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Abstract: We present a smooth nonlinear time-varying controller for leader-follower tracking
of non-holonomic mobile robots. Our design relies upon the standing assumption that either the
rotational or the translational reference velocity is persistently exciting. Then, we extend our
results to cover the problem of formation tracking for a swarm of vehicles interconnected under
a spanning tree communication topology rooted at the virtual leader. In this case, we propose
a simple distributed control law that establishes the convergence of the error coordinate of each
agent, relatively to its neighbourhood, under the same condition of persistency of excitation.
In addition, our proofs are based on Lyapunov’s second method, that is, we provide a strict
Lyapunov function.
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1. INTRODUCTION

Tracking control of non-holonomic mobile robots has been
long addressed by the nonlinear control community start-
ing, at least, with the seminal paper Kanayama et al.
[1990] in which global stability was established using Lya-
punov’s first method. In dagger and Nijmeijer [1997] a
backstepping approach was used to construct a controller
that guarantees asymptotic stability for both, tracking
and set-point stabilisation. The latter was generalised to
the adaptive case in Fukao et al. [2000] –see also Huang
et al. [2014]. In Wang et al. [2009] a finite-time tracking
controller is designed using mainly two finite-time sta-
bilising control laws; the stability analysis appeals to a
cascades argument. In Panteley et al. [1998] a simple linear
time-varying controller was proposed and uniform global
asymptotic stability was established under the standing
assumption is that the reference angular velocity is per-
sistently exciting. In Fliess et al. [1995] a time scaling
method was used to solve the the path following problem
for a Driftless flat systems including nonholonomic mobile
robots, a flatness based approach for path following control
of mobile platforms was also studied in Woernle [1998]
using a Frenet-Serret coordinates.

The follow-the-virtual-leader approach of Kanayama et al.
[1990] is still used in the multi-robot tracking control prob-
lem, in which the goal is to conserve a certain formation
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while tracking a certain reference trajectory. Yet, in spite
of the bulk of literature on tracking control for mobile
robots the extension to the case of formation tracking
control for swarms of robots is far from obvious. In Lin
et al. [2005] the problem of reaching a certain geometric
configuration using a distributed control was addressed; a
necessary and sufficient graphical conditions were deduced.
In den Broek et al. [2009], Consolini et al. [2008] and
Guo et al. [2010] a virtual structure and a leader-follower
approaches were investigated; a comparison between the
tow methods can be found in den Broek et al. [2009].

In Do and Pan [2007], the authors solve the forma-
tion tracking problem using a combination of the virtual
structure and path-tracking approaches to generate the
reference for each agent, then an output feedback control
law was designed to track each agent toward its reference,
using an asymptotic observer to estimate the velocities.
This work was extended in Do [2007], where the problem
formation tracking with collision avoidance was consid-
ered, and under a limited sensing range. In Dong and
Farrell [2008] a backstepping based approach is proposed
such a group of nonholonomic mobile agents converges
and tracks a virtual leader under the assumption that the
leader rotational velocity is persistently exciting.

The control approach proposed in Loria et al. [2016]
consists in applying, repeatedly, a follow-the-leader con-
troller to each pair of vehicles interconnected in a span-
ning tree topology. In contrast to other schemes relying
on persistency of excitation, the controller proposed in
this reference applies to straight-path trajectories (zero-



angular reference velocity); it relies on a relaxed form
of persistency of excitation tailored for state-dependent
regressors, called δ-persistency of excitation. However, the
analysis is very complex as it is trajectory-based and no
Lyapunov function is provided. Besides, the assumptions
may be difficult to verify.

In this paper we solve the leader-follower formation track-
ing control problem for a group of mobile robots using dis-
tributed control. As in Loria et al. [2016], each robot com-
municates only with two neighbours. To one, a follower,
it transmits its forward and angular velocities and, from
the other, a leader, it receives the corresponding velocities.
That is, the communications graph is considered to be a
spanning tree, the root of which is a virtual robot moving
with a reference forward and angular velocities, that are
communicated only to the leader robot in the formation.
We establish uniform global asymptotic stability for the
error system under a simple condition of persistency of
excitation on either of the reference velocities, angular or
forward. Our proofs rely on Lyapunov’s direct method; in
the construction of our Lyapunov’s functions we borrow
inspiration from Mazenc [2003], Mazenc et al. [2009],
and Malisoff and Mazenc [2009].

Thus, the main contribution of this paper is twofold:
first, we establish uniform global asymptotic stabilisation
in the context of formation-tracking control under weak
assumptions; secondly, as far as we know, this is the first
paper in which a strict Lyapunov function 2 is proposed
in the context of control of nonholonomic systems under
a persistently excited reference velocities. Indeed, our
stability proof is based on Lyapunov’s direct method.

The rest of the paper is organised as follows. In Section 2
we present an original statement on leader-follower track-
ing control; in Section 3 we present our main results on
formation-tracking for swarms of vehicles and we conclude
with some remarks in Section 4.

2. A SINGLE AGENT CASE

Consider the kinematic model of a mobile robot, that is,

ẋ= v cos θ

ẏ = v sin θ

θ̇= ω

where v denotes the forward velocity, ω corresponds to the
angular velocity which are, also, the two control inputs.
Given two velocity references t 7→ vr and t 7→ ωr the
tracking control problem consists in following a fictitious
reference vehicle

ẋ0 = vr cos θr (1a)

ẏ0 = vr sin θr (1b)

θ̇r = ωr. (1c)

From a control viewpoint, the goal is to steer to zero the
differences between the Cartesian coordinates of the two
robots, as well as orientation angles,

2 That is positive definite with negative definite derivative.

px = xr − x
py = yr − y
pθ = θr − θ.

Then, according to the approach in Kanayama et al. [1990]
we transform the error coordinates [px, py, pθ] of the
leader robot from the global coordinate frame to local
coordinates fixed on the robot that is,exey

eθ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 pxpy
pθ

 . (2)

In the new coordinates, the error dynamics between the
virtual reference vehicle and the follower becomes

ėx = ωey − v + vr(t) cos(eθ) (3a)

ėy =−ωex + vr(t) sin(eθ) (3b)

ėθ = ωr(t)− ω. (3c)

Therefore, the follow-the-leader tracking control problem
of mobile robots amounts to a stabilisation problem, at
the origin, for the system (3).

Our control approach is inspired by the cascades-based
controllers originally presented in Panteley et al. [1998], in
which persistency of excitation is used to guarantee expo-
nential stabilisation of the origin for the error dynamics.
In that reference the following simple linear time-varying
controller was proposed:

v = vr(t) +Kxex, Kx > 0 (4a)

ω = ωr(t) +Kθeθ, Kθ > 0. (4b)

Besides the obvious advantage that offers the simplicity of
this controller, it is to be remarked that the closed-loop
system has the attractive cascaded form[

ėx
ėy

]
=

[
−Kx ωr(t)
−ωr(t) 0

] [
ex
ey

]
+ g(t, e) (5a)

ėθ =−Kθeθ (5b)

where e = [ex ey eθ]
> and we defined the interconnection

term

g(t, e) :=

[
v0(t)

[
cos(eθ)− 1

]
+Kθeθey

v0(t) sin(eθ)−Kθeθex

]
. (6)

As it is showed in Panteley et al. [1998], uniform global
asymptotic stability of the origin of (5) is easily established
upon the following cascades argument: first, we observe
that becauseKθ > 0, eθ converges exponentially fast; then,
it is clear that g(t, e) has linear growth in ex and ey and is
uniformly bounded in t; finally, for the equations (5a) with
g ≡ 0, the origin is exponentially stable provided that the
reference angular velocity is persistently exciting that is,
assuming that there exist µ, T > 0 such that∫ t+T

t

ωr(s)
2ds ≥ µ, ∀ t ≥ 0. (7)

Clearly, this simple argument relies on the bulk of liter-
ature on adaptive control systems. Notice that the nomi-



nal system in (5a) has, precisely, the structure of model-
reference-adaptive -control systems.

Although simple, a drawback of this is that it relies on a
property of persistency of excitation for the angular ve-
locity. Therefore, straight-path trajectories are excluded.
In Cao and Tian [2007], Lee et al. [2001] where complex
nonlinear time varying controls are designed to allow for
reference velocity trajectories that converge to zero. Fur-
thermore, in Lee et al. [2001] the authors cover the case
when also the forward velocity v0 may converge to zero
that is, tracking control towards a fixed point. In Cao and
Tian [2007] the controller is designed so as to make the
robot converge to the straight-line trajectory resulting in
a path that makes it go back and forth. In Loria et al.
[2016] we presented a controller which relies on a relaxed
form of persistency of excitation, which solves the tracking
control problem on straight paths. However, in view of the
recursive design, verifying the assumptions in the latter
reference may be a tedious and difficult task for large
swarms of robots.

In this paper we propose the following nonlinear time-
varying controller:

v = vr(t) cos(eθ) +Kxex (8a)

ω = ωr(t) +Kθeθ + vr(t)Kyeyφ(eθ) (8b)

where φ is the so-called ‘sync’ function defined by

φ(eθ) :=
sin(eθ)

eθ
(9)

which has several useful properties: it is smooth, bounded
and locally positive, actually, |φ(s)| > 0 for any |s| < π.
Our standing assumption is that either the forward or the
angular reference velocities are persistently exciting.

The control design is motivated by the resulting structure
of the closed-loop system, which not only includes a conve-
nient persistently-excited skew-symmetric matrix but for
which uniqueness of the equilibrium point may be ensured.
The closed-loop dynamics of system (3) with the controller
(8) takes the form:

ė = A(t, e)e, e> := [ex ey eθ] (10)

A(t, e) :=

 −Kx ω(t, e) 0

−ω(t, e) 0 vr(t)φ(eθ)

0 −vr(t)Kyφ(eθ) −Kθ


Our first result is the following.

Theorem 1. Assume that vr, ωr, v̇r and ω̇r are bounded.
If, moreover, there exist µ > 0 and T > 0 such that∫ t+T

t

[
vr(s)

2 + ωr(s)
2
]
ds ≥ µ ∀ t ≥ 0 (11)

then, the origin of (10) in closed loop with the controller
velocities (8) is uniformly globally asymptotically stable,
for any positive gains Kx, Ky and Kθ.

Proof. Consider first the Lyapunov function candidate
V1 : R≥0 × R→ R defined as

V1(t, e) =
1

2

[
e2x + e2θ +

1

Ky
e2y

]
(12)

whose time derivative along trajectories of (10) is negative
semidefinite, indeed,

V̇1(t, e) = −Kxe
2
x −Kθe

2
θ. (13)

It follows from this and Barbălat’s lemma that ex → 0 and
eθ → 0 and all solutions are uniformly globally bounded.
Actually, integrating on both sides of V̇1(t, e(t)) ≤ 0 and
defining

c1 := min{1/2, 1/2Ky}
c2 := max{1, 1/Ky}, c3 :=

√
c2/c1

we obtain

|e(t)| ≤ c3|e(t◦)| ∀ t ≥ t◦ ≥ 0. (14)

That is, the origin is uniformly globally stable with linear
growth.

Next, we show that the origin is uniformly globally at-
tractive. To that end, for any locally integrable function
f : R≥0 → R≥0, such that supt≥0 |f(t)| ≤ f̄ , let us define

Qf (t) := 1 + 2f̄T − 2

T

∫ t+T

t

∫ m

t

f(s)dsdm (15)

Note that this function, introduced first in Mazenc [2003],
satisfies

1 ≤ Qf (t) < Q̄f := 1 + 2f̄T

Q̇f (t) = − 2

T

∫ t+T

t

f(s)ds+ 2f(s).

Furthermore, let us introduce the function V2 : R≥0 ×
R3 → R≥0 defined as

V2(t, e) = γrV1(t, e)− ωr(t)exey + αrvr(t)eθeyφ(eθ)

+
1

2

[
Kyφ

2(eθ)Qv2r (t) +Qω2
r
(t)
]
e2y (16)

where αr and γr are positive constants such that V2 is
positive definite and radially unbounded. Notice, indeed,
that in view of the boundedness of vr and ωr, for a suitable
choice of the parameters αr and γr, there exist c′1 > 0 and
c′2 > 0 such that

c′1|e|2 ≤ V2(t, e) ≤ c′2|e|2.

The time derivative of (3) along the closed-lopp trajecto-
ries of (10) is:

V̇2 = − γr
[
Kxe

2
x +Kθe

2
θ

]
+ ω2

re
2
x + v2rαrφ

2(eθ)e
2
θ

+ Ψxy(t, e)exey + Ψθy(t, e)eyeθ + Ψθx(t, e)exeθ

−

[∫ t+T

t

1

T
v2r(s)ds

]
φ2(eθ)Kye

2
y

− (αr − 1)v2rKye
2
yφ

2(eθ)−
∫ t+T

t

1

T
ω2
r(s)dse2y

−
[
ωr + 2φ(eθ)

cos(eθ)− φ(eθ)

eθ
Qv2rKy

]
Kyvrφ(eθ)e

3
y

(17)

where



Ψxy =−ω̇r + ωrKx +Kyvrωrexφ(eθ)

−
[
Kyφ

2(eθ)Qv2r +Qω2
r

]
× [ωr +Kθeθ + eyKyvrφ(eθ)]

Ψθx = ωrexKθ − vrωrφ(eθ)− vrαrωr
−v2rαryKyφ

2(eθ)− vrαrKθφ(eθ)eθ

Ψθy =−ωrKθey − αrvrφ(eθ)Kθ + αrv̇rφ(eθ)

+
[
Kyφ

2(eθ)Qv2r +Qω2
r

]
vrφ(eθ)

−2φ(eθ)

(
cos(eθ)− φ(eθ)

eθ

)
Qv2rKyKθey.

Now, in view of the bound (14), these terms are bounded
along the error trajectories, that is, for any r > 0 there
exists Ψ̄r > 0 such that

|e(t◦)| ≤ r =⇒ max
{
‖Ψxy‖∞, ‖Ψθx‖∞, ‖Ψθy‖∞

}
≤ Ψ̄r.

(18)

On the other hand, for all e such that |e| ≤ c3r, the
derivative of V2 satisfies

V̇2(t, e) ≤ − γr[Kxe
2
x +Kθe

2
θ] + ω2e2x + v2rαrφ

2(eθ)e
2
θ

+ Ψ̄r

[
|exey|+ |eyeθ|+ |xeθ|

]
− (α− 1)v2rKye

2
yφ

2(eθ)

+MrKy

∣∣vrφ(eθ)e
3
y

∣∣− [∫ t+T

t

1

T
ω2
r(s)ds

+Kyφ
2(eθ)

∫ t+T

t

1

T
v2r(s)ds

]
e2y (19)

where we defined

Mr =

∣∣∣∣ωr + φ(eθ)

(
cos(eθ)− φ(eθ)

eθ

)
Qv2rKy

∣∣∣∣
∞
.

To continue further, constructing a suitable bound on V̇2,
we need to stress some useful inequalities. Firstly, for any
given δ > 0 let γr := γr1 + γr2, with γr1 verifying the
inequality:

−γr1[Kxe
2
x +Kθe

2
θ] + ω2e2x + v2rαrφ

2(eθ)e
2
θ+

Ψ̄r

[
|exey|+ |eyeθ|+ |exeθ|

]
≤ δ

2
e2y.

(20)

Furthermore, note that for any δ > 0,

Mr

∣∣vrφ(eθ)eye
2
y

∣∣ ≤ δ

2
e2y +

M2
r

2δ
e2yφ

2(eθ)v
2
re

2
y

hence,

V̇2(t, e) ≤ − γr2[Kxe
2
x +Kθe

2
θ]

− (α− 1− M2
r

2δ
e2y)v2rKye

2
yφ

2(eθ)

+
δKy + δ

2
e2y −min {1,Ky}

[∫ t+T

t

1

T
ω2
r(s)ds

+φ2(eθ)

∫ t+T

t

1

T
v2r(s)ds

]
e2y. (21)

Now, taking

α ≥ 1 +
M2
r

2δ
r2,

we obtain,

V̇2(t, e) ≤ − γr2[Kxe
2
x +Kθe

2
θ] +

δKy + δ

2
e2y

− min {1,Ky}
T

[∫ t+T

t

(
ω2
r(s) + v2r(s)

)
ds

]
e2y

+
min {1,Ky}

T

(
1− φ2(eθ)

) [∫ t+T

t

v2r(s)ds

]
e2y.

(22)

Next, we use the inequality,

1− φ2(eθ) ≤ 2e2θ (23)

and we invoke the persistency-of-excitation condition (11)
to obtain

V̇2(t, e) ≤ − γr2[Kxe
2
x +Kθe

2
θ]

−
[
min {1,Ky}

µ

T
− δKy + δ

2

]
e2y

+ min {1,Ky}
2

T

[∫ t+T

t

v2r(s)ds

]
e2ye

2
θ. (24)

Finally, we see that by setting

δ =
µ

T (1 +Ky)
min {1,Ky}

γr2 =
2 min {1,Ky}

TKθ
v̄2rTr

2

we obtain,

V̇2(t, e) ≤ −γr2
2

[Kxe
2
x +Kθe

2
θ]−min {1,Ky}

µ

2T
e2y

for all t ≥ 0 and all |e| ≤ c3r.

That is, V2 is positive definite, radially unbounded and
its derivative is negative definite on any compact of the
state. Uniform global attractivity of the origin follows. In
addition, since the system is also uniformly globally stable,
uniform global asymptotic stability follows.

3. FORMATION-TRACKING CONTROL

Let us consider, now, the case when a swarm of robots
must advance in formation and follow a reference tra-
jectory. We assume that only one robot possesses the
information of the reference virtual vehicle and transmits
is to one neighbour. The latter transmits its own velocities
to one vehicle in the communication graph and so on.
That is, vis-a-vis of the interconnections, the graph forms
a spanning tree in which each robots has only one parent
and one child except for the reference vehicle (root) and
the leaf node. The control approach is simple. It consists in
using a decentralised follow-the-leader tracking controller
for each vehicle, whose model is given by

ẋi = vi cos (θi) (25a)

ẏi = vi sin (θi) (25b)

θ̇i =wi, i ∈ [1, n] (25c)



The fictitious vehicle, which serves as reference to the
swarm, describes the reference trajectory defined by (1);
the desired linear and angular velocities vr and ωr are
communicated to the leader robot only. Similarly to the
case of tracking control we define the errors

pix = xi−1 − xi − dxi−1,i
piy = yi−1 − yi − dyi−1,i
piθ = θi−1 − θi, i ∈ [1, n]

where dx and dy are (piecewise-)constant design param-
eters imposed by the topology and path planner and, by
definition, we set (·)0 := (·)r.

According to the spanning-tree communication topology,
and following the setting for tracking control, the forma-
tion control problem reduces to that of stabilisation of the
error dynamics between any pair of leader-follower robots.
Then, for each i ≤ n, we have

ėxi =wieiy − vi + vi−1 cos(eθi) (26a)

ėyi =−wieix + vi−1 sin(eθi) (26b)

ėθi =wi−1 − wi. (26c)

The formation-tracking control problem for n robots re-
duces to the stabilisation of the origin in the space of e :=
[e>x , e

>
y , e

>
θ ]> where we redefined e(·) := [e(·)1, · · · e(·)n]>.

Then, for each i ≤ n we propose the controller defined by

vi = vi−1 cos(eθi) +Kxiexi (27a)

ωi = ωi−1 +Kθieθi + vi−1Kyieyiφ(eθi) (27b)

Theorem 2. For the multiagent error system (26) in closed
loop with the controller (27), the origin is uniformly

globally asymptotically stable if
√
ω2
r + v2r is persistently

exciting i.e., (11) holds, and Kxi, Kyi and Kθi are positive.

Proof. The closed-loop dynamics isėxiėyi
ėθi

 =

 −Kxi ωi(t, ei) 0

−ωi(t, ei) 0 vi−1φ(eθi)

0 −vi−1Kyiφ(eθi) −Kθi


︸ ︷︷ ︸

Ai(ei, vi−1, ωi)

exieyi
eθi


(28)

which has exactly the same structure as (10). For each
i ≤ n, the Lyapunov function

V1i :=
1

2

[
e2xi + e2θi +

1

Kyi

e2yi

]
(29)

satisfies

V̇1i = −
[
Kxi|exi|2 +Kθi|eθi|2

]
(30)

hence the origin is uniformly globally stable and |ex(t)|,
|eθ(t)| converge asymptotically to zero. In particular, (14)
holds for an appropriate redefinition of c3.

Next, let us introduce the variables ṽi = vi − vi−1 and
ω̃i = ωi − ωi−1. So for each i ≥ 1, the closed-loop system
takes the form:

ėxi =$iyi −Kxiexi +

[
i−1∑
k=1

ω̃k

]
eyi +

[
i−1∑
k=1

ṽk

]
Kyiφ(eθi)e

2
yi

ėyi =−$iexi + vr sin(eθi)−

[
i−1∑
k=1

ω̃k

]
exi

−

[
i−1∑
k=1

ṽk

] [
Kyiφ(eθi)exieyi + sin(eθi)

]
ėθi =−$i + ωr −

[
i−1∑
k=1

ṽk

]
Kyiφ(eθi)eyi +

[
i−1∑
k=1

ω̃k

]
where

$i = Kθieθi + ωr + vrKyiφ(eθi)eyi (31)

and

ṽi = vi−1 [cos(eθi)− 1] +Kxiexi (32a)

ω̃i =Kθieθi + vi−1Kyiφ(eθi)eyi (32b)

With these notations, the error dynamics take the form

ėi = Ā(t, ei)ei +Mi(t, ei)

i−1∑
k=1

[
ṽk
ω̃k

]
(33)

where

Āi(t, ei) :=

 −Kxi $i(t, ei) 0

−$i(t, ei) 0 vr(t)φ(eθi)

0 −vr(t)Kyiφ(eθi) −Kθi


and

Mi(t, ei) :=

 Kyiφ(eθi)e
2
yi eyi

Kyiφ(eθi)exieyi + sin(eθi) −exi
−Kyiφ(eθi)eyi 0


and[
ṽk
ω̃k

]
=

[
Kxk 0 vk−1 0

0 vk−1Kykφ(eθk) 0 Kθk

]
︸ ︷︷ ︸

Bk(t, e)

 exk
eyk

cos(eθk)− 1
eθk


︸ ︷︷ ︸

ξ(ek)

For each i ≤ n, the system ėi := Āi(t, ei) is exactly of the
form (10). Hence, from the proof of Theorem 1 we deduce
that, for each corresponding i and any r > 0, the functions

V2i = γriV1i +
1

2

[
Kyiφ

2(eθi)Qv2r +Qω2
r

]
e2yi

−ωrexieyi + vrαrieθieyi, (34)

satisfy
∂V2i
∂t

+
∂V2i
∂ei

Ā(t, ei) ≤− σi|ei|2 (35)

for all t ≥ 0, |ei| ≤ c3r and appropriate values of βri, αri,
γri.

On the other hand, by continuity of the systems’ dynamics,
|Mi(t, ei)Bi(t, e)| ≤ ηr for all e such that |ei| ≤ c3r and,



moreover, |ξ(ei)| ≤ 2|ei|. Therefore, one can construct a
Lyapunov function candidate of the form

V2(t, e) =

n∑
i=1

−ψriV2i(t, e) (36)

such that, for an appropriate choice of the constants ψri,
there exists % > 0 such that the total derivative, along the
trajectories of (33) for all i ≤ n, satisfies

V̇2(t, e) ≤ −%|e|2 (37)

for all t ≥ 0, and |e| ≤ c3r. In addition, from uniformly
globally stability, all trajectories generated by initial con-
ditions t◦ ≥ 0, |e◦| ≤ r satisfy |e(t)| ≤ c3r for all t ≥ t◦.
Therefore, the origin is uniformly globally attractive.

Corollary 3. Under the conditions of Theorem 2 the origin
of the system (26) in closed loop with (27) is uniformly
exponentially stable at large on any compact.

4. CONCLUSIONS

We have presented a simple distributed control approach
for the formation tracking control of swarms of velocity-
controlled mobile robots. Our controllers ensure uniform
global asymptotic stability under a simple condition of per-
sistency of excitation of either of the reference velocities,
forward or angular. In particular, our controller applies
to the difficult problem of following straight paths: null
angular velocity and constant forward velocity. Finally, our
proofs are direct as they are based on Lyapunov’s second
method.
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