā4 T (30) while the cross terms in (27) satisfy

a 3 n-1 i=1 α i+1   i j=2 k j   x i x i+1 ≤ γV 1 (x) that is, V 1 (x) ≤ V n (t, x) ≤ 1+ā 4 T +2γ V 1 (x).
The bound (28) follows from the latter and ( 12) with

η 1 := 1 2 min i∈[2,n]    1, i j=2 k j    (31a) η 2 := max i∈[2,n]    1, i j=2 k j    1 + ā4 T + 2γ . (31b)
Next, we evaluate the total derivative of V n along the trajectories of (21). To that end, we first note that

Qa 4 (t) = - 1 T t+T t a(s) 4 ds + a(t) 4 (32) therefore, Vn (t, x) ≤ -γk 1 x 2 1 - µ T V 1 (x) + a 4 V 1 (x) + a 4   n-1 i=2 α i+1   i j=2 k j   x i-1 x i+1 -k i+1 x 2 i+1 + x 2 i -k i+2 x i x i+2 + a 4 α 2 -k 1 x 1 x 2 -k 2 x 2 2 + x 2 1 -k 3 x 1 x 3 (33)
and, expanding terms, we obtain

Vn (t, x) ≤ - µ 2T V 1 (x) + -γk 1 x 2 1 + 3a 2 ȧα 2 x 1 x 2 -a 4 α 2 k 1 x 1 x 2 + (α 2 + 1)a 4 x 2 1 -a 4 (α 2 k 3 -k 2 α 3 )x 1 x 3 - µ 2nT (k 2 x 2 2 + k 2 k 3 x 2 3 ) + n-2 i=2 i l=2 k l (1 -α i )a 4 x 2 i + 3a 2 ȧα i+1 x i x i+1 + α i+1 a 4 x 2 i -a 4 (k i+2 α i+1 -α i+2 k i+1 )x i x i+2 - µ 2nT (k i+1 x 2 i+1 + k i+1 k i+2 x 2 i+2 ) + n-1 l=2 k l -(α n-1 -1)a 4 x 2 n-1 + 3a 2 ȧα n x n-1 x n + α n a 4 x 2 n-1 - µ 2nT k n x 2 n -(α n -1)a 4 n l=2 k l x 2 n . (34) 
All cross terms of undefined sign on the right-hand side of the previous inequality are quadratic while

V 1 is quadratic positive definite in [x 1 • • • x n-1 ]
. Therefore, we can always choose the design parameters α i and γ to render Vn negative definite.

To start with, for any α 2 , k 1 , k 2 , k 3 , µ and T > 0, we pick γ such that

(α 2 + 1)a 4 -γk 1 x 2 1 + 2α 2 (3a 2 ȧ -a 4 k 1 )x 1 x 2 - µk 2 nT x 2 2 ≤ 0 and (α 2 +1)a 4 -γk 1 x 2 1 -2a 4 (α 2 k 3 -k 2 α 3 )x 1 x 3 - µk 2 k 3 nT x 2 3 ≤ 0.
Next, we choose α n = 1 and α n-1 , such that:

-α n-1 -1 -α n a 4 x 2 n-1 + 3a 2 ȧα n x n-1 x n - µk n 2nT x 2 n ≤ 0. Finally, for each i ≤ n -2 down to i = 1 we choose α i , such that -α i -1 -α i+1 a 4 x 2 i + 6a 2 ȧα i+1 x i x i+1 - µk i+1 nT x 2 i+1 ≤ 0 and -α i -1 -α i+1 a 4 x 2 i -2a 4 k i+2 α i+1 -α i+2 k i+1 x i x i+2 - µ nT k i+1 k i+2 x 2 i+2 ≤ 0.
All of the inequalities above hold in view of ( 24) and ( 25) hence ( 29) holds.

The advantage of Lemma 1 with respect to other statements on stability for the system (9) -cf. Loría and Panteley [2002] is that the Lyapunov function V n leads directly to an expression for the system's trajectories. Indeed, from ( 28), ( 29) and ( 31) we have

|x(t)| 2 ≤ η 2 η 1 |x(t 0 )| 2 exp - µ 2T η 3 [t -t 0 ] . ( 35 
)

The nonlinear case

Let us consider now the nonlinear skew-symmetric system (9) under a condition of uniform δ-persistency of excitation on the control law u 1 , in the sense of Def. 2. Along the system's trajectories, a(t) := u 1 (t, x(t)) is persistently exciting for all t such that |x(t)| ≥ δ, for any δ > 0 therefore, the solutions of ( 9) converge exponentially to zero according to (35) -note that an oscillatory behaviour by which |x(t)| might cross the boundary |x(t)| = δ multiple times is excluded since the origin is uniformly stable. Even though the stabilizing mechanism of uniform δ-persistency of excitation in the sense of Definition 2 is intuitive, the inconvenience of this property is that it is formulated as a property of a : R ≥0 × R → R and the system's trajectories. The following property which was introduced in [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF] has the advantage of being stated in terms of the system's state variable. Definition 3. (Uniform δ-PE). The scalar function a : R ≥0 × R → R is uniformly δ-persistently exciting with respect to x, if for each δ > 0 there exist µ > 0 and T > 0 such that

|x| > δ =⇒ t+T t |a(s, x)| ds > µ ∀ t ≥ 0. (36) 
In general, for multivariable functions, the two properties, in Defs. 2 and 3, are different. Neither one implies the other -see [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF] however, for the type of functions of interest here, the following statement establishes a link between the two properties. Lemma 2. Let the function a : R ≥0 × R → R satisfy Definition 3. In addition, assume that the existence of ρ 1 and x ∈ R such that |x| > δ and |a(t, x)| > ρ 1 , implies the existence of ρ 2 ∈ (0, ρ 1 ) such that |a(t, x)| > ρ 2 for all x such that |x| > δ. Then, |a| is uniformly δ persistently exciting along trajectories, i.e., it satisfies Definition 2.

Proof. By assumption, the function a : R ≥0 × R → R satisfies Definition 3. Let the latter generate µ, T and δ > 0 such that (36) holds. Let x ∈ R be arbitrarily fixed, such that |x| > δ. Then, a(t, x), for such fixed x, is persistently exciting that is, it satisfies (16). By [Loría and Panteley, 2002, Lemma 2] it follows that there exists ρ 1 > 0 such that, for each t, the set

I t := {τ ∈ [t, t + T ] : |a(τ, x)| ≥ ρ 1 }
has strictly positive uniform measure that is, meas(I t ) ≥ ∆ > 0 with ∆ independent of t. By assumption, there exists ρ 2 ∈ (0, ρ 1 ) such that, for all t ∈ I t and all x such that |x| > δ, we have |a(t, x)| > ρ 2 . In turn, this implies that t+T t |a(s, x(s))|ds > ∆ρ 2 ∀ t ≥ 0 that is, (17) holds with µ := ∆ρ 2 .

Thus, from the previous analysis, we draw the following conclusion. Lemma 3. Consider the system (9). Let k i > 0 for all i ≤ n and let u 1 satisfy the uniform continuity condition of Lemma 2 and be uniformly δ-persistently exciting in the sense of Definition 3. Then, the origin {x = 0} is uniformly globally asymptotically stable. Moreover, for any r > 0 and σ > 0, we have

|x(t 0 )| ≤ r =⇒ |x(t)| ≤ σ ∀ t ≥ T r,σ with T r,σ = - 2T η 3 µ ln η 1 [σ/c] 2 η 2 r 2 (37)
and c is defined in ( 14).

Proof. The origin of the system is uniformly globally stable and satisfies |x(t)| ≤ c|x(t 0 )| for all t ≥ t 0 and all t 0 ≥ 0 -see Section 2. Let δ := σ/c. In view of Lemma 2, u 1 is uniformly δ-persistently exciting along the system's trajectories. Let a(t; t 0 , x 0 ) := u 1 (t, x(t; t 0 , x 0 )). Then, for all t such that |x(t)| ≥ δ, the trajectories of ( 9) coincide with those of ( 21). It follows that the solutions of the former satisfy (35) at least for a finite time, that is, there exists T > 0 such that ( 35) holds for all t ∈ [t 0 , t 0 + T ] and, at t := t 0 + T , |x(t )| = δ. Then, we have

δ 2 = η 2 η 1 r 2 exp - µT 2T η 3 which is equivalent to: T = - 2T η 3 µ ln η 1 δ 2 η 2 r 2
. Now, in view of uniform global stability, |x(t)| ≤ c|x(t )| for all t ≥ t that is, using δ = σ/c, we verify that |x(t)| ≤ σ for all t ≥ t 0 + T r,σ with T r,σ = T .

MAIN RESULTS

In the previous section we presented a strict Lyapunov function for linear time-varying skew-symmetric systems which may be used to compute an estimate of the convergence rate of the trajectories of the nonlinear time-varying system (9). Based on this statement we may now present our main result for the nonholonomic chain-form system (1). Theorem 1. Consider the system (1) in closed loop with (8) and

u 1 (t, x) = -k n x n +h(t, y), y := [x 1 , • • • , xn-1 ] (38)
where h : R ≥0 × R n-1 is bounded and smooth, more precisely, B1. (Boundedness) there exists a function ρ ∈ K, such that:

max |h(•)| , ∂h(•) ∂t , ∂h(•) ∂y ≤ ρ (|y|) . (39) 
B2. (Uδ-PE ) The function [∂h/∂t](t, y(x)) is uniformly continuous (it satisfies the conditions of Lemma 2) and is uniformly δ-persistently exciting with respect to x that is, in the sense of Definition 3.

B3. ( Integrability ) For all x(t 0 ) ≤ r, there exists ω r ≥ 0, such that:

∞ t0 ∂h ∂ x1 (s, y(s))x 1 (s) ds ≤ ω r (40)
Then, the origin is uniformly globally asymptotically stable and, for any r > 0 and σ > 0, we have

|x(t 0 )| ≤ r =⇒ |x(t)| ≤ σ ∀ t ≥ T r,σ
Proof. The total derivative of the quadratic function .

W (x) := V 1 (x) + 1 2 x 2 n along the system's trajectories yields Ẇ (x(t)) ≤ -k n x n (t) 2 -k 1 x 1 (t) 2 + |x n (t)||h(t, y(t))| ≤ -k n x n (t) 2 -k 1 x 1 (t) 2 + ρ(
By assumption, ∂h ∂t (t, y(x)) is uniformly δ-PE with respect to x. Therefore, by Lemma 4 from the Appendix, u 1 is uniformly δ-persistently exciting. It follows from Lemma 3, for any r ≥ 0 and σ > 0, |x(t 0 )| ≤ r =⇒ |y(t)| ≤ σ ∀ t ≥ t 0 + T r,σ with T r,σ as in (37). Resetting the intitial time to t := t 0 + T r,σ and solving the differential equation ẋn = -k n x n + h(t, y), we obtain

|x n (t)| ≤ |x n (t )|exp -k n (t -t ) + 1 k n 1 -exp -k n (t -t ) ρ(cr)
for all t ≥ t 0 + T r,σ that is, for all such t,

|x n (t)| ≤ exp -k n (t -t ) cr - ρ(cr) k n + ρ(cr) k n .
We wrap up the paper with a concise statement that gives an interesting particular choice of the function h such that the control law satisfies the required condition on persistency of excitation. Let h(t, y(x)) := ϕ(t)

2 k n x 2 n + n-2 i=1 x2 i k i+1 • • • k n-1 + x 2 n-1 .
Then, in view of the "skew-symmetry" of A we have ∂h ∂ x Ax = 0, and u1 = -k n u 1 -k 1 x2 1 + ∂h ∂t (t, y), so, by the filtering property of PE functions, it is trivial to see that u 1 is uniformly δ persistently exciting provided that so is φ.

CONCLUSION

We have presented new results on stabilization of nonholonomic systems via smooth time-varying feedback. Our controllers rely on a property of persistency of excitation that implies the exponential convergence to any compact containing the origin. The formulation and the analysis tools that we employ, notably based on Lyapunov's direct method, allow to compute estimates on the speed of convergence of the solutions.

  |y(t)|)|x n (t)| . (41) By Lemma 3 |y(t)| satisfies, on the maximal interval of definition of the solutions, |y(t)| ≤ c|x(t 0 )|. By continuity of the solutions, however, this interval may be extended to infinity hence, for all t ≥ t 0 ,

	On the other hand, the control u 1 satisfies	
	u1 = -k n -	∂h ∂y	Ay u 1 -k 1	∂h ∂ x1	x1 +	∂h ∂t	(t, y)

Ẇ (x(t)) ≤ -k n x n (t) 2 -k 1 x 1 (t) 2 + ρ(cr)|x n (t)| (42)

hence, for "large" values of x n (t) 2 we see that Ẇ (x(t)) ≤ 0 and the solutions are uniformly globally bounded with linear bound that is, |x(t)| ≤ c|x(t 0 )| for all t ≥ t 0 .

This article is supported by Government of Russian Federation (grant 074-U01).

Appendix A

We present a technical lemma that generalizes a wellknown property of persistently exciting signals a(t) which establishes that the output of a strictly proper stable filter driven by a PE input conserves such property. The lemma is actually reminscent of a similar statement originally presented in [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. However, for the purposes of this paper we paraphrase the statement and present an alternative proof. Lemma 4. (Filtration property). Let φ : R ≥0 × R m → R and consider the system: 

Assume, further, that all solutions t → x φ , with x φ = [x , ω], are defined in [t 0 , ∞) and satisfy:

2) and, there exists ψ r > 0, such that:

then ω is uniformly δ-persistently exciting with respect to x. Moreover,

where c(r) := 2ρ 2 1 (r) + ρ 1 (r). Proof. The total derivative of the product ωφ satisfies, in view of the boundedness of trajectories of (A.1),

Then, since φ is uniformly δ-persistently exciting, there exist µ > 0, such that:

Integrating (A.5) between [t, t + (k + 1)T ] both with the Cauchy-Schwartz inequality applied to Finally it remains to choose k such that we get µ rδ > 0.